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1. Introduction
Blood vessel segmentation has been a widely covered
topic in the literature, in particular regarding retinal,
brain and heart vascular networks. A renewed interest
has been observed recently, in hepatic vessels extrac-
tion to develop computer-aided diagnosis and surgery
planning tools. A good knowledge of the hepatic vas-
cular network geometry is crucial for liver resection as
the location of the main hepatic vessels helps the clini-
cians to determine the part of the liver to remove. Most
segmentation algorithms include a filtering step that
enhances the contrast of blood vessels while remov-
ing non-vessel structures in the image.

In the past twenty years, several vessel enhance-
ment filters have been proposed. However, the imple-
mentations used in the published articles have rarely
been made publicly available, and the quantitative
analyses have often been performed on a limited num-
ber of methods on homemade synthetic examples
and/or private datasets of real images. The repro-
ducibility and comparison of the results from the dif-
ferent methods are thus very difficult.

In this work, we implemented seven vessel en-
hancement filters representative of the literature and
compared their results. This benchmark is estab-
lished on two publicly available datasets: (i) the IR-
CAD dataset containing 20 Computed Tomography
(CT) scans of patients and (ii) a synthetic dataset from
VascuSynth [4] corrupted by noise and photometric ar-
tifacts.

2. Methods
2.1 Vessel enhancement filters
The first category of filters studied in this work, called
vesselness, is based on the analysis of the Hessian
matrix for each voxel. Let λ1, λ2, λ3 be the eigenvalues
of the Hessian matrix such that |λ1| 6 |λ2| 6 |λ3|; then
a tubular structure can be described by:

|λ1| ≈ 0; |λ1| 6 |λ2|; λ2 ≈ λ3 (1)

Vesselness filters define a ratio of eigenvalues to
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discriminate tubes from other structures. Most vessel
enhancement filters in the literature are vesselness fil-
ters. Five of them were selected to represent this cat-
egory: Sato [8], Frangi [1], Meijering [2], Jerman [7]
and Zhang [6]. These filters are coupled with a Gaus-
sian scale-space framework to detect vessels of vary-
ing size. In this framework, the scale parameter is then
defined as the standard deviation σ of the Gaussian.

Two non-vesselness methods were also selected.
The first is the Optimally Oriented Flux (OOF) which is
an optimization framework leading to the computation
of 3 eigenvalues. These values play the same role
as those of the Hessian matrix, while avoiding some
drawbacks caused by the scale space. We use the
OOF framework with the vesselness measure [3]. The
second method, called RORPO [5], is based on path
operators, from mathematical morphology, that uses
path-based structuring elements to detect curvilinear
structures. RORPO is also a multiscale filter using the
length of the structuring elements as the scale param-
eter.

2.2 Dataset and implementation

The IRCAD dataset contains 20 CT scans of the
liver along with their vascular network ground-truth.
The VascuSynth dataset from March 2013 contains
11 groups of 10 synthetic vascular networks with a
varying number of bifurcations. Noise was added to
the VascuSynth dataset to simulate either CT (com-
bination of Poisson and Gaussian noise) or Dynamic
Contrast-Enhanced Magnetic Resonance (DCE MRI)
acquisition (non-linear illumination and Rician noise).

The implementation of the seven compared meth-
ods is proposed in a common framework publicly avail-
able on GitHub (https://github.com/JonasLamy/
LiverVesselness). The scripts to generate the results
and analysis presented below are also available.

2.3 Metrics

Each filter provides a normalized response acting as
an indicator to belong to a blood vessel ranging from
0 to 1. To assess the efficiency of the seven algo-
rithms, the results were thresholded iteratively from
0 to 1. Each resulting binary image was compared
to the vascular network ground-truth to compute the
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number of true positives, true negatives, false posi-
tives and false negatives. Three similarity criteria were
computed from these values: the Matthews correlation
(MCC), the Dice coefficient and the minimum distance
to the point (0 FP, 1 TP) of the ROC curve.

3. Results and discussion
In this work, each method was computed on half im-
ages of both datasets. Illumination artifacts and Ri-
cian noise (σ = 20) were added to the VascuSynth
samples. The parameters for each filter were inde-
pendently optimized in two steps: First, the best set
of scales was determined while the other parame-
ters were set to their default value, then the specific
method parameters were optimized using the best set
of scales. As the results may depend on the chosen
metric, we repeated this optimization process with a
grid search based on each metric.

We observed that the MCC tends to penalize false
positives which results in a smaller range of scales
centered on large scales to detect large, better con-
trasted vessels. We also observed that the MCC and
Dice values are highly correlated, as such we will only
comment one of them. The distance to the ROC curve
seems to encourage a high true positive rate resulting
in a wider range of scales.

On real data, most false positives from the Frangi,
Jerman, Sato, Meijering, OOF and Zhang filters are
located on the liver border whereas RORPO does not
detect false positives on the liver border.

For the IRCAD database Zhang’s algorithm pro-
vides the best results closely followed by Sato’s and
Frangi’s. For the VascuSynth dataset, Sato gives the
best metrics followed by Jerman and Frangi. The
quantitative results for both experiments are shown in
Table 1 and the best ROC curves for each method on
the IRCAD dataset are presented in Figure 1.

This benchmark will be extended to DCE-MRI im-
ages to better assess the behavior of vessel enhance-
ment filters on this specific modality.

Specific metric to assess the quality of the bifurca-
tion detection will be included in this benchmark as it
is often a weak point of vessels enhancement algo-
rithms.

DataBase VascuSynth IRCAD
Measure MCC Dice dist MCC Dice dist
Sato 0.846 0.842 0.052 0.345 0.360 0.349
Frangi 0.830 0.828 0.055 0.340 0.355 0.365
Meijering 0.656 0.637 0.111 0.178 0.188 0.440
OOF(λ1 + λ2) 0.510 0.500 0.143 0.240 0.240 0.456
Jerman 0.837 0.833 0.054 0.322 0.330 0.368
RORPO 0.420 0.350 0.411 0.292 0.284 0.748
Zhang 0.767 0.760 0.100 0.392 0.398 0.347

Table 1: Comparison results obtained on the Vas-
cuSynth and IRCAD database.

Figure 1: ROC curve after maximizing MCC for the
IRCAD database.
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