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Abstract

Inside the Clausius-Clapeyron regime, transformation stresses during supere-

lastic tensile tests of polycrystalline shape memory alloys are linearly depen-

dent on temperature, with coefficients being the slopes of the forward and

reverse transformation lines. In this work, experiments are performed to in-

vestigate the anisotropy of the slopes of the forward and reverse transformation

stress-temperature lines in a NiTi superelastic thin walled tube. The classical

Clausius-Clapeyron relation is widely used to model these slopes, although, in a

strict sense, this relation is defined at thermodynamic equilibrium. Experimen-

tal results disagree with the widely used classical Clausius-Clapeyron relation

in two points: (i) that there should be no difference between slopes for for-

ward and reverse transformations and (ii) that the products of the slopes by

the transformation strains should not depend on orientation, since the remain-

ing terms (mass density and entropy change) are not orientation dependent.

A modified “Clausius-Clapeyron” relation is then proposed, better suited to

model the anisotropy of the slopes of stress-temperature transformation lines

of forward and reverse in superelastic NiTi. This modification is based on a

unified thermodynamic theory of thermoelastic martensitic transformation in

which irreversible energies are accounted as a sum of stored elastic energy and
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dissipated energy. The modified “Clausius-Clapeyron” relation is obtained by

expressing that this irreversible energy is temperature dependent and that this

temperature dependence is dependent on the orientation.

Keywords: NiTi, superelasticity, temperature dependence,

Clausius-Clapeyron, anisotropy

1. Introduction

Superelastic NiTi shape memory alloys (SMA) have the ability to recover

strains of the order of 10% in tension by simple mechanical unloading. With

a high work output density [1] and a mechanical behaviour compatible with

human tissues [2], NiTi superelastic SMA are being applied from engineering5

systems to biomedical implants. The remarkable amount of recoverable strain

is attained through a thermoelastic – hence reversible – phase transformation

between an austenite (A) and a martensite (M) phases. In the austenite phase,

a mechanical loading above a critical stress level triggers the nucleation and

propagation of the forward phase transformation (A→ M) and upon unloading10

below a critical stress level the reverse phase transformation takes place (M →

A).

Experimental results show that these critical stress levels for phase trans-

formation increase linearly with temperature inside a temperature-stress region

known as the Clausius-Clapeyron regime [3, 4]. This linear relation is a crit-15

ical design parameter, experimentally calculated as being the slope of trans-

formation stress-temperature curves (dσtr/dT ). This slope is usually known as

Clausius-Clapeyron coefficient and is commonly thermodynamically modeled by

the Clausius-Clapeyron equation

dσtr
dT

= −ρ∆S

∆εtr
= C (1)

where C is the Clausius-Clapeyron coefficient, ρ is the mass density of the20

transforming material, ∆S is the difference between specific entropies of A and

M phases, and ∆εtr is the strain for a complete phase transformation [5, 6].
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From a strictly thermodynamic point of view, the Clausius-Clapeyron rela-

tion is defined for the thermodynamic equilibrium. It means that the relation

in Eq. 1 does not predict any difference between forward and reverse slopes.25

However, when measured experimentally, a difference between forward and re-

verse slopes is commonly observed [5, 6] in polycrystalline SMA. This difference

is even taken into account in constitutive modeling of SMA thermomechanical

behaviour, where two different material parameters are usually attributed for

each slope [7, 8]. Despite these evidences, Eq. 1 is always used to thermody-30

namically model the dependence on temperature of both forward and reverse

transformation stresses during superelastic tensile tests.

Other limitation of Eq. 1 is that the only term taking into account the effect

of crystallographic configuration, such as texture, is ∆εtr. Taking the product of

the slopes dσtr/dT by the transformation strain ∆εtr, leaves a remaining term35

equal to the product of mass density ρ and entropy difference ∆S, which depends

only on composition [9]. Because the thermoelastic phase transformation in

SMA takes place through ordered atomic movement, any significant alignment of

crystallographic grains directly affects the mechanical behaviour of the material.

Even grain size has been shown to affect the mechanical behaviour of NiTi40

superelasticity [10, 11].

Many applications of SMA use polycrystalline material in the form of sheets,

rods and tubes, all forms that are highly textured [12]. NiTi superelastic thin

walled tubes, which are used in the fabrication of 65% of self-expanding car-

diovascular stents [13], are highly textured due to their manufacturing process.45

Barney et al. [14] performed X-ray microdiffractions on micrometric tensile sam-

ples cut from a tube in the longitudinal (0◦) and circumferential (90◦) directions

and at 45◦. They showed that the mechanical behaviour at 45◦ greatly differs

from the other two studied directions. Likewise, Robertson et al. [12] calculated

the theoretical transformation strains of twelve variants of martensite from tex-50

ture data of drawn tubes. It resulted in the prediction of macro transformation

strains in several loading orientations relative to the drawing axis. Their pre-

dictions showed that at 45◦ the transformation strain is smaller than in the lon-
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gitudinal and circumferential directions. To the best of the authors’ knowledge,

no work addresses the anisotropy of the temperature dependence, however.55

In this context, this work investigates and analyses the anisotropies of the

superelastic behaviour and of its temperature dependence in a thin walled NiTi

tube. Firstly, an experimental investigation is carried out in order to address

the anisotropy of the thermomechanical behaviour of the tube’s material. The

original tube is flattened and samples are cut along five orientations from the60

drawing direction. The samples are submitted to isothermal tensile tests at

several temperatures above Af . The experimental results obtained at each

orientation allow the calculation of key SMA properties and a clear quantitative

analysis of anisotropy. Afterwards, the observations from this first part are

examined from a thermodynamic point of view. This thermodynamic analysis65

addresses the anisotropy of energy terms involved in a transformation cycle. The

anisotropy of the temperature dependence of these energy terms is also analysed,

a dependence which is neglected when using the classical Clausius-Clapeyron

relation.

2. Material and methods70

2.1. NiTi tube and fabrication of tensile samples

A 50.8%atNi-Ti thin walled tube of outer diameter 8.27 mm and wall thick-

ness 0.165 mm was used. This tube was manufactured by Minitubes SA (France).

Figure 1 shows a scheme of the fabrication process of the tensile samples, as well

as the samples’ final dimensions and nomenclature used in this work. The origi-75

nal tube was obtained after the last cold mandrel drawing [15, 16, 17]. A section

of this original tube was first cut longitudinally using a pulsed optical fibre laser.

This tube section was then flattened through a one-step shape setting at 723 K

(450◦C) for 20 min in a resistive furnace followed by water quench. The maxi-

mum strain to flatten the tube in a “sheet” form was about 1.9% (in absolute80

value). This is negligible when compared to the strain to which the material

is subjected in the manufacturing process of the tube from the ingot. From
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the flattened tube, dogbone samples were laser cut in five orientations: θ = 0◦

(drawing direction-DD), θ = 22.5◦, θ = 45◦, θ = 67.5◦ and θ = 90◦ (transver-

sal direction-TD). The ~ey and ~ex directions correspond to the longitudinal and85

transverse directions of the dogbone samples, respectively.

D: tube outer diameter = 8.27 mm

DD: tube drawing direction 

TD: tube transversal direction

: transversal direction of sample

: longitudinal direction of sample 

θ: sample orientation from DD
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Figure 1: Scheme of fabrication process of dogbone tensile samples from a NiTi tube, the final

dimensions of samples and the adopted nomenclature.

Differential Scanning Calorimetry (DSC) analysis (model Q200 from TA

Instruments) was performed in samples of both original and flattened tubes.

This technique was used to verify the effects of shape setting process in the

transformation behaviour of the tube. The analysis was carried out between90

373 K and 213 K with a ± 10 K/min rate. Figure 2 presents the DSC results

for both original and flattened tubes.

The curve for the original cold-worked tube does not indicate the presence

of phase transformation. The curve for the flattened tube presents peaks during

cooling and heating. They are associated with Austenite to R-phase transfor-95

mation (A→R), since little peak energy (≈ 4.3 J/g) and small temperature

hysteresis (≈ 5 K) are observed [18, 19]. Transformation temperatures were
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Figure 2: DSC results for the original tube (cold-worked) and for flattened tube (after shape

setting at 723 K for 20 min). (In color)

extracted by slope-line-extension method and are: Rs = 302 K; Rf = 283 K;

As = 286 K; Af = 305 K.

Robertson et al. [12] analyzed the texture of a flattening NiTi tube. They100

showed that the flattening process, performed through five steps, does not

change significantly the texture of the original tube. Moreover, they showed

that the texture of the NiTi tube is not altered when the material is submitted

to heat treatments. On the contrary, the texture is intensified.

2.2. Isothermal tensile tests105

The oriented samples were subjected to isothermal, displacement control

tensile tests in a Gabo Eplexor 500N testing machine with a strain rate of

5 × 10−4 s−1. The temperature of the specimen is imposed by a resistive air

furnace and controlled by using a fan which blows directly on the specimen.

Although the temperature of samples was not measured during tests, tensile110

results obtained with this strain rate indicate that self-heating was kept to a

minimum. This assumption is based in two simultaneous experimental observa-

tions: stress plateaus are horizontal and a single, well-defined localization band
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(observed in digital image correlation results not shown in this paper) nucle-

ated during tests. Both these observations have been reported in literature to115

be related with quasi-isothermal experimental conditions, as for example in [20].

Tests were carried out at four temperatures with a measured accuracy of

±1 K. Testing temperatures were chosen so that at the start of tensile tests

samples had an austenite microstructure, based on the DSC results presented

in Fig. 2. The chosen temperatures were 313 K (40◦C), 323 K (50◦C), 333 K120

(60◦C) and 343 K (70◦C). After the completion of a superelastic cycle, samples

were loaded until rupture. The nominal stress level attained at the end of the

superelastic cycle was dependent on the test temperature to allow the sample

to attain approximately the same strain level at all temperatures. These stress

levels were 750 MPa, 800 MPa, 850 MPa and 900 MPa for the tests at 313 K,125

323 K, 333 K and 343 K, respectively. Prior to the isothermal tensile tests, the

dogbone samples were heated in boiling water for 1 min, so that all structure

was austenitic, and cooled to room temperature to ensure that all samples start

tests with the same structure.

The furnace lid contains a transparent crystal window, allowing strain data130

acquisition through 2-D digital image correlation technique (DIC). The samples

were prepared with a black speckle pattern over a white background on their

surface. In our study the calculated strain maps correspond to the longitudinal

εyy(M) component of the Hencky strain tensor in function of the material point

M . M is inside a defined zone of interest (ZOI) of around 200 x 1000 pixels. The135

speckle allowed a 29 px × 29 px subset to be used in the correlation analysis,

performed with Vic2D software from Correlated Solutions. The digital image

scale is 0.01 mm/pixel.

To plot the global mechanical behaviour, logarithmic tensile strain εyy was

averaged over the ZOI at each instant. Axial nominal stress is calculated as140

Σyy = F/A0 where F is the axial force and A0 is the initial cross section area

(A0 = sample width (L) × sample thickness = 2 × 0.165 mm2). Cauchy (or

true) stress is calculated as σyy = F/A where A is the current cross section area.

A is obtained from the hypothesis of volume conservation (A = A0/exp(εyy)).
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3. Thermodynamic framework of thermoelastic martensitic transfor-145

mation

This section provides a background on the thermodynamic framework used

in this work to calculate and discuss some of the analyzed properties. The

present approach is based on the works of Ort́ın and Planes [21, 22, 23] and

Wollants et al. [24], Favier and Liu [25] and Liu [26].150

This approach is expressed at the scale of a representative element volume

(REV). The free energy change dG per unit mass of REV over an infinitesimal

step dfm of transformation for a thermoelastic martensitic transformation in a

polycrystalline matrix is expressed as [22, 24, 25, 26]:

dG = (∆Hch − T∆Sch)dfm + δEst + δEfr − δW tr
mech = 0 (2)

where:155

• fm is the mass fraction of martensite, defined in the REV. In full austenitic

state fm = 0, in full martensitic state fm = 1 and infinitesimal steps dfm

are such that 0 ≤ fm ≤ 1;

• ∆Hch is the specific chemical enthalpy of transformation per mass unit of

transforming material, understood as the difference between the chemical160

specific enthalpies of the martensite and austenite phases:

∆Hch = HM
ch −HA

ch;

• ∆Sch is the specific chemical entropy of transformation per mass unit of

transforming material, understood as the difference between the chemical

specific entropies of the martensite and austenite phases:165

∆Sch = SMch − SAch;

• T is temperature;

• δEst accounts for the elastic energy stored in the REV by an infinitesimal

step dfm of the transformation at the stage corresponding to fm;
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• δEfr accounts for the energy dissipated by the infinitesimal step dfm of170

transformation at the stage corresponding to fm;

• δW tr
mech represents the external mechanical work per unit mass of the REV

required to induce the infinitesimal step of transformation dfm at the same

stage.

The occurrence of a stress induced martensitic transformation is determined175

when the Gibbs free energy of the REV (G) reaches a minimum, which is ex-

pressed by the condition (dG = 0). In derivative form, this condition results

in:

G′ =
∂G

∂fm
= ∆Hch − T∆Sch + E′st + E′fr −W

′tr
mech = 0 (3)

where:

• G′ is defined by dG = (∂G/∂fm)dfm = G′dfm;180

• δEst = (∂Est/∂fm)dfm = E′stdfm;

• δEfr = (∂Efr/∂fm)dfm = E′frdfm;

• δW tr
mech = (∂W tr

mech/∂fm)dfm = W
′tr
mechdfm.

In Equation 3, all terms are expressed as energy per unit mass of trans-

forming material in J/kg and are algebraic values. The infinitesimal martensite185

mass fraction step dfm is positive during forward transformation (austenite to

martensite, A→M) and negative during reverse transformation (martensite to

austenite, M→A).

The specific chemical enthalpy and entropy changes, respectively, ∆Hch

and ∆Sch, originate from the difference in atomic arrangement between the two190

phases. They are both considered constant for a given transformation in a given

alloy system. HM
ch < HA

ch and SMch < SAch, leading to ∆Hch = HM
ch−HA

ch < 0 and

∆Sch = SMch − SAch < 0. Also, the heat capacities of austenite and martensite

are assumed equal [24, 27].
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The stored strain energy term, δEst, includes the elastic energy associated195

with the accommodation of the shape and volume changes of the transformation.

This energy is stored in the system during the forward transformation (δEst > 0)

and progressively released with the reversion of martensite to the parent phase

(δEst < 0). As dfm > 0 during forward transformation (A→M) and dfm < 0

during reverse transformation (M→A), E′st > 0 for both forward and reverse200

transformations.

The dissipated energy term, δEfr, is the sum of all energies consumed

during phase transformation. It includes frictional work associated with the

moving of internal defects and transformation phase boundaries [24]. As δEfr

is always dissipated, its value is always positive for both forward and reverse205

transformations. As dfm > 0 during forward transformation (A→M) and dfm <

0 during reverse transformation (M→A), E′fr > 0 for the forward transformation

and E′fr < 0 for the reverse transformation.

The external mechanical work, δW tr
mech, is expressed as function of the

macroscopic strain and stress tensors at the level of the REV, according to210

continuum mechanics theory. In a tensile test the external mechanical work per

unit mass is accounted as δWmech = 1
ρσdε. The volumetric mass density, ρ,

is considered in this work as ρ = 6450 kg/m3, σ is the applied tensile Cauchy

stress (or true stress) and dε is the increment of logarithmic strain. If plastic

deformation is negligible, the strain increment can be divided in two summands,215

an elastic strain increment and a transformation strain increment:

dε = dεel + dεtr (4)

From this division the external mechanical work can be written as:

δWmech = δW el
mech + δW tr

mech (5)

which gives the external mechanical work to induce transformation

δW tr
mech =

1

ρ
σdεtr (6)
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In this paper, the increment dεtr is assumed proportional to the infinitesimal

step dfm [28]: dεtr = dfm∆εtr, where ∆εtr is the tensile transformation strain220

for a complete transformation. Thus, W
′tr
mech = 1

ρσ∆εtr. Therefore, for a tensile

test, Eq. 3 reads:

G′ = ∆Hch − T∆Sch + E′st + E′fr −
1

ρ
σ∆εtr = 0 (7)

Equation 7 dictates the energy balance of the thermodynamic system (con-

stituted by the two-phase transforming material) at each σ, T pair. While the

specific chemical enthalpy and entropy of transformation are function of com-225

position only, the terms of transformation strain, stored and frictional energies

can be function of martensite fraction and temperature.

Now, isolating the tensile Cauchy stress in Eq. 7 one obtains [26]:

σ =
ρ

∆εtr
[∆Hch − T∆Sch + E′st + E′fr] (8)

Differentiating Eq. 8 with respect to temperature gives the general form of

the slope of transformation stress-temperature. At a given martensite fraction230

fm:

dσ

dT
=

ρ

∆εtr

(
−∆Sch +

∂E′st
∂T

+
∂E′fr
∂T

)
− σ

∆εtr

∂∆εtr
∂T

(9)

The classical Clausius-Clapeyron equation is defined in the thermodynamic

equilibrium, i.e. in the absence of any irreversible energy terms and assuming a

non temperature dependent transformation strain:

dσ

dT
= −ρ∆Sch

∆εtr
= C (10)

where C is the Clausius-Clapeyron coefficient for a given phase transformation.235

4. Experimental results

Figure 3 contains a set of nominal stress Σyy-logarithmic εyy strain curves

for five orientations θ and four testing temperatures T . For clarity purposes, the

11



last loading up to rupture is omitted in this figure and is presented further in the

article (see Fig. 6). Perfect superelastic behaviour is observed for all orientations240

and testing temperatures, with negligible residual strain after unloading.

The curves in Fig. 3 show that the strain achieved at the end of loading varies

with orientation, as well as the plateau stress. Unlike the other orientations, it

is notable that at θ = 45◦ the material does not present a well-defined stress

plateau. The absence of a plateau is an indication of a non-localized deformation245

[29, 30, 31, 32], which was confirmed through the strain maps of DIC.

The testing temperature has little influence on the strain levels. Stress levels

increase with increasing testing temperature for all orientations, as expected in

NiTi alloys according to the Clausius-Clapeyron relation.

5. Discussion250

In this section thermomechanical key properties of NiTi are presented and

discussed. A quantitative analysis of the anisotropic behaviour of transforma-

tion strain, stress, stress hysteresis and slopes of forward and reverse transfor-

mation lines is performed. The methodology used for calculations is presented

along with the property itself.255

5.1. Qualitative analysis of the anisotropy of mechanical behaviour

From the stress-strain curves of Fig. 3 it is possible to qualitatively infer a

strong anisotropy in the mechanical behaviour of the NiTi tube. The strains at

the end of loading are very dependent on the orientation. The plateau stresses

are also orientation dependent. The overall observation is that the mechanical260

behaviour evolves almost symmetrically from 0◦ and 90◦ directions towards 45◦.

The shape of stress-strain curves at 45◦ from the drawing direction is very

distinct compared to the other orientations. Besides reaching the smaller strain

at the end of loading, this orientation has a very smooth mechanical behaviour

with some degree of hardening. The origin of this distinct mechanical behaviour265

is attributed to the texture induced by the drawing process of the tube [12,
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Figure 3: Nominal tensile stress versus logarithmic strain plotted for each orientation at 313

K (40◦C), 323 K (50◦C), 333 K (60◦C) and 343 K (70◦C).
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33]. Texture measurements performed by Barney et al. [14] in a NiTi tube

flattened through a shape setting process show that a specimen cut along the

45◦ orientation contains predominantly 〈100〉-type grains.

Indeed the tensile behaviour of 〈100〉 NiTi single crystals measured by Gall270

et al. [34] resembles those of Fig. 3 for the 45◦ orientation. The authors show

that 〈100〉-type grains present strong transformation hardening under tension,

which seems to hinder the stress-induced martensitic transformation compared

to other single crystal orientations, as well as cause early rupture. Therefore,

less transformation strain is observed in this direction.275

Another feature of the anisotropy of NiTi tubes observed in the results of

Fig. 3 is the symmetrical tendency of mechanical behaviour from 45◦ orientation

towards drawing and transversal directions (0◦ and 90◦). In both senses – from

45◦ to 0◦ and from 45◦ to 90◦ – the strain at the end of loading increases and

the plateau stress decreases for tests at the same temperature. Barney et al. [14]280

and Bechle and Kyriakides [32] also pointed out the similarities of mechanical

behaviour between drawing and transversal directions in NiTi tubes. According

to texture measurements, samples cut from thin walled NiTi tubes along the

drawing direction have predominantly 〈111〉 grains [12, 14], while samples cut

along the transversal direction have a mix of 〈111〉 and 〈110〉-type grains [12].285

The tensile tests in NiTi single crystals performed by Gall et al. [34] show that

both 〈111〉 and 〈110〉 grains reach substantial larger strains than 〈100〉 grains

at the same stress level, besides presenting a well-defined stress plateau.

5.2. Presence of R-phase during tensile tests

As indicated in the DSC results in Fig. 2, the alloy of the tube presents the290

intermediate R-phase during forward (cooling) and reverse (heating) transfor-

mations. Because prior to tensile tests all samples were cooled from 100◦C to

room temperature (≈ 22◦C), samples were introduced in the furnace of the ten-

sile machine with a mixture of R-phase and austenite (DSC peak temperature

of A-R transformation is ≈ 20◦C). As tensile tests are performed at higher tem-295

peratures, the amount of R-phase at the beginning of test decreases. Indeed,
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Duerig and Bhattacharya [4, p.495] showed how the presence of the R-phase

“plays a critical role in controlling the plateau stress” and pointed out the im-

portance of taking this phase into account when considering stress induced phase

transformation.300

In the presence of stress, the A↔R transformation is associated with small

transformation strains. Literature reports transformation strains between 0.2%

and 1% [4, 35], although no information was found concerning the influence of

texture or strain orientation. This transformation is noticeable at the apparent

elastic zone of the stress-strain curve, with the occurrence of inflection points.305

In the results of Fig. 3, a slight inflection in initial loading is perceptible for

the sample tensioned at 90◦ at 313 K and 323 K. At higher temperatures, the

R-phase vanishes and austenite transforms directly into martensite. In other

orientations, this inflection was not observed.

5.3. Anisotropy of the elastic modulus (E)310

The estimation of elastic modulus of a transforming material from a stress-

strain curve can be rather inaccurate. This happens because, in addition to pure

elasticity, other mechanisms of deformation are involved in the deformation

process. In the case of NiTi phase transformation, martensite reorientation

[35] and/or plasticity may contribute to lower the measured elastic modulus.315

Liu and Xiang [36] analysed the measurement of elastic modulus from stress-

strain curves of a near-equiatomic NiTi alloy. As a conclusion the authors

suggest that the largest value ever measured should be taken as elastic modulus.

Nevertheless, the true value of E will always be expected to be greater than the

typical measurements from stress-strain curves.320

Following this reasoning, the elastic modulus E of the austenite is measured

at the very beginning of the true stress (σyy) versus logarithmic strain εyy curves

at testing temperature T = 333 K. This zone has less phase transformation

influence. Figure 4b shows the σyy − εyy curves (right ordinate axis) at 333 K

for all orientations, along with slopes dσ/dε (left ordinate axis) as a function of325

strain. Figure 4a shows with more detail the behaviour of dσ/dε at the beginning
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of loading. The elastic modulus at each orientation, E(θ), was determined by

plotting dσ/dε in the range [0.1%, 0.5%] and by extrapolating this value at

εyy = 0%.

a b

Figure 4: (a) Local slopes dσ/dε at the beginning of loading for all orientations at T = 333 K,

showing the overall tendency when εyy = 0. (b) σyy − εyy behaviour (right axis) and local

slopes dσ/dε (left axis) for the whole strain range. (In color)

Figure 5 shows the extracted E(θ) values. Little orientation dependence is330

observed. No anisotropy of the austenite elastic modulus E is measured from

the results obtained in the present paper.

A mean value of E = 70 GPa is considered and used in this work. This

value is a typical elastic modulus value for austenite phase [37, 38]. Bechle and

Kyriakides [32] have also reported similar elastic modulus values for austenite335

phase after performing tensile tests in NiTi tubes: 66.8 GPa and 65.7 GPa for

longitudinal and circumferential directions, respectively.

For the elastic modulus of detwinned martensite phase, Alonso et al. [37, 38]

confirmed that stress-strain curves do not provide reliable estimations because

of the mixture of deformation mechanisms, even at high stress level. The au-340

thors showed in a rigorous experimental campaign that a reliable method to

estimate the elastic modulus of detwinned martensite is the calculation of the

true storage modulus (deduced from the true stress and strain and not from the

engineering stress and strain) during a dynamic mechanical analysis performed
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Elastic modulus

0° 22.5° 45°

67.5°

90°

Figure 5: Elastic modulus extracted from tests at 333 K (blue), mean value of 70 GPa (red)

and indication of standard deviation of ±3.9 GPa. (In color)

throughout a superelastic loading/unloading cycle. For the detwinned marten-345

site, the modulus has to be calculated at stress levels after the stress plateau.

With this method, the authors showed that the elastic modulus of detwinned

martensite phase is equal to 73 GPa, of the same order than the elastic modulus

of austenite equal to 70 GPa.

5.4. Inelastic stress-strain curves350

Inelastic strain εin was obtained by subtracting the elastic strain εel = σyy/E

from the global mechanical behaviour: εin = εyy −σyy/E, with E = 70 GPa for

all orientations. Autenite and oriented martensite moduli are considered equal,

as demonstrated by the work of Alonso (2015, 2019) [37, 38]. Figure 6 presents

the tensile true stress σyy- logarithmic inelastic εin strain curves, plotted for355

each testing temperature, including loading until rupture for tests at 313 K, 323

K and 333 K. Except for plateau stress, the overall behaviour of all samples is

similar for all temperatures. Some cycling effect was observed between the first

and second loadings but mainly in the stress level and practically negligible on

strain.360
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Figure 6: True tensile stress versus inelastic strain curves as function of testing temperature.

(In color)

5.5. Anisotropy of the transformation strain (∆εtr)

Among the different methods to measure transformation strain, the plateau

strain — which is simply the length of the stress plateau in a stress-strain curve

— has been a very recurrent method used for superelastic alloys. However, the

plateau strain is not a measure of the total transformation strain [4]. It is in fact365

associated with the deformation of only the most favourably oriented martensite

variants. In order to complete phase transformation the less favourably oriented

variants still need to transform. This takes place as the stress resumes increas-

ing, right after the plateau [39]. In other words, the phase transformation is

still taking place outside the stress plateau region [31].370

There are other evidences that martensitic transformation completion does

not coincide with the end of stress plateau [30, 31, 39]. One work in particu-
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lar, by Pelton et al. [28], shows that at the end of macroscopic stress plateau

the martensite fraction has reached around 85%. These measurements were

performed with neutron diffraction technique, which allows to compute the be-375

haviour of the bulk material.

Therefore, instead of the plateau strain, transformation strains (∆εtr) were

determined from the σyy- logarithmic εin strain loading curves until rupture,

plotted in Fig. 6. The procedure to estimate ∆εtr is based on the following:

• It was considered that there is a region of the loading curve after the stress380

plateau for which no plastic strain was experienced by the samples. Two

facts give support to this assumption. On one hand, no residual strain was

observed after unloading; it means that there is no plastic deformation for

strains lower than the maximum strain of the superelastic cycle. On the

other hand, seen the trend of loading curves until rupture in 6, it is likely385

that negligible plastic strain was experienced by the samples. The fact that

the dσ/dε slope is still increasing at the end of loading for all orientations

(see Fig. 4b) is also an indication of the absence of plastic deformation.

This is consistent with the amount of cold-work to which the tube was

submitted during manufacturing process. Moreover, the σyy − εin curves390

do not show any change of curvature between the end of stress plateau

and the rupture point (except for the sample θ = 0◦ tested at 323 K).

• Elastic moduli of austenite and detwinned martensite are equal when true

stress is used [40, 37, 38]. With equal austenite and martensite elastic

modulus, when the material completes transformation (martensite fraction395

fm = 1) in the absence of plasticity, the σyy − εin curves would tend to a

vertical line outside the zone of the stress plateau.

• Because of that, the function in Equation 11 was used to fit the final

portion of the σyy − εin curve between a point P and the rupture point,

as schematically illustrated in Fig. 7.400
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εin − εP = (∆εtr − εP ) tanh

(
a
σyy − σP
∆εtr − εP

)
(11)

The tanh function was chosen because it reaches smoothly a constant value.

σP , εP and a are the true stress, inelastic strain and local slope at point P,

respectively.


y
y

P
P

θ = 45°

°θ ≠ 45

Curve fitted with a tanh function

Experimental curve

Portion of experimental curve used in 
the fitting process (from point P)

in

Curve fitted with a tanh function (Equation 7)

Figure 7: Methodology used for the estimation of total transformation strain from curves of

loading until rupture, which can be applied with or without the presence of a stress plateau.

(In color)

Figure 8 shows the result of fitting for all orientations and testing tempera-

tures.405

T = 313 K (40°C) T = 323 K (50°C) T = 333 K (60°C)

T = 313 K (40°C) T = 323 K (50°C) T = 333 K (60°C)

0°
22.5°
45°
67.5°
90°

0°
22.5°
45°
67.5°
90°

0°
22.5°
45°
67.5°
90°

T = 313 K (40°C) T = 323 K (50°C) T = 333 K (60°C)

0°
22.5°
45°
67.5°
90°

0°
22.5°
45°
67.5°
90°

0°
22.5°
45°
67.5°
90°

T = 313 K (40°C) T = 323 K (50°C) T = 333 K (60°C)

0°
22.5°
45°
67.5°
90°

0°
22.5°
45°
67.5°
90°

0°
22.5°
45°
67.5°
90°

σ
yy

 (
M

P
a)

εin (%) εin (%) εin (%)

σ
yy

 (
M

P
a)

Figure 8: Results of fittings with Equation 11 for estimation of transformation strains (∆εtr).

The thick zones are the final portions of the σyy − εin curves that were used in the fitting

process. (In color)
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Figure 9a shows the dependence of ∆εtr on orientation, determined using

the previous methodology.

[001] [011]

[111]

(7.8)

(9.4)

(10.0)

(10.5)

(4.6)
(6.5)

(10.6)

a b

3 4 5 6 7 8 9 10 10.5∆𝜀𝑡𝑟(%)

Figure 9: (a) Transformation strain (∆εtr) values for all orientations and tested temperatures.

(b) Inverse pole figure showing the orientation dependence of the recoverable strain of solution-

treated single crystals (parenthesis) and calculated values (contour lines) (From [41]). (In

color)

The following observations can be made regarding the orientation and tem-

perature dependencies:

• ∆εtr is mostly independent of the testing temperature for all directions.410

The highest difference occurred at 0◦, with standard deviation of only 4%.

• Because of that, mean values of ∆εtr are considered for each orientation

and were plotted with a thicker line. A very strong anisotropy is ob-

served. This anisotropy is almost symmetric with direction 45◦ as “mirror

direction”. The greatest difference reaches 58%, between 45◦ and 90◦.415

Based on the works of Robertson et al. [33], Robertson et al. [12] and Barney

et al. [14] (as discussed in section 5.1), tensile specimens cut from NiTi tubes at

0◦, 45◦ and 90◦ have grains predominantly oriented at 〈111〉, 〈100〉 and a mix of

〈111〉 and 〈110〉 directions, respectively. Thus, the transformation strain results

in Fig. 9a can be compared with results of solutionized NiTi single crystals420
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tensioned in the [100], [110] and [1̄11] crystallographic directions of Miyazaki

et al. [41] (inverse pole figure in Fig. 9b). Indeed a similar trend of total

transformation strain is observed between polycrystalline 0◦, 45◦, 90◦ samples

and 〈111〉, 〈100〉, 〈110〉 single crystals.

Moreover, a similar dependence was found experimentally by Robertson425

et al. [12] for a flattened NiTi tube with 0.7 mm of wall thickness. However, the

authors do not present their experimental curves and consider the transforma-

tion strain as the strain attained at the end of the stress plateaus. They also

comment on how this shape of ∆εtr−θ curve is consistent with paths of fatigue

cracks in NiTi tubes, which preferentially follow the 45◦ direction, the direction430

that “requires the lowest strain energy to form martensite”.

5.6. Anisotropy of forward and reverse transformation stresses

When a stress strain curve has a well defined stress plateau, the transforma-

tion stresses are generally defined as being the stress levels of the plateaus. The

stress-strain results presented in Fig. 3, however, show that the superelastic435

material of the tube can have behaviours with or without plateau, depending

on the orientation. Then, for comparison purposes, the procedure for obtaining

the transformation stresses had to be standardized.

The method used in this work was to measure the transformation stresses σtr

at the same level of martensite fraction. Forward and reverse transformation440

stresses were then extracted at εin = ∆εtr(θ)/2, where ∆εtr(θ) is the total

transformation strain of each orientation. This is hypothetically equivalent to

fm = 0.5, assuming a linear relation between inelastic strain and martensite

fraction fm [42].

Figure 10a presents the variation of σtr for forward and reverse transforma-445

tions with θ for all testing temperatures. The overall trend of the curves is an

increase of σtr from 0◦ to 45◦ followed by a decrease from 45◦ to 90◦. However,

less anisotropy is observed for the stresses for forward (F ) than for reverse (R)

transformation.

This difference between loading and unloading implies that it exists an450
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anisotropy in the stress hysteresis. The stress hysteresis, defined as σhystr =

σFtr − σRtr was calculated from the data in Fig. 10a and is shown in Fig. 10b.

σhystr is smaller at 45◦ and higher at 0◦ and 90◦.
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Figure 10: (a) Polar plot of transformation stresses at loading (forward transformation, F ) and

unloading (reverse transformation, R) defined at fm = 0.5. (b) Stress hysteresis, calculated

as the difference between transformation stress of loading and unloading (σhys
tr = σF

tr − σR
tr).

(In color)

In stress-induced phase transformation the hysteresis observed is caused

mostly by dissipative processes which are associated mainly to the frictional455

work due to interfacial motion [43]. Indeed, Barney et al. [14] showed that

tensile loading at the 45◦ orientation leaves behind islands of untransformed

material due to its predominant texture. Based on this, it is possible that the

more restricted lattice movement in the 45◦ sample could hinder the interfacial

motion. The restricted movement at 45◦ is caused by its probable predominant460

grain orientation, as discussed in Section 5.1. Therefore, less energy dissipation

and smaller hysteresis were observed in this sample compared to other orienta-

tions.
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5.7. Anisotropy of transformation lines slopes (dσtr/dT )

Figure 11 shows the forward and reverse transformation stresses as function465

of the temperature for the five orientations. In order to determine the errors on

the transformation stresses, several tests were repeated (they are not shown in

this paper for clarity purpose). They allowed to estimate an error bar of ±20

MPa for the determination of the transformation stress. The solid segments

connect two successive transformation stresses. The dashed lines are obtained470

by performing a linear regression for the four tested temperatures. For all orien-

tations, the slopes of the forward and reverse solid segments are not temperature

dependent and are close to the slopes of the forward and reverse dashed lines,

respectively.

In order to suppress the effect of the R-phase, it would be better to calcu-475

late the slopes for temperatures higher than 60◦C, i.e. using only the results at

60◦C and 70◦C. However the accuracy of the slope calculated using only two

temperatures would be very low, of the order of ±2MPa/K. Due to these ob-

servations, lines slopes dσtr/dT were calculated for each orientation using the

four available transformation stresses for forward and reverse transformations480

as being the slopes of the dashed lines of Fig. 11.

Figure 12 shows the transformation lines slopes for all orientations. A strong

anisotropy is observed. The slope at θ = 0◦ is comparable to the Clausius-

Clapeyron coefficient of austenite-martensite transformation of NiTi wires (≈ 6

MPa/K) [4]. Wires typically present a 〈111〉 texture [44, 45], which is the485

predominant texture in the drawing direction of NiTi tubes [12].

Besides the anisotropy of forward and reverse slopes, two other behaviours

are observed:

• dσtr/dT for forward transformation is always smaller than dσtr/dT for

reverse transformation;490

• the difference between forward and reverse slopes is very anisotropic.

These observations are discussed in more detail in Section 6 in a thermody-

namic analysis.
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Figure 11: Forward (load) and reverse (unload) transformation stresses as a function of test

temperature for all tested orientations. The dashed lines are obtained by performing a linear

regression for the four tested temperatures. (In color)
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Figure 12: Slopes of transformation lines for forward and reverse transformations at fm = 0.5.
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6. Thermodynamic analysis of the anisotropy

The experimental results are analysed using the thermodynamic framework495

presented in Section 3.

6.1. Orientation dependence of the product (dσtr/dT )∆εtr

Equation 10 states the relation between external stress and temperature

usually applied for a thermoelastic phase transformation. This form of the

Clausius-Clapeyron equation is widely used for SMA. If this equation applies,500

the product (dσtr/dT )∆εtr should neither depend on orientation, neither be

different for forward and reverse transformations. This is because the entropy

change ∆Sch and mass density ρ depend only on the alloy composition [9].

However, observing the experimental curves in Fig. 13, the product of slopes

of transformation lines and ∆εtr is in fact very orientation dependent and dif-505

ferent between loading and unloading. This result can be analyzed considering

the relation written in Eq. 9. It has been shown in Fig. 9a that for all directions

the transformation strain ∆εtr is not dependent on temperature. Thus the fact
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that the product (dσtr/dT )∆εtr is not constant indicates that the stored and

frictional energies might be temperature dependent.510
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Figure 13: Product of the slopes of the transformation lines by transformation strains, showing

an orientation dependent behaviour. (In color)

6.2. Temperature dependence of frictional work and stored elastic energy

In order to investigate the temperature dependence of the frictional work

and stored elastic energy terms, let us consider Eq. 8. Re-writing it for the

forward (F) and reverse (R) transformations separately, gives respectively:

σFtr(fm, T ) =
ρ

∆εtr
[∆Hch − T∆Sch + E

′F
st (fm, T ) + E

′F
fr (fm, T )] (12)

with E
′F
st (fm, T ) > 0 and E

′F
fr (fm, T ) > 0;515

σRtr(fm, T ) =
ρ

∆εtr
[∆Hch − T∆Sch + E

′R
st (fm, T ) + E

′R
fr (fm, T )] (13)

with E
′R
st (fm, T ) > 0 and E

′R
fr (fm, T ) < 0.
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Subtracting Eq. 13 from Eq. 12 one obtains:

(σFtr − σRtr)(fm,T ) =
ρ

∆εtr
[(E

′F
st + E

′F
fr )− (E

′R
st + E

′R
fr )](fm,T )

=
ρ

∆εtr
∆E′(fm, T )

(14)

Equation 14 states that (σFtr−σRtr)(fm,T ) is directly proportional to ∆E′(fm, T ).

This term accounts for the difference of specific irreversible energies between for-520

ward and reverse austenite-martensite transformations, which can be written:

∆E′(fm, T ) = (E
′F
st − E

′R
st ) + (E

′F
fr+ | E

′R
fr |) (15)

where | E′R
fr | is the absolute value of the frictional energy of reverse transfor-

mation, adopted to make explicit the sign of this term, avoiding any ambiguity.

The dependence of ∆E′(fm, T ) with temperature is analysed for the speci-

mens cut along 45◦ from the drawing direction. The mechanical behaviour in525

this orientation does not experience the localization phenomenon and thus the

martensite fraction dependence can also be evaluated. Figure 14b illustrates the

behaviour of ∆E′(fm, T ) calculated using Eq. 14. To the most part ∆E′ does

not depend on fm. It clearly depends on temperature, though. Figure 14c shows

graphically ∆E′(T ) as function of test temperature, calculated as mean values530

in the fm range where it is constant. For θ = 45◦ ∆E′ decreases linearly with

increasing temperature with a rate of -0.012 J g−1 K−1. This dependence on

temperature is generally neglected, especially if the classic Clausius-Clapeyron

equation is used.

An hypothesis for the negative temperature dependence of the irreversible535

energy is that the temperature increase is accompanied by the increase of trans-

formation stress, due to the Clausius-Clapeyron relation. With the increase of

applied stress, less martensite variants might form, or in other words, the growth

of martensite variants that are better aligned with the applied stress is favored.

This higher crystallographic alignment likely leads to less frictional energy loss540

during phase transformation. Analogously, during mechanical cycling, where

crystallographic alignment is induced by loading, it is observed a drop in the
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Figure 14: (a) True stress versus estimated martensite fraction at different temperatures for

specimens cut along θ = 45◦. (b) Difference between loading and unloading stresses plotted

in (a). (c) Temperature dependence of the term ∆E′ extracted from (b) as the mean value in

the range of independence with fm. (In color)

value of stored elastic energy and frictional energy [46].

6.3. Origin of the difference between forward and reverse slopes of transforma-

tion lines545

The consequences of the aforementioned temperature dependence on the

difference between slopes of transformation lines are now analysed. Equation 9

is written for the forward and reverse transformations in Eq. 16 and Eq. 17,

respectively. Since transformation strain does not depend on temperature, this

term is neglected hereafter.550

(
dσ

dT

)F
=

ρ

∆εtr

(
−∆Sch +

∂E
′F
st

∂T
+
∂E

′F
fr

∂T

)
(16)

(
dσ

dT

)R
=

ρ

∆εtr

−∆Sch +
∂E

′R
st

∂T
−
∂
∣∣∣E′R

fr

∣∣∣
∂T

 (17)
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Subtracting (dσtr/dT )R from (dσtr/dT )F (Eq. 16 minus Eq. 17) one gets:

(
dσ

dT

)F
−
(
dσ

dT

)R
=

ρ

∆εtr

[
∂(E

′F
st + E

′F
fr )

∂T
−
∂(E

′R
st − | E

′R
fr |)

∂T

]
(18)

According to Eq. 14, the term inside the square brackets in Eq. 18 is equal

to:

∂∆E′

∂T
=
∂(E

′F
st − E

′R
st )

∂T
+
∂(E

′F
fr+ | E′R

fr |)
∂T

(19)

From Eq. 18 and Eq. 19, the difference between (dσtr/dT )F and (dσtr/dT )R

is caused by the fact that ∂∆E′/∂T 6= 0.555

As shown in Fig. 12, (dσtr/dT )F < (dσtr/dT )R for all orientations. This dif-

ference is commonly observed in NiTi alloys and some authors have attempted

to explain it. Liu and Yang [6], concluded that (dσtr/dT )F < (dσtr/dT )R be-

cause the transformation strain is bigger for loading (F ) than for unloading (R).

Thus, as the slope of stress-temperature transformation lines are inversely pro-560

portional to transformation strain, (dσtr/dT )F < (dσtr/dT )R. However, they

consider the transformation strains to be the lengths of forward and reverse

stress plateaus. This premise is somewhat amiss, since it has been found ev-

idence that martensitic transformation completion does not coincide with the

end of the plateau [30, 31]. In our opinion, the transformation strain is equal565

for forward and reverse transformations and then the explanation suggested

by Liu and Yang [6] would not be valid. The presented experimental results

and the performed thermodynamic analysis show that ∂∆E′/∂T 6= 0 is a more

thermodynamically reasonable explanation for (dσtr/dT )F 6= (dσtr/dT )R.

Furthermore, as stated in Eq. 18 and Eq. 19, the nature of the relation570

between ∆E′ and temperature determines the relation between (dσtr/dT )F and

(dσtr/dT )R: since ∂∆E′/∂T < 0 (see Fig. 14c), (dσtr/dT )F < (dσtr/dT )R.
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6.4. Anisotropy of the temperature dependences of the stored and frictional en-

ergies

Figure 13 shows that the products (dσtr/dT )∆εtr are different for forward575

and reverse transformations and that the difference is orientation dependent. It

is concluded that ∂∆E′/∂T is also orientation dependent.

In Eq. 16 and Eq. 17 the temperature dependencies of the irreversible

energies for forward and reverse transformations are four unkowns and thus it is

not possible to calculate these four terms individually. Nevertheless, assuming580

that the temperature dependencies of the forward and reverse stored energy are

equal:

∂E′st
∂T

=
∂E

′F
st

∂T
=
∂E

′R
st

∂T
(20)

∂E′fr
∂T

=
∂E

′F
fr

∂T
=
∂
∣∣∣E′R

fr

∣∣∣
∂T

(21)

it is possible to calculate the total irreversible energies for a thermodynamic

cycle by adding and subtracting Eq. 16 and Eq. 17. Taking into account

Equations 20 - 21 and performing some algebraic manipulation, the stored and585

frictional energy temperature dependencies are:

∂E′st
∂T

=
1

2

∆εtr
ρ

[(
dσ

dT

)F
+

(
dσ

dT

)R]
+ ∆Sch (22)

∂E′fr
∂T

=
1

2

∆εtr
ρ

[(
dσ

dT

)F
−
(
dσ

dT

)R]
(23)

Figure 15 shows the result of Eq. 22 and Eq. 23 calculated using experi-

mental data of Fig. 9 and Fig. 12 with ρ = 6450 kg/m3. The error bars in the

graph indicate the sensibility of dE′st/dT to ∆Sch values. For a 50.8%atNi-Ti

alloy, the interval 60.5 ≤ ∆Sch ≤ 63 J/gK was used [47].590

Figure 15 show a strong orientation dependence, mainly for the stored elastic

energy. Multiplying the values in Figure 15 by the applied temperature differ-
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Figure 15: Temperature dependencies of stored and dissipated energies as function of the orien-

tation. The error bars indicate stored elastic energy values calculated with 60.5 ≤ ∆Sch ≤ 63

J/gK for a 50.8%atNi-Ti alloy [47]. (In color)

ence (∆T = 30◦C) shows that ∆E′st and ∆E′fr are between 0.1 and 0.6 J/g,

which are within the range found for this material [46, 48].

7. Conclusion595

The anisotropy of the temperature dependence of superelastic SMA was

studied through the experimental characterization and thermomechanical anal-

ysis of transformation stresses and strains in a thin walled NiTi tube. From the

experimental data, the following conclusions are drawn:

1. In the studied temperature range (from 40◦C to 70◦C), full transforma-600

tion strain depends strongly on orientation but not on temperature. The

lowest transformation strains were measured at 45◦ from the drawing di-

rection. An almost symmetric profile was observed from this orientation

to the drawing (0◦) and transversal directions (90◦). Variations of trans-

formation strain reached 58% between orientations.605

2. Transformation stress is also anisotropic. However, stress for reverse trans-

formation is more orientation dependent than for forward transformation.
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3. Slopes of the transformation stress-temperature lines of forward and re-

verse transformations are significantly anisotropic. Besides, the slope for

reverse transformation is higher than for forward transformation for all610

orientations.

Supported by our experimental data, the following conclusions are achieved

concerning the thermodynamic analysis:

1. The temperature dependence of the difference of specific irreversible en-

ergy is not negligible as assumed by the classical Clausius-Clapeyron equa-615

tion, typically used to model both forward and reverse slopes of the trans-

formation stress-temperature lines. This conclusion is drawn based on the

fact that the product of slopes of the transformation stress-temperature

lines and total transformation strain strongly depends on orientation.

2. Irreversibilities of the phase transformation are due to specific stored elas-620

tic energy (E′st) and specific frictional energy (E′fr). The difference ∆E′

of the irreversible energy (E′st + E′fr) between loading (forward F trans-

formation) and unloading (reverse R transformation) of a superelastic test

decreases with increasing test temperature.

3. The dependence of ∆E′ on temperature is the cause for the slopes of the625

forward and reverse transformation stress-temperature lines to be differ-

ent. For the studied material, ∂∆E′/∂T is negative, leading to a dσtr/dT

smaller for forward transformation than for the reverse transformation.

4. The dependence of ∆E′ on temperature is also orientation dependent. In-

deed, the temperature dependencies of both stored and dissipated specific630

energies are orientation dependent.
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