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We study the radius of analyticity R(t) in space, of strong solutions to systems of scale-invariant semi-linear parabolic equations. It is well-known that near the initial time, R(t)t -1 2 is bounded from below by a positive constant. In this paper we prove that lim inf t→0 R(t)t -1 2 = ∞, and assuming higher regularity for the initial data, we obtain an improved lower bound near time zero. As an application, we prove that for any global solution u ∈ C([0, ∞); H 1 2 (R 3 )) of the Navier-Stokes equations, there holds lim inf t→∞ R(t)t -1 2 = ∞.

Introduction

We consider the following system of N equations on R + × R d :

(SP) ∂ t U -∆U = P (U ) U |t=0 = U 0 , with P j (U ) def = ∈N N | |=k
A j, (D)(U ) for j in {1, . . . , N } where A j, (D) are homogeneous Fourier multipliers of degree β ∈ [0, 2[, and U = (U j ) 1≤j≤N .

The order of the nonlinearity is k ≥ 2 and we have written U = N j=1 U j j . An important property of a such a system is its scaling invariance: if a function U satisfies (SP) on a time interval [0, T ] with the initial data U 0 , then the function U λ defined by

U λ (t, x) def = λ α U (λ 2 t, λx)
satisfies (SP) on the time interval [0, λ -2 T ] with the initial data U 0,λ def = λ α U 0 (λ •) for

α def = 2 -β k -1 •
Note that α is positive, and in the following we shall assume that α ≤ d/k. For example for the Navier-Stokes equations there holds β = 1 and k = 2, while for the cubic heat equation there holds β = 0 and k = 3. In both cases α = 1. The scaling invariant Sobolev space for the initial data is H s crit (R d ), with s crit def = d 2 -α, recalling that H s (R d ) is defined by the following norm, for s < d/2:

f H s (R d ) def = R d |ξ| 2s | f (ξ)| 2 dξ 1 2 ,
where f = Ff is the Fourier transform of f . The question of solving the Cauchy problem for systems such as (SP) in scale invariant spaces has been widely studied. We shall make no attempt at listing all the results on the subject but simply recall the typical so-called Kato-type theorem, which may be proved by a Banach fixed point argument (see for instance [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF][START_REF] Giga | Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier-Stokes system[END_REF][START_REF] Kato | Strong L p -solutions of the Navier-Stokes equation in R m avec applications to weak solutions[END_REF][START_REF] Ribaud | Cauchy problem for semilinear parabolic equations with initial data in H s p (R n ) spaces[END_REF][START_REF] Weissler | Local existence and nonexistence for semilinear parabolic equation in L p[END_REF] among others) Theorem 1.1. Assume α ∈ ]1/k, d/k] and define s crit def = d/2 -α. Then, for any δ ∈ [0, α[, for any initial data U 0 belonging to H s crit +δ (R d ), a positive time T exists such that the system (SP) has a unique solution U in the Kato space K p T such that

(1.1) U K p T def = sup t≤T t 1 p U (t) H s crit + 2 p < ∞ . Moreover, if δ is positve, a constant c exists such that T ≥ c U 0 -2 δ
H s crit +δ . The goal of this article is to analyze the instantaneous smoothing effect of (SP): let us recall that in [START_REF] Foias | Gevrey class regularity for the solutions of the Navier-Stokes equations[END_REF], the analyticity of smooth periodic solutions to the Navier-Stokes equations (NS) is proved, in the sense that if v solves (NS) then e σ √ -t∆ v(t) is a smooth function for some σ > 0. This result was extended in [START_REF] Chemin | Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray[END_REF][START_REF] Herbst | Analyticity estimates for the Navier-Stokes equations[END_REF][START_REF] Lemarié-Rieusset | Nouvelles remarques sur l'analyticité des solutions milds des équations de Navier-Stokes dans R 3[END_REF][START_REF] Lemarié-Rieusset | Une remarque sur l'analyticité des solutions milds des équations de Navier-Stokes dans R 3[END_REF] where it is proved for instance that

R 3 |ξ| sup t≤T e √ t|ξ| | v(t, ξ)| 2 dξ + T 0 R 3 |ξ| 3 e √ t|ξ| | v(t, ξ)| 2 dξdt < ∞ ,
which shows that the radius of analyticity R(t) of v(t) is bounded from below by √ t. Note that the above condition is equivalent to the fact that e

√ -t∆ v(t) belongs to E ∞ T ∩ E 2 T
, where E q T denotes the space of vector fields V such that

V E q T def = 2 j 1 2 + 2 q ∆ j V L q ([0,T ];L 2 (R 3 )) 2 (Z) .
This type of result is also known to hold in the more general context of (SP) (see [START_REF] Ferrari | Gevrey regularity for nonlinear analytic parabolic equations[END_REF][START_REF] Kato | Nonlinear Evolution Equations and Analyticity. I[END_REF] for instance) and may be stated as follows.

Theorem 1.2. The solution constructed in Theorem 1.1 is analytic for positive t with radius of analyticity R(t) greater than √ t.

The purpose of this work is the proof of the following improved theorem. 

lim inf t→0 R(t) t 1 2 -log t U 0 2 δ H s crit +δ ≥ √ 2δ .
(b) If δ = 0, then, for any positive ε small enough, we have

lim inf t→0 R(t) t 1 2 -log e ετ ∆ U 0 K p t ≥ 2 √ 1 -ε .
In particular

lim t→0 R(t) t 1 2 = ∞.
We remark that in the case of three-dimensional incompressible Navier-Stokes system (NS)

   ∂ t u + u • ∇u -∆u + ∇p = 0 , (t, x) ∈ R + × R 3 , div u = 0 , u| t=0 = u 0 ,
where u = (u 1 , u 2 , u 3 ) denotes the velocity of the fluid and p the scalar pressure function, part (a) of Theorem 1.3 coincides with Theorem 1.3 of [START_REF] Herbst | Analyticity estimates for the Navier-Stokes equations[END_REF]. Moreover, the main idea used to prove Theorem 1.3 can be applied to investigate the radius of analyticity of any global solution of (NS). More precisely we can prove the following result.

Corollary 1.1. Let u ∈ C([0, ∞); H 1 2 (R 3
)) be a global solution of (NS). Then one has

(1.2) lim inf t→∞ R(t) t 1 2 = ∞ .

Proof of Theorem 1.3

We shall perform all our computations on the approximated system

(SP n ) ∂ t U -∆U = P n (U ) U |t=0 = U 0 , with P n,j (U ) def = ∈N N | |=k 1 B(0,n) (D)A j, (D)(U )
for j in {1, . . . , N }, and where we have written 1 B(0,n) for the characteristic function of the ball B(0, n)

def = ξ ∈ R d ; |ξ| ≤ n .
The system (SP n ) is an ordinary differential equation in all Sobolev spaces. All the quantities we shall write are defined in this case, and we neglect the index n in all that follows. We also skip the final stage of passing to the limit when n tends to infinity.

Let us consider three positive real numbers T , λ and ε which will be chosen later on in the proof. Motivated by [START_REF] Herbst | Analyticity estimates for the Navier-Stokes equations[END_REF], we define

(2.1) U a (t, x) def = F -1 e -λ 2 4(1-ε) t T +λ t √ T |ξ| | U (t, ξ)| .
The main point is that the function U a behaves like a solution a modified system (SP)

where the viscosity is ε instead of 1 and the non-linear term has a factor e

- λ 2 (k-1)
4 (1-ε) . We shall make this idea more precise in what follows.

The key ingredient used to prove Theorem 1.3 will be the following lemma.

Lemma 2.1. Let U a be defined by (2.1). Then for any p in ]max(2/α, k), ∞[ , there exists a positive constant C k,ε such that

(2.2) U a K p T ≤ e εt∆ U 0 K p T + C k,ε e λ 2 4(1-ε) U a K p T k-1 U a K p T .
Proof. A solution of (SP n ) satisfies

(2.3) | U (t, ξ)| ≤ e -t|ξ| 2 | U 0 (ξ)| + C t 0 e -(t-t )|ξ| 2 |ξ| β | U (t )| • • • | U (t )| k times (ξ)dt .
Let us observe that

- λ 2 4(1 -ε) 1 T + λ √ T |ξ| -|ξ| 2 ≤ -ε|ξ| 2 .
Thus by definition (2.1), we infer from (2.3) that

U a (t, ξ) ≤ e -εt|ξ| 2 | U 0 (ξ)| + C t 0 e -ε(t-t )|ξ| 2 e -λ 2 4(1-ε) t T +λ t √ T |ξ| |ξ| β | U (t )| • • • | U (t )| k times (ξ)dt . Notice that | U (t )| • • • | U (t )| k times (ξ) = k =1 ξ =ξ k =1 | U (t , ξ )| dξ 1 . . . dξ k ,
and using that, for any (ξ j ) 1≤j≤k in (R d ) k such that 

(2.4) U a (t, ξ) ≤ e -εt|ξ| 2 | U 0 (ξ)| + Ce λ 2 (k-1) 4(1-ε) t 0 e -ε(t-t )|ξ| 2 |ξ| β U a (t ) • • • U a (t ) k times (ξ)dt .
Let us recall the following result on products in Sobolev spaces: for any positive real number s, smaller than d/2 and greater than d/2 -d/k, there holds

(2.5) k =1 a k H ks-(k-1) d 2 ≤ C k k =1 a k H s . Now let us choose p in [1, ∞] such that (2.6) 0 < 2 p < α and set s p def = s crit + 2 p = d 2 + 2 p -α . Notice that U a (t ) • • • U a (t ) k times = (2π) kd F(U k a (t )) .
The assumption that α

≤ d k implies that α < d k + 2 p and s p > d 2 -d k , so (2.5) ensures that U a (t ) • • • U a (t ) k times (ξ) ≤ C k |ξ| -sp+(k-1) 2 p -α f (t , ξ) U a (t ) k H sp with f (t ) L 2 (R d ) = 1 .
As α(k -1) = 2 -β, plugging the above inequality in (2.4) gives

U a (t, ξ) ≤ e -εt|ξ| 2 | U 0 (ξ)| + C k e λ 2 (k-1) 4(1-ε) t 0 e -ε(t-t )|ξ| 2 |ξ| -sp+2-(k-1) 2 p f (t , ξ) U a (t ) k H sp dt .
By multiplication of this inequality by t 1 p |ξ| sp and by definition of the norm • K p T in (1.1), we get, for any t in the interval [0, T ],

t 1 p |ξ| sp U a (t, ξ) ≤ t 1 p |ξ| sp e -εt|ξ| 2 | U 0 (ξ)| + C k e λ 2 (k-1) 4(1-ε) U a k K p T t 1 p t 0 e -ε(t-t )|ξ| 2 1 (t ) k p |ξ| 2 1-k-1 p f (t , ξ)dt .
If we assume that p is greater than k, the function y∈ [0, ∞] → y

1-k-1
p e -εy is bounded, we infer that for any t in the interval [0, T ],

t 1 p |ξ| sp U a (t, ξ) ≤ t 1 p |ξ| sp e -εt|ξ| 2 | U 0 (ξ)| + C k,ε e λ 2 (k-1) 4(1-ε) U a k K p T t 1 p t 0 1 (t -t ) 1-k-1 p 1 t k p f (t , ξ)dt .
Taking the L 2 norm with respect to the variable ξ gives, for any t in the interval [0, T ],

t 1 p U a (t) H sp ≤ t 1 p e εt∆ U 0 H sp + C k,ε e λ 2 (k-1) 4(1-ε) U a k K p T .
Taking the supremum with respect to t in the interval [0, T ] gives (2.2).

2 Let us now turn to the proof of Theorem 1.3.

Proof of Theorem 1.3. Let U and U a be determined respectively by (SP n ) and (2.1). We make the following induction hypothesis

(2.7) U a K p T ≤ c k,ε e -λ 2 4(1-ε) with c k,ε def = 1 (4C k,ε ) 1 k-1
with C k,ε being determined by Lemma 2.1. As long as this induction hypothesis is satisfied,

Inequality (2.2) becomes (2.8) U a K p T ≤ 4 3 e εt∆ U 0 K p T .
Now let us distinguish the case when U 0 belongs to the space H s crit +δ from the case when U 0 belongs only to the critical space H s crit . (a) The case when U 0 belongs to the space H s crit +δ . We first observe that (2.9)

e εt∆ U 0 K p T ≤ C δ,p T δ 2 U 0 H s crit +δ
Let us define

T ε (U 0 ) def = η ε U 0 -2 δ H s crit +δ with η ε def = c k,ε 2C δ,p 2 δ 
• By definition of T ε (U 0 ), we have that for any

T ≤ T ε (U 0 ), 2C δ,p T δ 2 U 0 H s crit +δ ≤ c k,ε .

Now let us define

λ T def = 2δ(1 -ε) log 1 2 η ε T U 0 2 δ H s crit +δ
• Then for T ≤ T ε (U 0 ), we deduce from the Ineqalities (2.8) and (2.9) that

U a K p T ≤ 4 3 C δ,p T δ 2 U 0 H s crit +δ < 2C δ,p T δ 2 U 0 H s crit +δ = c k,ε e - λ 2 T 4(1-ε) .
This in turn shows that (2.7) holds for T ≤ T ε (U 0 ). Furthermore, according to (

p e λ T √ T |D| U (T ) H s crit + 2 p ≤ c k,ε . 1.1) and (2.1), there holds T 1 
As δ is less than α, taking p = 2 δ ensures that

∀T ≤ T ε (U 0 ) , R(T ) ≥ 2δ(1 -ε)T 1 2 log 1 2 η ε T U 0 2 δ H s crit +δ

•

This inequality means exactly that lim inf

T →0 R(T ) T 1 2 -log T U 0 2 δ H s crit +δ ≥ 2δ(1 -ε) .
Due the fact that ε is arbitrary, we conclude the proof of part (a) of Theorem 1.3. (b) The case when U 0 belongs to the critical space H s crit . Let us use the fact that in this case (2.10) lim

T →0 e εt∆ U 0 K p T = 0 .
Then we consider T ε (U 0 ) such that (2.11)

e εt∆ U 0 K p Tε(U 0 ) ≤ c k,ε .
For any T ≤ T ε (U 0 ), let us define

λ T def = 2(1 -ε) 1 2 log 1 2 c k,ε 2 e εt∆ U 0 K p T .
Then it follows from Inequality (2.8) that

U a K p T ≤ 4 3 e εt∆ U 0 K p T < 2 e εt∆ U 0 K p T = c k,ε e - λ 2 T 
4 (1-ε) .

This shows that (2.7) indeed holds for T ≤ T ε (U 0 ). Furthermore, according to (1.1) and (2.1), there holds

T 1 p e λ T √ T |D| U (T ) H s crit + 2 p ≤ c k,ε . By definition of λ T this means in particular that ∀T ≤ T ε (U 0 ) , R(T ) ≥ 2(1 -ε) 1 2 T 1 2 log 1 2 c k,ε 2 e εt∆ U 0 K p T .
This inequality means exactly that for any small strictly positive ε, we have lim inf

T →0 R(T ) T 1 2 -log 1 2 e εt∆ U 0 K p T ≥ lim T →0 2(1 -ε) 1 2 1 - log c k,ε log 2 e εt∆ U 0 K p T 1 2
, which together with (2.10) ensures part (b) of of Theorem 1.3. This completes the proof of the theorem.

3. Proof of Corollary 1.1 Let u ∈ C([0, ∞); H 1 2 (R 2 
)) be a global solution of the Navier-Stokes system (NS) with initial data u 0 . Then it follows from [START_REF] Chemin | Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel[END_REF] that this solution is unique, so that applying Theorem 2.1 of [START_REF] Gallagher | Asymptotics and stability for global solutions to the Navier-Stokes equations[END_REF] yields

(3.1) lim t→∞ u(t) H 1 2 = 0 . Moreover, for any t 0 > 0, u verifies (N S t 0 )    ∂ t u + u • ∇u -∆u + ∇p = 0, (t, x) ∈]t 0 , ∞[×R 3 , div u = 0, u| t=t 0 = u(t 0 ). Similar to (2.1) we denote (3.2) u a,t 0 (t, x) def = F -1 e -λ 2 4(1-ε) t-t 0 T +λ t-t 0 √ T |ξ| | u(t, ξ)| , and 
u K p t 0 ,T def = sup t∈[t 0 ,t 0 +T ] (t -t 0 ) 1 p u(t) H 1 2 + 2 p .
Then along the same line to proof of Lemma 2.1, we deduce that

(3.3) u a,t 0 K p t 0 ,T ≤ e ε(t-t 0 )∆ u(t 0 ) K p t 0 ,T + C ε e λ 2 4(1-ε) u a,t 0 2 K p t 0 ,T . 
By (3.1), we can choose t 0 so large that 

u(t 0 ) H 1 2 ≤ c ε 2K ε with K ε being determined by ε εt∆ u 0 K p ∞ ≤ K ε u 0 H
c ε 2K ε u(t 0 ) H 1 2
, from which we infer that lim inf

T →∞ R(t 0 + T ) √ t 0 + T = lim inf T →∞ R(t 0 + T ) √ T ≥ 2(1 -ε) 1 2 log 1 2 c ε 2K ε u(t 0 ) H 1 2
. This together with (3.1) ensures (1.2). This finishes the proof of Corollary 1.1.

Theorem 1. 3 .

 3 (a) If δ is positive, the solution constructed in Theorem 1.1 satisfies

ξ

  j = ξ, there holds e |ξ| ≤ k j=1 e |ξ j | , we infer that

1 2

 1 Then as long as the induction assumption is satisfied, we infer from (3.3) thatu a,t 0 K p t 0 ,T ≤ 4 3 e ε(t-t 0 )∆ u(t 0 ) K p t 0 ,T < 2 e ε(t-t 0 )∆ u(t 0 ) K p t 0 ,T ≤ 2K ε u(t 0 )H ≤ c ε . So that for any T > 0, we defineλ T def = 2(1 -ε)

1 p e λ T √T 2 p

 1T2 This in turn shows that (3.4) holds for any T > 0. (3.4) in particular implies thatT |D| u(t 0 + T ) ≤ c ε . As a result, it comes out ∀T , R(t 0 + T ) ≥ 2(1 -ε)
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