
HAL Id: hal-02537616
https://hal.science/hal-02537616v1

Preprint submitted on 9 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A NXFEM approximation for a nonlinear system of
PDEs

A. Blouza, A-T Dinh, L El Alaoui

To cite this version:
A. Blouza, A-T Dinh, L El Alaoui. A NXFEM approximation for a nonlinear system of PDEs. 2020.
�hal-02537616�

https://hal.science/hal-02537616v1
https://hal.archives-ouvertes.fr


A NXFEM approximation for a nonlinear system of PDEs

A. Blouza,1, A-T Dinh2, and L. El Alaoui3
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Abstract. Under the motivation of modeling a biofilm model, we introduce a system of semilinear elliptic
interface problem. We also propose a technique of decoupling a semilinear problem and apply the Nistche-
Extended Finite Element method to prove the existence and uniqueness of solutions and their convergent
properties.

1 Introduction

Biofilms are, generally, observed in aqueous media or in a media exposed to moisture. They can grow on any
type of natural or artificial surface. Biofilm structures give bacteria some environment to stay and grow. They
have both good and bad impacts for the human life and very important. Biofilm modeling in cooperation
with laboratory experience, therefore, has rising in recent years in order to study more about it. Further about
biofilm can be found in the works also refer to the works of Chopp and Duddu et al. [13, 7], Cogan et al.
[9, 8, 11, 10] and the work of Rittmann [27] for instance.

Under the motivation of modeling a biofilm model, we consider a system of semilinear elliptic equations of
two variables in two different regions separated by an interface. This model will be mentioned in more details
in section 2. Since it is difficult to work directly on a semilinear system we introduce an intermediary variable
to decouple the system into a system of a linear equation and a semilinear one.

As a motivation of biofilm, we always have in mind more general and complicated problems where the
biofilms can change their size because of other impacts. It means that the interface of the problem can move
with time. We are thus led to study on an unfitted finite element method in which the interface can cut the
mesh’s element and doesn’t make the mesh change with it. This interesting idea has been studied in deep for
years with many recent methods.

There are many unfitted mesh based methods which have been proposed for recent years, one of them is
Immersed Interface Method (IIM) which is particularly designed for interface problems. The IIM is a sharp
interface method based on Cartesian grids [20]. The work of Li [21] gave an overview of this method and some
of its applications. However, when we work with discontinuous coefficients and singular sources, especially with
large ones, the accuracy obtained by using IIM is not so good. Other interesting approaches are using Extended
Finite Element Method (XFEM) [22, 3] and Nitsche based Finite Element Method (NFEM) [17]. XFEM is
an extension of the standard finite element method in which arbitrary discontinuous functions and derivatives
are added to the standard finite element approximation. A. Reusken and his coworkers had many contributions
when using XFEM for two-phase incompressible flows problems [16, 19, 25, 26, 23]. NFEM uses the idea of
Nitsche [24] to enforce weakly the interface condition in the weak forms. Note that, there is also relation
between XFEM and NFEM which is commented in [2]. In this paper we will use NFEM and its innovated
versions to work with the purpose of unfitted mesh. We use the name NXFEM to allude the relation of XFEM
and NFEM. NXFEM is also called “unfitted FEM” or “CutFEM” in some literatures.

In this article, we are using the Nitsche based one (NXFEM) which first introduced by Hansbo in [17].
The key idea of NXFEM is imposing weakly the interface conditions in the weak formulation by doubling all
basis functions whose support cut by the interface into two new ones. Hansbo borrowed this idea from the
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method of Nistche [24]. Our purpose in this work is to use NXFEM for the semilinear problem in coupling
with the decoupling idea mentioned above. One drawback of NXFEM is that the conditioning of the stiffness
matrix is sensitive to the way interface cut the element. It’s because there may be some ways in that the
ratio between two pieces of cut is very large, the stiffness matrix thus becomes very ill-conditioned. Thanks to
the Ghost penalty method proposed by Burman [5] and technique of removing small cut elements by Reusken
[25], we can handle this problem. However, we don’t present this problem in this work, we just implicitly use
it in the implementation for the numerical section 6. In order to prove the convergence of NXFEM discrete
solutions to the continuous ones, we apply the idea of proofs in Discontinuous Galerkin Method proposed by
Ern and Di Pietro [12]. Their work actually relied on techniques inspired by the Finite Volume literature given
in the work of Eymard et al. [15]. Noting that, Ern and Di Pietro worked on the discontinuity on each side of
element mesh whereas we only work on the discontinuity of functions on the interface. The article is organized
as follows. Section 2 introduces the main model with some necessary assumptions on the coefficients and
functions. We also show the technique of decoupling our system, give the details in weak formulations and the
proof of existence and uniqueness of continuous solutions. In Section 3 we introduce the NXFEM settings and
we give assumptions on the meshes and the discrete formulations. The main part of this work is on Section
4 and Section 5 which give in detail about the existence and uniqueness of solutions of discrete problems and
their convergence to the continuous solutions. Finally, in Section 6 we present a numerical test case to validate
our approach.

2 The model setting

Let us consider a convex polygonal, Lipschitz and bounded domain Ω in R2 such that Ω = Ω1 ∪ Ω2. These
two regions are separated by a sufficiently smooth interface Γ. We consider the following stationary problem
(2.1) which is a system of semilinear equations.



−∇ · (α∇u) + vg(u) = fu in Ω,

−∇ · (β∇v)− λvg(u) = fv in Ω,

JuK = Jα∇nuK = 0 on Γ,

v = ∇nv = 0 on Γ,

u = ū on ∂Ω,

v = v̄ on ∂Ω.

(2.1)
Ω2

Ω1

Γ

Here, n denotes the unit normal at a given point on Γ pointing from Ω1 to Ω2, and the restriction of u on:

• each subdomain Ωi of Ω for i = 1, 2 at a point x on Γ as in (2.2) where n pointing from Ω1 to Ω2.

is defined by

u1(x) := lim
ε→0

u(x− εn),

u2(x) := lim
ε→0

u(x+ εn),
(2.2)

Then,

• the Jump is defined as

JuK := u1|Γ − u2|Γ. (2.3)

We also take the following special form of g, fu, fv, v̄ which are agreed to a biofilm’s model, i.e. there is no
bacteria outside the biomass region Ω1.

2



g(u) =

{
g1(u) in Ω1,

0 in Ω2.
fu =

{
fu1

in Ω1,

fu2 in Ω2.
fv =

{
fv1 in Ω1,

0 in Ω2.
v̄ =

{
v̄1 on ∂Ω1\Γ,
0 on ∂Ω2\Γ.

Assumption (A) We suppose that ū, λ > 0, v̄1 ≥ 0 and two diffusion coefficients α, β are assumed to be
piecewise constants α = αi > 0, β = βi > 0 in Ωi for i = 1, 2. In general, we have α1 6= α2, β1 6= β2. We also
assume that functions g, fu, fv are such that

fu, fv ∈ L
2(Ω),

g measurable with respect to x ∈ Ω and 0 ≤ ∂g(x, u)

∂u
≤ ξ(x) ∈ L1(Ω).

2.1 A weak formulation

We introduce the space Hk(Ω12) defined as,

Hk(Ω1 ∪ Ω2) = {v ∈ L2(Ω) : vi ∈ Hk(Ωi) for i = 1, 2},
for k = 1, 2 where vi = v|Ωi , which is endowed with the norm:

‖u‖2Hk(Ω12) := ‖u‖2Hk(Ω1) + ‖u‖2Hk(Ω2).

From system (2.1) we derive three uncouple systems for which the weak form is easier to deal with. On
letting w = u+ β

αλv, we are able to decouple the system (2.1) into three separated problems (2.4), (2.5) and
(2.6) as follows:


−∇ · (α∇w) = fw := fu + 1

λfv in Ωi, i = 1, 2,

JwK = Jα∇nwK = 0 on Γ,

w = w̄ := ū+ β
αλ v̄ on ∂Ω.

(2.4)


−∇ · (β∇v)− λvg(w − β

αλv) = fv in Ωi, i = 1, 2,

v = ∇nv = 0 on Γ,

v = v̄ on ∂Ω.

(2.5)

u = w − β

αλ
v. (2.6)

From the definition of w the following result is easy to check.

Proposition 1. If w, u and v are solution of (2.4)-(2.6) then u, v and is solution of (2.1). Conversely,
if u, v is a solution of (2.1) then w, v and u are solutions of (2.4)-(2.6).

A weak formulation of (2.4) reads as{
Seek w ∈ {s ∈ H1(Ω)} such that s = w̄ on ∂Ω and

〈α∇w,∇ϕ〉Ω = 〈fw, ϕ〉Ω, ∀ϕ ∈ H1
0 (Ω).

(2.7)

On enforcing weakly the interface conditions owing to the Nitsche technique, a weak formulation of (2.5)
reads as: {

Seek v ∈ V such that v = v̄ on ∂Ω and

〈β∇v,∇ϕ〉Ω − 〈q(v), ϕ〉Ω = 〈fv, ϕ〉Ω, ∀ϕ ∈ V0.
(2.8)

Next, we need to verify the equivalence between the weak problems (2.4), (2.5) and the decoupled system
(2.7), (2.8). Indeed,
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Proposition 2. If (w, v) is a solution of (2.4)-(2.5) then it is also a solution of (2.7)-(2.8). Conversely,
if the weak solution (w, v) of (2.7)-(2.8) belongs to H2(Ω), then it solves (2.4)-(2.5).

Proof. The first statement can be obtained easily from the derivation of weak formulations. We now prove
that if (w, v) solves (2.7, 2.8) and w, v ∈ H2(Ω) then it also solves (2.4, 2.5).

First, consider problem (2.7) and w ∈ H2(Ω) is a solution of it, we have w = w̄ on ∂Ω and

〈α∇w,∇ϕ〉Ω = 〈fw, ϕ〉Ω, ∀ϕ ∈ H1
0 (Ω).

Performing integration by parts on the 〈α∇w,∇ϕ〉Ω12 backwards on each subdomain Ωi, we have

−〈∇ · (α∇w), ϕ〉Ω12
+ 〈Jα∇nwK, {{ϕ}}〉Γ = 〈fw, ϕ〉Ω, ∀ϕ ∈ H1

0 (Ω). (2.9)

We choose ϕ = 0 on Γ, (2.9) becomes

−〈∇ · (α∇w), ϕ〉Ω12 = 〈fw, ϕ〉Ω, ∀ϕ ∈ H1
0 (Ω) ∩ {ϕ = 0 on Γ}.

We could argue in each subdomain Ωi,

−∇ · (α∇w) = fw a.e. on Ωi.

Now back to (2.9) we have

〈Jα∇nwK, {{ϕ}}〉Γ = 0, ∀ϕ ∈ H1
0 (Ω) ∩ {ϕ 6= 0 on Γ}.

This implies, Jα∇nwK = 0 on Γ. To sum up, we have shown that w solves (2.7) and w also satisfies all
conditions of problem (2.4).

With the same technique, we can easily obtain the same result for problem (2.5) and (2.6). Indeed,
from (2.8) and for any ϕ ∈ H1

0 (Ω), we have

−〈∇ · (β∇v), ϕ〉Ω12 + 〈Jβ∇nvK, {{ϕ}}〉Γ + 〈JϕK, {{β∇nv}}〉Γ − 〈q(v), ϕ〉Ω = 〈fv, ϕ〉Ω.

Choose ϕ = 0 on Γ then

−〈∇ · (β∇v), ϕ〉Ω12
− 〈q(v), ϕ〉Ω = 〈fv, ϕ〉Ω, ∀ϕ ∈ {ψ ∈ H1

0 (Ω), ψ = 0 on Γ}.

This implies −∇ · (β∇v)− q(v) = fv. Thus,

〈Jβ∇nvK, {{ϕ}}〉Γ + 〈JϕK, {{β∇nv}}〉Γ = 0, ∀ϕ ∈ {ψ ∈ H1
0 (Ω), ψ 6= 0 on Γ}. (2.10)

Don’t forget that ϕ ∈ H1
0 (Ω) or we have JϕK = 0, this leads to

〈Jβ∇nvK, {{ϕ}}〉Γ = 0, ∀ϕ ∈ {ψ ∈ H1
0 (Ω), ψ 6= 0 on Γ},

or we have

Jβ∇nvK = 0, on Γ. (2.11)

Replace (2.11) in (2.10), we get
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〈JϕK, {{β∇nv}}〉Γ = 0, ∀ϕ ∈ {ψ ∈ H1
0 (Ω), ψ 6= 0 on Γ, JψK 6= 0 on Γ}.

or,

{{β∇nv}} = 0, on Γ. (2.12)

Coupling (2.11) and (2.12), we have ∇nv = 0 on Γ. To sum up, we have shown that v solves (2.8) and
v also satisfies all conditions of problem (2.5). �

Proposition 3. Under assumption (A), the problem (2.7)-(2.8) has a unique solution.

Proof. If fw ∈ L2(Ω) and thanks to [6], problem (2.7) has unique solution in H2 on each subdomain and
further,

‖w‖H1(Ω12) + ‖w‖H2(Ω12) ≤ C‖fw‖L2(Ω12).

It’s also known in [18, Theorem 2.1] that the semilinear problem (2.8) has unique solution in V if
fv ∈ L2(Ω) and g(x, u(x)) satisfies

g measurable w.r.t x ∈ Ω and 0 ≤ ∂g(x, u)

∂u
≤ ξ(x) ∈ L1(Ω). (2.13)

�

3 A NXFEM approximation

3.1 The discret setting

Triangulation. Let hK be the diameter of each element K in Th and h := maxK∈Th hK . Based on the
location of interface Γ, we also define the set of triangles covering each subdomain Ωi by T ih := {K ∈ Th :
K ∩ Ωi 6= ∅} and Gh := {K ∈ Th : K ∩ Γ 6= ∅} is the set of all cells that are intersected by Γ. For each
K ∈ Gh, let ΓK := Γ∩K be the part of Γ in K. For each K ∈ Th, let Ki := K ∩Ωi be the part of K in Ωi.
For any part, e of Ω, we denote by |e| the measure of e.

(a) Th. (b) Gh. (c) T 1
h . (d) T 2

h .

Figure 1: Illustration of the triangulation.

Assumption 1. The triangulation is non-degenerate, i.e. hK

ρK
≤ C, ∀K ∈ Th for some C > 0 where hK

and ρK are the diameter of K and the diameter of the largest ball in K respectively.

Assumption 2. For K ∈ Gh, Γ cuts each element boundary ∂K exactly twice and each open edge at
most once.
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Assumption 3. Let ΓK,h be the segment connecting the intersection points between Γ and ∂K, we assume
that ΓK,h is the function of length on ΓK in the local coordinates (3.1).

ΓK,h = {(x, y) : 0 < x < |ΓK,h|, y = 0},
ΓK = {(x, y) : 0 < x < |ΓK,h|, y = δ(x)}. (3.1)

Definition 1. Let v be a scalar-valued function defined on Ω and assume that v is smooth enough to admit
on all part of the interface a possibly two-valued trace. The average of v is defined as

{{u}} := κ1u1|Γ + κ2u2|Γ, (3.2)

where weight parameters κ1, κ2 satisfies
∑
κi = 1, κi > 0.

Lemma 3.1. With the jump and average operators defined in (??) and (3.2) and u, v two discontinuous
functions across Γ, we easily have,

JuvK = JuK{{v}}+ {{u}}JvK + (κ2 − κ1)JuKJvK and

{{uv}} = {{u}}{{v}}+ κ1κ2JuKJvK.

We introduce the finite element spaces V Γ
h = V 1

h × V 2
h and V 0

h defined as:

V ih := {vh ∈ L2(Ω) : vh|Ωi ∈ H1(Ωi) and vh|K ∈ P1(K),∀K ∈ ∪iT ih}, i = 1, 2. (3.3)

V 0
h := {vh ∈ V Γ

h : vh = 0 on ∂Ω}. (3.4)

Remark 3.1. Note that, V Γ
h ⊂ H1(Ω12) and the functions in V Γ

h are no need to be continuous across the
interface.

We recall below the norm used in [17] and some results established in [17].

‖v‖21/2 :=
∑
K∈Gh

h−1
K ‖v‖2L2(ΓK), ‖v‖2−1/2 :=

∑
K∈Gh

hK‖v‖2L2(ΓK). (3.5)

Proposition 4. For u ∈ V Γ
h , ‖·‖−1/2 defined in (3.5) and κi = |Ki|

|K| , the following inverse inequality

holds,

‖∇nu‖2−1/2 ≤ C‖∇u‖2L2(Ω12). (3.6)

Definition 2 (Interpolant). Consider an operator Ei : H2(Ωi)→ H2(Ω) such that (Eiw)|Ωi
= w and

‖Eiw‖s,Ω ≤ C‖w‖s,Ωi , ∀w ∈ Hs(Ωi), s = 0, 1, 2.

Let Ih be the standard P 1 finite element interpolation operator and define

I∗hv := (I∗h,1v1, I
∗
h,2v2) where I∗h,ivi := (IhEivi)|Ωi

. (3.7)

3.2 Discrete formulations

The discrete form of problem (2.4) we introduce is the following: Seek wh ∈ V Γ
h such that wh = w̄ on ∂Ω

awh(wh, ϕh) = Kwh(ϕh), ∀ϕh ∈ V 0
h ,

(3.8)
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where

awh(wh, ϕh) = 〈α∇wh,∇ϕh〉Ω12 − 〈JwhK, {{α∇nϕh}}〉Γ − 〈{{α∇nwh}}, JϕhK〉Γ + ζ〈JwhK, JϕhK〉Γ,
Kwh(ϕh) = 〈fw, ϕh〉Ω.

The discrete form of problem (2.5) we introduce is the following: Seek vh ∈ V Γ
h such that vh = v̄ on ∂Ω

avh(vh, ϕh)− 〈q(vh), ϕh〉Ω = Kvh(ϕh), ∀ϕh ∈ V 0
h ,

(3.9)

where,

avh(vh, ϕh) := 〈β∇vh,∇ϕh〉Ω12
− 〈JvhK, {{β∇nϕh}}〉Γ − 〈{{β∇nvh}}, JϕhK〉Γ

+ θ〈{{vh}}, {{ϕh}}〉Γ + θκ1κ2〈JvhK, JϕhK〉Γ, (3.10)

Kvh(ϕh) := 〈fv, ϕh〉Ω.

Proposition 5. For u, v ∈ V Γ
h and the norms ‖·‖ 1

2
, ‖·‖− 1

2
defined as in (3.5), we have

〈u, v〉Γ ≤ ‖u‖ 1
2
‖v‖− 1

2
. (3.11)

Proof. Thanks to Hölder’s inequality and Schwarz’s inequality, we have

〈u, v〉Γ =
∑
T∈Gh

〈h−
1
2

T u, h
1
2

T v〉ΓT
≤
∑
T∈Gh

〈‖h−
1
2

T u‖L2(ΓT ), ‖h
1
2

T v‖L2(ΓT )〉ΓT

≤
(

ΣT∈Gh
h−1
T ‖u‖2L2(ΓT )

) 1
2
(

ΣT∈Gh
hT ‖v‖2L2(ΓT )

) 1
2

= ‖u‖ 1
2
‖v‖− 1

2
.

�

Proposition 6 (Consistency). If w, v solve the continuous problems (2.4), (2.5) respectively then w, v
also solve the discrete problems (3.8), (3.9) respectively.

Proof. For w, using the same technique given in [17, Lemma 1], we are able to get

awh(w,ϕh) = Kwh(ϕh), ∀ϕh ∈ V 0
Γ .

For v solving (3.9), it’s even easier because of the condition of v on Γ (v = ∇nv = 0). After put v into
avh, all terms on the interface will disappear and we get instantly the result. �

Proposition 7. The following estimates hold

(i) awh(wh, ϕh) ≤ C|||wh|||1|||ϕh|||1, for all wh ∈ V Γ
h and ϕh ∈ V 0

h ,

(ii) awh(wh, wh) ≥ C|||wh|||21, ∀v ∈ V Γ
h for all wh ∈ V Γ

h ,

where |||·|||1 is defined by

|||vh|||21 := ‖∇vh‖2L2(Ω12) + ‖{{α∇nvh}}‖2−1/2 + ‖JvhK‖21/2. (3.12)

Proof. The estimates (i) and (ii) can be obtained from [17, Lemma 5]. �

Theorem 1. The discrete problem (3.8) has unique solution in V Γ
h .
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Proof. Thanks to the Lax-Milgram theorem. �

Theorem 2. The discrete problem (3.9) has a solution vh ∈ V Γ
h .

Proof. Given ṽh ∈ V Γ
h , consider the problem : Find vh ∈ V Γ

h such that

avh(vh, ϕh)− 〈q(ṽh), ϕh〉Ω = 〈fv, ϕh〉Ω, ∀ϕh ∈ V 0
h , (3.13)

We can obtain the continuity of avh thanks to Hölder’s inequality and (3.11),

|avh(vh, ϕh)| ≤ |〈β∇vh,∇ϕh〉Ω12
|+ |〈JvhK, {{β∇nϕh}}〉Γ|+ |〈{{β∇nvh}}, JϕhK〉Γ|

+ |θ〈{{vh}}, {{ϕh}}〉Γ|+ |θκ1κ2〈JvhK, JϕhK〉Γ|
≤ C‖∇vh‖L2(Ω12)‖∇ϕh‖L2(Ω12) + C‖JvhK‖ 1

2
‖{{β∇nϕh}}‖− 1

2

+ C‖{{β∇nvh}}‖− 1
2
‖JϕhK‖ 1

2
+ C‖{{vh}}‖L2(Γ)‖{{ϕh}}‖L2(Γ)

+ C‖JvhK‖ 1
2
‖JϕhK‖ 1

2

≤ C|||vh|||2|||ϕh|||2,

where |||·|||2 is defined by

|||vh|||22 := ‖∇vh‖2L2(Ω12) + ‖{{β∇nvh}}‖2−1/2 + ‖JvhK‖21/2 + ‖{{vh}}‖2L2(Γ) (3.14)

Using the same technique as in the proof of [17, Lemma 5] with any ξ > 0, we have

avh(vh, vh) ≥ 1

2
‖β1/2∇vh‖2L2(Ω12) + C‖vh‖2L2(∂Ω1\Γ)

+

(
1

2
− 2CIβmax

ξ

)
‖β1/2∇vh‖2L2(Ω12) +

1

ξ
‖{{β∇nvh}}‖2− 1

2

+
∑
T∈Gh

(
θκ1κ2 −

ξ

hT

)
‖JvhK‖2L2(ΓT ) + θ‖{{vh}}‖2L2(Γ).

By choosing ξ = 4CIβmax (CI is the coefficient in the inverse inequality (3.6)) and θ > ξ
hTκ1κ2

, we
have

avh(vh, vh) ≥ C|||vh|||22. (3.15)

Thanks to Lax-Milgram theorem, it is easily to check that (3.13) has unique solution in V Γ
h . From

this, we define the operator T by

T : V Γ
h −→ V Γ

h

ṽh 7−→ T (ṽh) = vh solving (3.13)

Owing to (3.15),

avh(vh, vh) ≥ C|||vh|||22 ≥ C‖∇vh‖2L2(Ω12).

Besides that,

avh(vh, vh) = 〈q(ṽh), vh〉Ω12
+ 〈fv, vh〉Ω ≤ |〈q(ṽh), vh〉Ω12

+ 〈fv, vh〉Ω|
≤ ‖q‖L2(Ω)‖vh‖L2(Ω) + ‖fv‖L2(Ω)‖vh‖L2(Ω) ≤ C‖∇vh‖L2(Ω12).

Therefore ‖∇vh‖L2(Ω12) ≤ C (thanks to Poincaré’s inequality), then T is bounded in V Γ
h . Take R

“large enough”, T maps BR = {vh ∈ V Γ
h : ‖vh‖L2(Ω12) ≤ R} to BR. It’s enough to prove that T is
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continuous to conclude by the Brouwer fixed point theorem (cf. [4]). Indeed, let {ṽnh}n be a sequence in
V Γ
h such that ṽnh → ṽh. Putting vnh = T (ṽnh). Because T is bounded in V Γ

h , thanks to Bolzano-Weierstrass
theorem, there exists a subsequence, also denoted vnh , converges to a quantity so-called zh ∈ V Γ

h . What
we need to do now is to prove that zh is a solution of (3.13). Take ϕh ∈ V 0

h , we have

avh(vnh , ϕh)− 〈q(ṽnh), ϕh〉Ω12
= 〈fv, ϕh〉Ω.

With assumptions like in 3, 〈q(ṽnh), ϕh〉Ω12
→ 〈q(ṽh), ϕh〉Ω12

. Moreover, vnh → zh implies

〈β∇vnh ,∇ϕh〉Ω12
→ 〈β∇zh,∇ϕh〉Ω12

,

‖JvnhK− JzhK‖L2(Γ) = ‖Jvnh − zhK‖L2(Γ)

2∑
i=1

‖(vnh − zh)|Ωi
‖L2(Γ)

≤ C
2∑
i=1

‖(vnh − zh)|Ωi
‖L2(Ωi) → 0,

‖{{vnh}} − {{zh}}‖L2(Γ) = ‖
2∑
i=1

κi(v
n
h − zh)|Ωi

‖L2(Γ) ≤ C
2∑
i=1

‖(vnh − zh)|Ωi
‖L2(Ωi) → 0.

‖{{β∇nv
n
h}} − {{β∇nzh}}‖2L2(Γ)

≤ C
2∑
i=1

‖κi∇n(vnh − zh)|Ωi‖2L2(Γ) ≤ C
2∑
i=1

∑
K

‖κi∇n(vnh − zh)|Ωi‖2L2(ΓK)

≤ C
2∑
i=1

∑
K

κ2
i |ΓK ||∇n(vnh − zh)|Ωi

|2 = C

2∑
i=1

∑
K

|Ki||ΓK |
|K|2 ‖∇n(vnh − zh)|Ωi

‖2L2(Ki)

≤ C
2∑
i=1

∑
K

‖∇n(vnh − zh)|Ωi‖2L2(Ki)
= C

2∑
i=1

‖∇n(vnh − zh)|Ωi‖2L2(Ωi)
→ 0.

In the estimate ‖{{β∇nv
n
h}} − {{β∇nzh}}‖2L2(Γ), we have used the fact that |ΓK | ≤ hK , |Ki| ≤ h2

K , |K| ≥
Ch2

K . And therefore, avh(vnh , ϕh)→ avh(zh, ϕh). Finally, we get,

avh(zh, ϕh)− 〈q(ṽh), ϕh〉Ω12
= 〈fv, ϕh〉Ω,

or zh solves (3.13). Sum up, we conclude that T admits a fixed point zh = T (zh) which solves the problem
(3.9). �

4 A convergence result

In this section, we are going to show that the solution of discrete problems (3.8) and (3.9) converges to the
solution of the weak problems (2.7) and (2.8) respectively. In order to do that, we have to define some operators
defined on the interface and also their convergence result in V Γ

h .

Definition 3 (Lifting operator). For vh ∈ V Γ
h , let Lh : L2(Γ)→ [V Γ

h ]2 such that

∀ϕ ∈ [V 0
h ]2, 〈Lh(JvhK), ϕ〉Ω12

:= 〈{{ϕ}} · n, JvhK〉Γ. (4.1)

We observe that the support of Lh consists of two subdomains of which Γ is part of the boundary ∂Ωi, or

supp(Lh) = Ω1 ∪ Ω2 = Ω.

The following discrete gradient operators will play an important role in the analysis.
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Definition 4 (Discrete gradient operators). For all vh ∈ V Γ
h , let Gh : V Γ

h → [V Γ
h ]2 such that,

Gh(vh) := ∇vh − Lh(JvhK). (4.2)

Symbolic notations. Let Vσ =

{
H1(Ω) if σ = α
V if σ = β

, V 0
σ =

{
H1

0 (Ω) if σ = α
V0 if σ = β

, and we define a

symbolic norm |||·||| which stands for |||·|||i, i = 1, 2 given as below

|||z|||2 = ‖∇z‖2L2(Ω12) + ‖JzK‖21
2

+ ‖{{σ∇nz}}‖2− 1
2

+ µ‖{{z}}‖2L2(Γ), (4.3)

where σ = α, σ = β are corresponding to |||·|||1, |||·|||2 respectively and µ = 0, µ = 1 are corresponding to
|||·|||1, |||·|||2 respectively.

Theorem 3. Let I∗h : Vσ ∩H2(Ω12)→ V Γ
h be the interpolation operator defined in (3.7), then

|||v − I∗hv||| ≤ Ch‖v‖L2(Ω12), ∀v ∈ Vσ ∩H2(Ω12). (4.4)

Proof. Look back to definition of norm |||·|||, there are 4 terms. For the first 3 terms, using the result given
from the proof of [17, Theorem 2], we have

‖∇z‖2L2(Ω12) + ‖JzK‖21
2

+ ‖{{σ∇nz}}‖2− 1
2
≤ Ch2‖v‖2L2(Ω12), ∀v ∈ Vσ ∩H2(Ω12),

where z = v − I∗hv. For the last term,

‖{{z}}‖L2(Γ) = ‖
2∑
i=1

κizi‖L2(Γ) ≤ C
2∑
i=1

‖zi‖L2(Γ) ≤ C
2∑
i=1

‖zi‖L2(∂Ωi)

≤ C
2∑
i=1

‖∇zi‖L2(Ωi) = C‖∇z‖L2(Ω12) ≤ Ch‖v‖L2(Ω12).

�

Proposition 8. Let ‖·‖− 1
2

and Lh be defined in (3.5) and (4.1) respectively, we have the boundedness for
the lifting operator Lh as following

‖Lh(JvhK)‖[L2(Ω12)]2 ≤ C‖JvhK‖ 1
2
, ∀vh ∈ V Γ

h . (4.5)

Proof. Coming from the left hand side of (4.5), we have

‖Lh(JvhK)‖2[L2(Ω12)]2 = 〈{{Lh(JvhK)}} · n, JvhK〉Γ ≤ C‖{{Lh(JvhK)}}‖[L2(Γ)]2‖JvhK‖L2(Γ)

≤ C
(
κ1‖Lh(JvhK)|Ω1‖[L2(Γ)]2 + κ2‖Lh(JvhK)|Ω2‖[L2(Γ)]2

)
‖JvhK‖L2(Γ)

≤ C
(
κ1‖Lh(JvhK)|Ω1‖[L2(∂Ω1)]2 + κ2‖Lh(JvhK)|Ω2‖[L2(∂Ω2)]2

)
‖JvhK‖L2(Γ)

(A)

≤ C
(
κ1h

− 1
2 ‖Lh(JvhK)|Ω1‖[L2(Ω1)]2 + κ2h

− 1
2 ‖Lh(JvhK)|Ω2‖[L2(Ω2)]2

)
‖JvhK‖L2(Γ)

≤ C‖Lh(JvhK)‖[L2(Ω12)]2h
− 1

2 ‖JvhK‖L2(Γ)

≤ C‖Lh(JvhK)‖[L2(Ω12)]2‖JvhK‖ 1
2
.

In above estimate, the reason (A) comes from following estimate owing to the trace theorem and [1,
Theorem 1.3],
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‖vh‖L2(∂Ωi) ≤ C‖∇vh‖L2(Ωi) ≤ Cd−1
i ‖vh‖L2(Ωi) ≤ Ch−

1
2 ‖vh‖L2(Ωi), (4.6)

where di := supx,y∈Ωi
‖x− y‖ which is the diameter of the domain Ωi satisfies an assumption on the

domain that there exists Ci > 0 such that di ≥ Ci. �

Proposition 9. For the discrete gradient operator Gh defined in (4.2),

1) ∀vh ∈ V Γ
h , ‖Gh(vh)‖[L2(Ω12)]2 ≤ C|||vh|||.

2) Gh(I∗hϕ)→ ∇ϕ strongly in [L2(Ω12)]2 for all ϕ ∈ V 0
σ

Proof. a) Using the definition (4.2) of Gh and the triangle inequality coupling with the boundedness (4.5)
of Lh, we have

‖Gh(vh)‖[L2(Ω12)]2 = ‖∇vh − Lh(JvhK)‖[L2(Ω12)]2

≤ C‖∇vh‖L2(Ω12) + C‖Lh(JvhK)‖[L2(Ω12)]2

≤ C‖∇vh‖L2(Ω12) + C‖JvhK‖ 1
2
≤ C|||vh|||.

b) For all ϕ ∈ V 0
σ ,

‖Gh(I∗hϕ)−∇ϕ‖[L2(Ω12)]2 ≤ ‖∇(I∗hϕ)− Lh(JI∗hϕK)−∇ϕ‖[L2(Ω12)]2

= ‖∇(I∗hϕ− ϕ)− Lh(J(I∗hϕ− ϕ)K)‖[L2(Ω12)]2

≤ C‖∇(I∗hϕ− ϕ)‖L2(Ω12) + C‖Lh(J(I∗hϕ− ϕ)K)‖[L2(Ω)]2

≤ C|||I∗hϕ− ϕ|||+ C‖J(I∗hϕ− ϕ)K‖ 1
2

≤ C|||I∗hϕ− ϕ||| ≤ Ch‖ϕ‖L2(Ω12).

�

Proposition 10. Let {vh}h be a sequence in V Γ
h and assume that this sequence is bounded in the |||·|||-norm.

Then, the family {vh}h is relatively compact in L2(Ω).

Proof. We will borrow the idea of proofs in the work of [12] and [14]. While the authors of [12] work on
Discontinuous Galerkin Method in which they consider the discontinuity throughout faces of all elements
of the mesh and the authors of [14] work on Finite Volume Method, our work will focus only on the zone
around the interface.

For v ∈ L1(R2), define a space BV := {v ∈ L1(R2) : ‖v‖BV < +∞} where

‖v‖BV :=

2∑
i=1

sup{
∫
R2

v∂iϕdx;ϕ ∈ C∞c (R2), ‖ϕ‖L∞(R2) ≤ 1}.

Extending the functions vh by zero outside Ω and for all ϕ ∈ C∞c (R2) with ‖ϕ‖L∞(R2) ≤ 1, integrating
by parts gives us

∫
R2

(vh)∂iϕdx =

∫
Ω

(vh)∂iϕdx =

∫
Ω1

(vh)∂iϕdx+

∫
Ω2

(vh)∂iϕdx

= −
∫

Ω12

(ei · ∇(vh))ϕdx+
∑
T∈Gh

∫
ΓT

(ei · n)JvhKϕds.

Hölder’s inequality and the fact that ‖ϕ‖L∞(R2) ≤ 1 will give us
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−
∫

Ω12

(ei · ∇(vh))ϕdx ≤ ‖∇(vh)‖L1(Ω12)‖ϕ‖L∞(Ω12) ≤ ‖∇(vh)‖L1(Ω12),∑
T∈Gh

∫
ΓT

(ei · n)JvhKϕds ≤
∑
T∈Gh

‖JvhK‖L1(ΓT )‖ϕ‖L∞(ΓT ) ≤
∑
T∈Gh

‖JvhK‖L1(ΓT ).

Applying Hölder’s inequality again,

‖∇vh‖L1(Ω12) ≤ ‖1‖L2(Ω12)‖∇vh‖L2(Ω12) ≤ C‖∇vh‖L2(Ω12)∑
T∈Gh

‖JvhK‖L1(ΓT ) =
∑
T∈Gh

‖h
1
2

Th
− 1

2

T JvhK‖L1(ΓT )

≤

 ∑
T∈Gh

hT ‖1‖2L2(ΓT )

 1
2
 ∑
T∈Gh

h−1
T ‖JvhK‖2L2(ΓT )

 1
2

≤ C‖JvhK‖ 1
2
,

in which we have used that |ΓT | ≤ hT and the non-degenerate property of the mesh, h2
T ≤ C|T |.

Therefore,
∫
R2(vh)∂iϕdx ≤ C|||vh||| or we have

‖σvh‖BV ≤ C|||vh||| ≤ C.

From [14], for all y ∈ R2,

C‖vh(·+ y)− vh‖L1(R2) ≤ |y|‖σvh‖BV ≤ C|y|,

where |y| is the Euclidean norm of y. From this and thanks to Kolmogorov’s Compactness Criterion,
we have that {vh}h is relatively compact in L1(R2). Besides that, Poincaré’s inequality helps us

‖vh‖L2(R2) = ‖vh‖L2(Ω) = ‖vh‖L2(Ω12) ≤ C‖∇vh‖L2(Ω12) ≤ C|||vh||| ≤ C,

or {vh}h is also bounded in L2(R2), hence it is also relatively compact in L2(R2). Finally, we have
{vh}h is relatively compact in L2(Ω) because vh has been extended by zero outside Ω. �

Theorem 4. Let {vh}h be a sequence in V Γ
h . Assume that this sequence is bounded in |||·|||-norm. There

exists a function v ∈ Vσ such that as h → 0, up to a subsequence, vh → v strongly in L2(Ω) and
Gh(vh) ⇀ ∇v weakly in [L2(Ω)]2.

Proof. Thanks to the Proposition 10 and Rellich’s theorem, there exists a function v ∈ L2(Ω) and a
subsequence, also denoted by vh, such that vh → v strongly in L2(Ω). Moreover, the Proposition 9 gives
us the boundedness of Gh in [L2(Ω)]2, thus there exists a new subsequence, again denoted as vh, and
w ∈ [L2(Ω)]2 such that Gh(vh) ⇀ w weakly in [L2(Ω)]2. What we need to do is to prove that w = ∇v.
Indeed, for all ϕ ∈ [C∞c (Ω)]2 (note that, JϕK = 0 on Γ and ϕ = 0 on ∂Ω),

〈Gh(vh), ϕ〉Ω12
= 〈∇vh − Lh(JvhK), ϕ〉Ω12

= 〈∇vh, ϕ〉Ω − 〈Lh(JvhK), ϕ〉Ω12

= −〈vh,∇ · ϕ〉Ω +

∫
Γ

Jvh(ϕ · n)K ds− 〈Lh(JvhK), ϕ〉Ω12
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= −〈vh,∇ · ϕ〉Ω + 〈JvhK, {{ϕ}} · n〉Γ − 〈Lh(JvhK), ϕ〉Ω12

= −〈vh,∇ · ϕ〉Ω.

Observe that when h→ 0, 〈vh,∇ · ϕ〉Ω → 〈v,∇ · ϕ〉Ω because of the strong convergence of vh in L2(Ω).
As a result,

〈w, ϕ〉Ω = lim
h→0
〈Gh(vh), ϕ〉Ω12 = −〈v,∇ · ϕ〉Ω, ∀ϕ ∈ [C∞c (Ω)]2.

If we can prove that JvK = 0, we can obtain w = ∇v, hence v ∈ Vσ. Indeed, considering the relation,

|‖JvhK‖L2(Γ) − ‖JvK‖L2(Γ)| ≤ ‖Jvh − vK‖L2(Γ)

≤ ‖(vh − v)|Ω1
‖L2(Γ) + ‖(vh − v)|Ω2

‖L2(Γ)

Using the relation (4.6), we have

‖(vh − v)|Ωi
‖L2(Γ) ≤ ‖(vh − v)|Ωi

‖L2(∂Ωi)

≤ Cd−1
i ‖(vh − v)|Ωi‖L2(Ωi) ≤ C‖(vh − v)|Ωi‖L2(Ωi)

Thus,

|‖JvhK‖L2(Γ) − ‖JvK‖L2(Γ)| ≤ C
∑
i

‖(vh − v)|Ωi‖L2(Ωi),

which tends to zero because vh → v in L2(Ω). This implies

‖JvhK‖L2(Γ) → ‖JvK‖L2(Γ). (4.7)

Besides that, vh is bounded in |||·|||-norm,

h−1‖JvhK‖2L2(Γ) =
∑
T∈Gh

h−1‖JvhK‖2L2(ΓT ) ≤
∑
T∈Gh

h−1
T ‖JvhK‖2L2(ΓT )

= ‖JvhK‖21
2
≤ |||vh|||2 ≤ C,

which yields that as h→ 0,

‖JvhK‖L2(Γ) → 0. (4.8)

From (4.7), (4.8) we have ‖JvK‖L2(Γ) = 0. This yields JvK = 0. �

Now, we have all needed tools to consider the convergence of the solutions of discrete problems to a solution
of the weak problems.

Theorem 5. For {wh}h, {vh}h be the sequence of discrete solutions generated by solving discrete prob-
lems (3.8),(3.9) respectively, there exist solutions w, v solving (2.7),(2.8) respectively such that as h→ 0,
(wh, vh)→ (w, v) strongly in L2(Ω).
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Proof. Using 7, (3.15), Hölder’s inequality and Poincaré’s inequality, it is inferred that,

|||wh|||21 ≤ Cawh(wh, wh) = Kwh(wh) ≤ C‖wh‖L2(Ω) ≤ C‖∇wh‖L2(Ω) ≤ C|||wh|||,
|||vh|||22 ≤ Cavh(vh, vh) = C〈q(vh), vh〉Ω + C〈fv, vh〉Ω

≤ ‖q‖L2(Ω)‖vh‖L2(Ω) + ‖fv‖L2(Ω)‖vh‖L2(Ω)

≤ C‖k‖L∞(Ω)(mesh(Ω))1/2‖∇vh‖L2(Ω) + C‖∇vh‖L2(Ω) ≤ C|||vh|||2.

Hence, {wh}h, {vh}h are bounded in |||·|||1-norm and |||·|||2-norm respectively. Thanks to 4, there exist
w∗ ∈ H1(Ω) and v∗ ∈ V such that, as h→ 0, up to a subsequence, wh → w∗, vh → v∗ strongly in L2(Ω)
and Gh(wh) ⇀ ∇w∗,Gh(vh) ⇀ ∇v∗ weakly in [L2(Ω)]2.

We want to prove that w∗ and v∗ are solutions of problems (2.7),(2.8) respectively. In deed,
(i) For all ϕ ∈ H1

0 (Ω),

awh(wh, I
∗
hϕ) = 〈α 1

2Gh(wh), α
1
2Gh(I∗hϕ)〉Ω12

+ jwh(wh, I
∗
hϕ) = F1 + F2,

where

F1 = 〈α 1
2Gh(wh), α

1
2Gh(I∗hϕ)〉Ω12 ,

F2 = jwh(wh, I
∗
hϕ) = ζ〈JwhK, JI∗hϕK〉Γ − 〈α

1
2Lh(JwhK), α

1
2Lh(JI∗hϕK)〉Ω12

.

From the weak convergence of Gh(wh) to ∇w∗ and the strong convergence of Gh(I∗hϕ) to ∇ϕ (cf.
Lemma 9), as h→ 0, we have F1 → 〈α∇w∗,∇ϕ〉Ω12 . We show that F2 → 0 also. Indeed,

|ζ〈JwhK, JI∗hϕK〉Γ| ≤ C‖JwhK‖ 1
2
‖JI∗hϕK‖ 1

2
≤ C|||wh|||1‖JI∗hϕ− ϕK‖ 1

2

≤ C|||wh|||1|||I∗hϕ− ϕ|||1 → 0,

|〈α 1
2Lh(JwhK), α

1
2Lh(JI∗hϕK)〉Γ| ≤ C‖Lh(JwhK)‖[L2(Ω12)]2‖Lh(JI∗hϕK)‖[L2(Ω12)]2

≤ C‖JwhK‖ 1
2
‖JI∗hϕK‖ 1

2
→ 0.

because wh is bounded in |||·|||1 and owing to 3 and Proposition ??prop:sys-liftOperBound .
Besides that, we also have Kwh(I∗hϕ)→ Kwh(ϕ). It’s because

|Kwh(I∗hϕ)−Kwh(ϕ)| = |Kwh(I∗hϕ− ϕ)| ≤ ‖fw‖1,∞,Ω‖I∗hϕ− ϕ‖L2(Ω)

≤ C‖∇(I∗hϕ− ϕ)‖L2(Ω) ≤ C|||I∗hϕ− ϕ|||1 → 0.

In short, for all ϕ ∈ H1
0 (Ω),

aw(w∗, ϕ)← awh(wh, I
∗
hϕ) = Kw(I∗hϕ)→ Kw(ϕ). (4.9)

The remaining thing to be verified is the boundary condition w∗ = w̄ on ∂Ω. It’s easy to obtained
thanks to the strong convergence of wh to w in L2(Ω) and the trace theorem.

In one word, w∗ is a solution of discrete problem (3.8). Since the solution of this problem is unique
(cf. 3), we also have that the whole sequence {wh}h strongly converges to w∗ in L2(Ω).

(ii) Similarly, for all ϕ ∈ V0,

avh(vh, I
∗
hϕ) = 〈β 1

2Gh(vh), β
1
2Gh(I∗hϕ)〉Ω12

+ jvh(vh, I
∗
hϕ),
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where

jvh(vh, I
∗
hϕ) = θκ1κ2〈JvhK, JI∗hϕK〉Γ + θ〈{{vh}}, {{I∗hϕ}}〉Γ

− 〈β 1
2Lh(JvhK), β

1
2Lh(JI∗hϕK)〉Ω12 .

With the same technique as in awh in a notice that,

|〈{{vh}}, {{I∗hϕ}}〉Γ| = |〈{{vh}}, {{ϕ− I∗hϕ}}〉Γ| ({{ϕ}} = ϕ = 0 on Γ)

≤ C|||vh|||2|||ϕ− I∗hϕ|||2 → 0,

we have

avh(vh, I
∗
hϕ)→ 〈β∇v∗,∇ϕ〉Ω12 .

We want also that 〈q(vh), I∗hϕ〉Ω → 〈q(v∗), ϕ〉Ω. Indeed,

|〈q(vh), I∗hϕ〉Ω − 〈q(v∗), ϕ〉Ω|
= |〈q(vh), I∗hϕ〉Ω − 〈q(v∗), I∗hϕ〉Ω + 〈q(v∗), I∗hϕ〉Ω − 〈q(v∗), ϕ〉Ω|
≤ |〈q(vh)− q(v∗), I∗hϕ〉Ω|+ |〈q(v∗), I∗hϕ− ϕ〉Ω|.

With the same assumptions for q as in 3, q(x, vh(x)) → q(x, v∗(x)), a.e. in L2(Ω) and we will get
〈q(x, vh(x)), I∗hϕ(x)〉Ω → 〈q(x, v∗(x)), I∗hϕ(x)〉Ω thanks to convergence dominated theorem. Moreover,

|〈q(v∗), I∗hϕ− ϕ〉Ω| ≤ ‖q‖L2(Ω)‖I∗hϕ− ϕ‖L2(Ω) ≤ ‖k‖L∞(mes(Ω))1/2‖I∗hϕ− ϕ‖L2(Ω)

≤ C‖∇(I∗hϕ− ϕ)‖L2(Ω) ≤ C|||I∗hϕ− ϕ|||2 → 0.

Again, we do similarly get Kvh(I∗hϕ)→ Kv(ϕ) and v∗ = v̄ on ∂Ω. We get finally that v∗ satisfies

〈β∇v∗,∇ϕ〉Ω12 − 〈q(v∗), ϕ〉Ω ← avh(vh, I
∗
hϕ)− 〈q(vh), I∗hϕ〉Ω = Kvh(I∗hϕ)→ Kv(ϕ),

or v∗ is a solution of discrete problem (3.9). Since the solution of (3.9) is unique (cf. 3), we also have
the strong convergence of vh to v∗ in L2(Ω). �

5 A numerical test

We consider the problem (2.1) in which a domain Ω = [0, 1] × [0, 1] with an interface is a circle centered at
the origin with a radius r0. The boundary condition and the source term fu, fv are determined from the exact
solutions

u(x, y) =


r2

α1
if r ≤ r0,

r2 − r2
0

α2
+
r2
0

α1
otherwise,

v(x, y) =


(r2 − r2

0)2

β1
if r ≤ r0,

0 otherwise,

where r =
√
x2 + y2, r0 = 0.6. Notice that the exact solutions satisfy interface conditions in equation

(2.1). The coefficients of this test are taken as α1 = 1, α2 = 100, β1 = 0.5.
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(a) An exact solution u. (b) A numerical solution uh.

(c) An exact solution v. (d) A numerical solution vh.

Figure 2: An exact solution and a numerical solution of u, v in a fine mesh.

(a) An exact solution w. (b) A numerical solution wh.

Figure 3: An exact solution and a numerical solution of w in a fine mesh.
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Numerical solutions uh, vh in comparison with the exact solutions u, v are given Figure ??fig:chap4-
solutions-uv (here we are showing the solutions in 3D view with the z-index is the value of solutions at points
on Oxy). You can see, with a smooth mesh, we obtain almost the same results for both exact and numerical
solutions.

For a reference, we also plot the two solutions of w = u+ β
αλv as in Figure ??fig:chap4-solutions-w.

The corresponding L2 norm errors and convergence rates of w − wh and v − vh are given in 1 and 4.

h ‖w − wh‖L2 order ‖v − vh‖L2 order

1.34× 10−1 7× 10−3 2.5× 10−3

6.9× 10−2 2.1× 10−3 1.82 5.94× 10−4 2.14

3.49× 10−2 5.33× 10−4 2.01 1.16× 10−4 2.40

1.76× 10−2 1.38× 10−4 1.93 2.57× 10−5 2.18

Table 1: L2 norm errors of the solutions with different mesh sizes.
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Figure 4: The convergence of numerical solutions to exact solutions of the system.
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