
HAL Id: hal-02537540
https://hal.science/hal-02537540v1

Submitted on 8 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Winter is here! A decade of cache-based side-channel
attacks, detection & mitigation for RSA

Maria Mushtaq, Muhammad Asim Mukhtar, Vianney Lapotre, Muhammad
Khurram Bhatti, Guy Gogniat

To cite this version:
Maria Mushtaq, Muhammad Asim Mukhtar, Vianney Lapotre, Muhammad Khurram Bhatti, Guy
Gogniat. Winter is here! A decade of cache-based side-channel attacks, detection & mitigation for
RSA. Information Systems, 2020, 92, pp.#101524. �10.1016/j.is.2020.101524�. �hal-02537540�

https://hal.science/hal-02537540v1
https://hal.archives-ouvertes.fr

Journal Pre-proof

Winter is here! A decade of cache-based side-channel attacks, detection &
mitigation for RSA

Maria Mushtaq, Muhammad Asim Mukhtar, Vianney Lapotre,
Muhammad Khurram Bhatti, Guy Gogniat

PII: S0306-4379(20)30033-8
DOI: https://doi.org/10.1016/j.is.2020.101524
Reference: IS 101524

To appear in: Information Systems

Received date : 29 January 2019
Revised date : 16 January 2020
Accepted date : 30 March 2020

Please cite this article as: M. Mushtaq, M.A. Mukhtar, V. Lapotre et al., Winter is here! A decade
of cache-based side-channel attacks, detection & mitigation for RSA, Information Systems (2020),
doi: https://doi.org/10.1016/j.is.2020.101524.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

https://doi.org/10.1016/j.is.2020.101524
https://doi.org/10.1016/j.is.2020.101524

Highlights

The highlights of this paper are the following ones.

• We propose a threat model to identify various leak- age channels, both in software
and hardware layers, to demonstrate possible threats and vulnerabilities. We identify
leakages at different levels of the Intel x86 cache hierarchy that help narrow down
major attack possibilities in caches.

• We provide a taxonomy of leakage channels, their classification, and the type of threat
associated with each for different implementations of RSA cryptosys- tems in
particular.

• We investigate the timing channels on various cryp- tographic implementations. In the
last decade, dif- ferent implementations of RSA cryptosystem have been attacked. We
provide a detailed analysis of these attacks on different implementations of RSA and
explain the problem of leakage and threat level involved in these implementations.

• We analyze and list software and hardware counter- measure techniques proposed so
far against known attacks on RSA. We also identify significant mitiga tion techniques
that are effective at various cache levels and that address different threat levels with
respect to our proposed threat model. We analyze the efficiency of the proposed
countermeasures and explain their efficacy against our proposed threat model.

• We identify existing auditing/detection techniques against cache-based side-channel
attacks (CSCAs) using hardware performance monitoring counters (HPCs) to detect
stealthy attacks. We underline the importance of detection mechanisms as a new
angle of research to provide need-based mitigation toward CSCAs.

• We discuss various open threat areas in cache hier- archy that have not been properly
addressed by the proposed mitigation techniques so far. We also dis- cuss the
challenges associated with hardware mitiga- tion solutions and argue in favor of strong
software countermeasures against threats in cache hierarchy in contemporary
processors (Intel x86).

Highlights

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 1

Winter is Here!
A Decade of Cache-based Side-Channel
Attacks, Detection & Mitigation for RSA

Maria Mushtaq, Muhammad Asim Mukhtar, Vianney Lapotre, Muhammad Khurram Bhatti, Guy Gogniat

Abstract—Timing-based side-channels play an important role in exposing the state of a process execution on underlying hardware by
revealing information about timing and access patterns. Side-channel attacks (SCAs) are powerful cryptanalysis techniques that focus
on the underlying implementation of cryptographic ciphers during execution rather than attacking the structure of cryptographic
functions. This paper reviews cache-based software side-channel attacks, mitigation and detection techniques that target various
cryptosystems, particularly RSA, proposed over the last decade (2007-2018). It provides a detailed taxonomy of attacks on RSA
cryptosystems and discusses their strengths and weaknesses while attacking different algorithmic implementations of RSA. A threat
model is presented based on the cache features that are being leveraged for such attacks across cache hierarchy in computing
architectures. The paper also provides a classification of these attacks based on the source of information leakage. It then undertakes
a qualitative analysis of secret key retrieval efficiency, complexity, and the features being exploited on target cryptosystems in these
attacks. The paper also discusses the mitigation and detection techniques proposed against such attacks and classifies them based on
their effectiveness at various levels in caching hardware and leveraged features. Finally, the paper discusses recent trends in attacks,
the challenges involved in their mitigation, and future research directions needed to deal with side-channel information leakage.

Index Terms—Security, Privacy, Cryptography, Side-Channel Attacks (SCAs), Cache Side-Channel Attacks, Countermeasures, RSA,
Intel’s x86 Architecture, Multi-core architecture, Caches.

F

1 INTRODUCTION

With the development of computing and storage infrastruc-
ture, information security has become one of the paramount
concerns. In the past decade or so, there has been an
explosion in the amount of digital data. For instance, ac-
cording to IBM Big Data research, 2.5 quintillion bytes of
data are created worldwide every day; so much that 90%
of data in the world today was created in the last two
years alone. The information buried in these data is valu-
able to society, be it commercial, economic, environmental,
government statistics, or concern the health and privacy of
individuals. Faced with this deluge of data, information
processing infrastructure have evolved to increase their
performance, energy efficiency, reliability, and safety. These
platforms are now increasingly shifting from the end-user
to centralized computing facilities (the cloud computing
concept) in order to free end-user terminals from excessively
high computational loads. Cloud computing is the delivery
of on-demand computing resources including everything
from applications to data centers over the Internet. The issue
of trust between end-users and cloud computing platforms
is, however, a major concern that is currently preventing
universal acceptance of this new technological solution.

• M. Mushtaq is with LIRMM, Univ Montpellier, CNRS, Montpellier,
France.
Correspondance E-mail: maria.mushtaq@univ-ubs.fr

• V. Lapotre and G. Gogniat are with Lab-STICC, University of South
Brittany (UBS), Lorient, France.

• M. K. Bhatti and M. A. Mukhtar are with the ECLab, Information
Technology University (ITU), Lahore, Pakistan.

Modern-day cloud computing solutions offer Software-
as-a-Service (SaaS), Platform-as-a-Service (PaaS), and
Infrastructure-as-a-Service (IaaS) for both public and pri-
vate cloud [1]. These services provide virtualized system
resources to end-users that offer high utilization through
resource sharing. Such systems usually co-host multiple
virtual machines (VMs) on the same hardware platform,
which is managed by a virtual machine monitor (VMM) to
insulate VMs and system resources.

While virtualization is supposed to provide insulation
and exclusive access to resources, in practice the VMs are
designed to share the same physical resources thereby cre-
ating a loophole for potential interventions. The co-resident
VMs that share physical resources are mutually distrusting.
For instance, a malicious VM co-residing with a victim’s
VM can discover the information of other VM [2], [3], [4]
through resource sharing and can cause serious damage
by conducting side-channel attacks (SCA) on the victim’s
VMs [5], [6], thus exposing the system to the conventional
challenges of information security represented by the clas-
sical CIA (confidentiality, integrity, and availability) triad.
Absolute system confidentiality, integrity, and availability
cannot be achieved simultaneously. Therefore, all systems
have design trade-offs resulting in inherent vulnerabilities
and rendering the system vulnerable to attacks.

SCAs are powerful techniques used to retrieve sensitive
information by observing the system behavior through side-
channels including power consumption, timing variation,
acoustic emanation. Although SCAs can be used in many
contexts (user spying, data extraction, etc.), this paper fo-
cuses on SCAs of cryptosystem implementations and more

Manuscript File Click here to view linked References

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 2

specifically on RSA cryptosystems. Rather than attacking
the underlying structure of cryptographic functions, SCAs
focus on the implementations of cryptographic ciphers [7].
Figure 1 illustrates how useful information related to exe-
cution can leak through unintended side-channels during
computation. SCAs use variations in physical parameters
(e.g. power consumption [8], electromagnetic radiation [9],
acoustic emanation [10], memory accesses or fault occur-
rence [5], [11], [12], [13], [14], [15], [16], [17], [18]) generated
by the execution of specific implementation of a cipher to
extract secret information. In general, SCAs can be clas-
sified in two types: hardware-based SCAs in which the
attacker requires measurement equipment to get physical
parameters and software-based SCAs in which the attacker
uses software instead of measurement equipment to steal
information such as memory access or fault occurrence that
help retrieve cryptographic information [7], [19].

Substantial research efforts have been made in the last
decade to provide mitigation techniques through resource
isolation. Both software and hardware-based cache parti-
tioning strategies have been proposed as countermeasures
against cache-based SCAs [20], [21], [22], [23], [24]. How-
ever, these strategies significantly reduce performance be-
cause of cache reservation. Moreover, hardware-based par-
titioning techniques require specialized features, like those
proposed in [24] that use cache allocation technology (CAT)
for partitioning. Software-based techniques like page color-
ing require system-level modifications, which may lead to
incompatibility with architectural features [24]. Achieving
strong isolation seems to be possible to some extent. Hard-
ware developers are able to hide CPU’s internal hierarchy
but the internal timing leakage is still very visible, and can
be exploited to observe cryptographic implementations as
demonstrated in virtual machine set-ups [2], [5], [6], [19],
[16], [25], [17]. Attacks such as Spectre [26], Meltdown [27]
and some covert-channel attacks [28] have recently been
launched and are sophisticated and hard to detect and
mitigate. These covert channels are the vulnerabilities that
have affected almost every processor, across virtually every
operating system and architecture. They exploit system
wide features such as speculative execution and out-of-
order execution that are considered as optimized perfor-
mance features. These attacks can exploit vulnerabilities in
the computational part rather than in the storage part, i.e.
caches. The attacks are powerful enough to exploit stored
passwords in a password manager or browser, personal
photos, emails, instant messages and business critical docu-
ments. The use of covert-channels has allowed attackers to
retrieve the victim’s information from kernel memory with
no direct contact with the victim. Consequently, it is hard
to gather system wide vulnerabilities to detect/mitigate
such attacks. Some recent mechanisms tried to mitigate
covert channels [29], [30], [31], [32], [33], [34], [35], [36],
[37] but all are reported to slow down CPU performance
[38]. Given the limitations of software mitigation techniques,
it is essential to introduce real-time detection techniques
for covert-channels. An all-weather protection mechanism
against such attacks is required that does not slow down
the performance of the CPU.

Three recent literature reviews [38], [39], [40] identi-
fied a wide range of cache-based side-channel attacks and

Fig. 1: Unintended side-channel information leakage.

countermeasures on contemporary hardware. A range of
cache-based timing attacks and countermeasures on con-
temporary hardware is listed in [38], [40]. [39] provides a
hierarchy of hardware and software attacks and analyzes
the performance degradation in most of the countermea-
sures proposed for AES cryptosystems. [38] and [39] pro-
vide a long list of diverse cryptographic algorithms used
in different attacks and a mix of software and hardware
countermeasures. [41] provides a systematic classification
of side-channel attacks for mobile devices. [42] discusses
only passive side-channels and their countermeasures for
Nessie public key cryptography. [43] is a systematic study
that only targets cache-based side-channels implemented
on AES cryptosystems. To the best of our knowledge, no
review of the literature today provides a complete leakage
hierarchy, identifying different execution contexts at differ-
ent levels of the Intel x86 cache hierarchy and a taxonomy
of various attacks that exploit these leakage opportunities,
both in hardware and software execution, in order to extract
sensitive information from various implementations of RSA
cryptosystem. In this paper, we provide an in-depth analysis
of different types of cache-based timing side-channel attacks
with respect to the leakage context being exploited. The
contributions of this paper are the following:

• We propose a threat model to identify various leak-
age channels, both in software and hardware layers,
to demonstrate possible threats and vulnerabilities.
We identify leakages at different levels of the Intel
x86 cache hierarchy that help narrow down major
attack possibilities in caches.

• We provide a taxonomy of leakage channels, their
classification, and the type of threat associated with
each for different implementations of RSA cryptosys-
tems in particular.

• We investigate the timing channels on various cryp-
tographic implementations. In the last decade, dif-
ferent implementations of RSA cryptosystem have
been attacked. We provide a detailed analysis of
these attacks on different implementations of RSA
and explain the problem of leakage and threat level
involved in these implementations.

• We analyze and list software and hardware counter-

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 3

measure techniques proposed so far against known
attacks on RSA. We also identify significant mitiga-
tion techniques that are effective at various cache
levels and that address different threat levels with
respect to our proposed threat model. We analyze
the efficiency of the proposed countermeasures and
explain their efficacy against our proposed threat
model.

• We identify existing auditing/detection techniques
against cache-based side-channel attacks (CSCAs)
using hardware performance monitoring counters
(HPCs) to detect stealthy attacks. We underline the
importance of detection mechanisms as a new angle
of research to provide need-based mitigation toward
CSCAs.

• We discuss various open threat areas in cache hier-
archy that have not been properly addressed by the
proposed mitigation techniques so far. We also dis-
cuss the challenges associated with hardware mitiga-
tion solutions and argue in favor of strong software
countermeasures against threats in cache hierarchy
in contemporary processors (Intel x86).

Note that the scope of this paper is limited to an in-depth
study and effectiveness analysis of cache-based SCAs and
their respective mitigation techniques proposed in the pe-
riod 2007 to 2018 for implementations of RSA public-key
cryptosystems. Nevertheless, the paper provides a detailed
threat model based on leakage channels in various levels in
cache hierarchy of Intel x86 architecture, which is equally
applicable to other cryptosystems and types of attacks.

The rest of this paper is organized as follows. Section
2 provides background knowledge on Intel x86 cache ar-
chitecture and principles (Section 2.1), information leakage
channels (Section 2.2). Cache-based timing side-channels are
presented in Section 3. Classification of cache-based attacks
relying on the source of leakage is explained in Section 3.1.
Leakage contexts in Intel x86 architecture are explained in
Section 4. Section 5 presents techniques to exploit leakage.
Section 6 details the cryptographic operations of RSA and
its working model. Section 7 provides a detailed review
of known cache-based side-channel attacks on RSA imple-
mentations and their respective countermeasures proposed
between 2007 and 2018. Section 8 categorizes known coun-
termeasure techniques to resolve leakage from the levels
proposed in the leakage contexts in Section 4. Section 8
discusses the applicability and practicality of different soft-
ware countermeasures with respect to the leakage sources in
modern processors, while Section 9 examines the trends of
attacks and problems with protection mechanisms. Section
10 concludes the paper.

2 BACKGROUND AND CONCEPTS

To facilitate the reading of the paper, the acronyms used in
all the sections are listed in Table 1.

2.1 Intel x86 Cache Architecture and Principles
Intel documentation states that DRAMs have a latency of
up to approximately 200 times that of today’s computing
cores [44]. This gap is filled by stealth caches and its

hierarchical design. Caches are smaller memories but one
order of magnitude faster than DRAM. However, caches
can impact the security of a software system in two ways.
Firstly, Intel architecture depends on system software to
arrange address-translation caches, which becomes a threat
to security. Secondly, Intel architecture allows resource shar-
ing of all software running in the processor. This raises
the question of security in terms of cache timing attacks,
which are a complete class of software attacks [5], [25],
[38], [14]. This section provides background knowledge
on caching concepts and security issues that arise in Intel
processors due to cache architecture. In theory, caches aim
to resolve the problem of high locality in memory and hide
the huge latency from main memory. By storing/caching
recently accessed data, up to 90-99% of the problem of
main memory latency is satisfied [44]. Intel processors offer
different levels of cache. The first level of cache, L1, consists
of separating data (L1-D) and instruction (L1-I) caches.
Fetching and decoding instructions are directly associated
with L1-I cache, while operations that require read/write
access from memory are directly associated with L1-D cache.
The caches are all inclusive with private L1, L2 and shared L3
or LLC (last level cache) in all the cores. Figure 2 is a general
illustration of Intel cache architecture. For performance rea-
sons, Intel architecture includes an arrangement that gives
performance-sensitive applications some control over other
applications. For instance, prefetch instruction prefetches a
specific memory address to be used in future and clflush
instruction evicts any cache line that has specific address
from the entire cache hierarchy (L1, L2, and LLC). These
instructions are available to software applications running at
all privilege levels in order to provide high performance and
optimization characteristics vis-a-vis caches. Cache proper-
ties, like inclusivity and flushing, have been exploited in
many cache-based timing attacks including [5], [25], [14].

Fig. 2: Representative Cache Architecture of Intel Processors

Cache architecture is composed of larger cache (i.e. LLC)
in lower hierarchy and smaller caches (L1, L2) in the upper
hierarchy for reasons of efficiency. Moreover, the farther
the cache from the processing element, the greater the
latency. Therefore, the size of each cache level is chosen
with care to ensure the next level is faster. Based on the

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 4

TABLE 1: List of Acronyms

Category Name Acronym

Channels

Covert-Channel CC

Side-Channel SC

Timing-Channel TC

Persistent-State Channel PS

Transient-State Channel TS

Leakage Exploitation Techniques

Prime+Probe P+P

Evict and Time E+T

Flush+Reload F+R

Flush+Flush F+F

Prime+Abort P+A

Evict+Reload E+R

Attacker Address Space AAS

Victim Address Space VAS

Cache-based Side-Channel Attacks

Time-Driven Attack Ti-DA

Active-Time-Driven Attack A-Ti-DA

Passive-Time-Driven Attack P-Ti-DA

Trace-Driven Attack Tr-DA

Leakage Context

Context-Switch CS

Hyper-thread/Simultaneous Multi-threading HT/SMT

Multi-Core MC

Cryptographic Implementation

Square and Multiply Modular Exponentiation S&ME

Fixed Window Exponentiation FWE

Sliding Window Exponentiation SWE

Right to Left Sliding Window Exponentiation R-L SWE

Left to Right Sliding Window Exponentiation L-R SWE

Chinese Remainder Theorem CRT

Counters Hardware Performance Counter HPC

latest Intel processor documentation [45], [46] and some
studies [44], [47] the approximate indicative parameters of
Intel x86 architectures are listed in Table 2. It approximates
the associativity, sharing, size of cache line, size of each
level and access time of caches, however the memory sizes
and access time may vary in magnitude across different
levels of the hierarchy. Table 2 explains that cache levels
can be private and shared/inclusive. To explain that part,
we provide details on the design of Intel architecture. Two
processes running on the same core or across-core share the
inclusive LLC by design, this being the core problem of
sharing in contemporary architectures. Two processes that
are not supposed to share their data, do share the data
due to inclusive caches. Access to Intel x86 processors using
privileged instructions like clflush and prefetch instructions,
allow the attacker process to know the state of the victim
process due to inclusivity. Inclusive caches exist in Intel
x86 for many optimization and performance reasons, but
cause critical sharing which may become a security problem.
Cache properties, like inclusivity and flushing, have been
exploited in many cache-based timing attacks including in
[5], [25], [14].

Intel’s proposed cache hierarchy is designed to ensure
better performance (by reducing latency). While it benefits

performance, it does not solve the problem of security
because resource sharing still exists in Intel processors [46],
[48]. For example, an attacker can flush specific memory
lines from LLC causing a simultaneous flush of data from
L1, L2, and LLC. In this case, the attacker can benefit at
this point by simply measuring the time the victim takes to
reload specific instructions. The attacker might get knowl-
edge of the operations being performed via the process
used by the victim. The retrieval of timing information from
inclusive cache sharing has recently been proven to be a
major security concern [5], [19], [16], [49].

Another important aspect is mapping addresses toward
different levels of cache in Intel x86. Different attacks and
countermeasure techniques have different effects and appli-
cability due to address mapping. L1 caches are often ad-
dressed virtually, while L2 and LLC are mapped physically.
This is why some countermeasures do not provide a wide
vector to prevent such attacks. L1 and L2 caches in Intel x86
architectures are multi-way set-associative with direct set
indexing. Therefore, a W-way set associative cache contains
its own memory that is divided into sets. Each set consists
of W lines in which memory can be cached. However, LLC
is divided into per core slices. Each slice is allocated to
a separate core and can be used as a unified or separate

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 5

TABLE 2: Relevant indicative parameters of cache in Intel x86 architectures [44], [47].

L1-D L1-I L2 LLC

Associativity 8-Way 8-Way 4-Way 16-Way

Sharing Private/Per-core Private/Per-core Private/Per-core Shared/Inclusive

Size of Cache Line 64B 64B 64B 64B

Size of Level 32KB 32KB 256KB 8MB

Access Time 4 Cycles 4 Cycles 10 Cycles 40-75 Cycles

cache [25], [50] as shown in Figure 2. Intel’s documentation
states that the hashing scheme maps physical addresses
to LLC. It was designed to distribute memory circulation.
The hashing scheme is not publicly available but has been
reverse-engineered in past research work [51], [52], [53].

To help understand the cache address, index, associa-
tivity, cache set and cache line in Intel x86 in Table 2,
Figure 3 demonstrates attacks using the cache architecture,
illustrating how a potential CSCA could exploit the features
of cache organization that are introduced to improve perfor-
mance in processors. Typically, as illustrated in Figure 3(a),
data/instructions are loaded into a specific set depending
on the addressing index and a cache line is loaded in
a specific way within the selected set in a set-associative
cache depending on the cache replacement policy. For a
CSCA exploiting the sharing feature of caches, the attacker
process maps itself with the shared library (shared mem-
ory addresses in the cache) used by the victim’s process,
which is usually a cryptosystem. Such mapping allows the
attacker to examine the address space of victim process as
illustrated in Figure 3(b). Once mapped, the attacker process
can use the legitimate operations of the cache replacement
policy to evict selected data/instructions from a particular
location and to measure the difference in timing between
a cache hit and a cache miss with respect to the victim’s
process. Such measurements not only reveal the difference
in timing but also expose the memory access pattern of the
victim’s process. A CSCA can use this information to extract
or extrapolate the secret key of the target cryptosystem.
Interestingly, the attacker’s process monitors which lines are
accessed by the victim, and not their content. Furthermore,
CSCAs have also proved to be effective without sharing
the address space with the victim. In Section 5, we will
also explain the techniques cache architectures use to attack
without sharing the same address space as the victim’s
process. CSCAs demonstrate that the organization of the
memory, which is used to better address modes, exposes
the structured address space of processes and makes them
vulnerable to attacks.

2.2 Information Leakage Channels
Various behavioral features of caches, and to some extent the
problems associated with such features, are explained in the
preceding section. These features create a state that initiates
a level of distrust between co-running processes and causes
serious issues of confidentiality and integrity. These issues
are based on preceding computation of operations or some-
times by caching useless data. In practice, the process of
caching data/instructions is transparent and has no impact
as such on the outcomes of the operations (run by either

(a) Typical addressing of a cache line in 4-ways set-associative shared
cache.

(b) Shared address space between any two processes due to shared
libraries and data/instruction de-duplication.

Fig. 3: Exploitation of cache memory organization and shar-
ing by CSCAs in Intel x86 architecture.

the victim or the attacker). However, it causes two issues;
1) co-running processes lose confidentiality through various
channels that are being exploited by the attackers and 2)
the overall performance is compromised. In most cases, the
timing and/or access pattern information is revealed during
program execution. This section briefly elaborates major
information leakage channels being reported in the state-
of-the-art. Some of these information leakage channels can
be prevented at the design time if they are known to exist,
e.g., through proper isolation of processes or by partitioning
caches, but many go unnoticed until the system is deployed,
thus creating a potential attack surface.

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 6

2.2.1 Covert-Channels

A covert channel is a communication channel that was not
intended or designed to transfer information between a
sender (process) and a receiver (process) [54]. Covert chan-
nels typically leverage unusual methods for communication
of information, never intended by the system’s designers.
These channels can include use of timing, power, thermal
emanations, electromagnetic radiation, acoustic emanations,
and possibly others. With the exception of timing channels,
most channels require some physical proximity and sensors
to detect the transmitted information, e.g., use of EM probe
to sense EM emanations. Meanwhile, many timing-based
covert channels are very powerful as they do not require
physical access, only that sender and receiver run some code
on the same system. Covert channels are important when
considering intentional information exfiltration where one
program manipulates the state of the system according to
some protocol and another observes the changes to read that
”information” that are sent to it through changes. Covert
channels are a concern because even when there is explicit
isolation, e.g., each program runs in its own address space
and cannot directly read and write another program’s mem-
ory, a covert channel may allow the isolation mechanisms to
be bypassed.

Covert-channel attacks target a system’s confidentiality.
For instance, a program inside an Intel SGX Enclave (i.e., the
sender) may modify processor cache state based on some se-
cret information it is processing, and then another program
outside the Intel SGX Enclave (i.e., the receiver) may be able
to observe the changed cache behavior and deduce what the
sensitive information was, e.g., bits of an encryption key. The
execution and implementation of a covert-channel strictly
depends on the microarchitecture on which it is processed to
abuse the information. Implementations of covert-channels
have also been evaluated in recent studies [55], [56], [57]
[26], [27]. Fine-grain classification of covert-channels is also
explained in Section 2.2.2 (Transient-state channel) below.

2.2.2 Side-Channel

A side channel is similar to a covert channel, except that the
sender does not intend to communicate information to the
receiver, rather the sending (i.e., leaking) of information is a
side effect of the implementation and the way the computer
hardware or software is used [58]. Side channels can use
same means as covert channels, e.g., timing, to transmit
information. Typically, covert channel attacks are analyzed
as both sender and receiver are under control of the po-
tential attacker and it is easier to create a covert channel.
However, side channels are usually more difficult to create
since the victim (i.e., sender) is not under control of the
attacker. The goal of a side-channel attack is to extract some
information from the victim. Meanwhile, the victim does
not observe any execution behavior change nor is aware
that they are leaking information. This way, confidentiality
can be violated as data, such as secret encryption keys, is
leaked out. Interestingly, side-channel attacks can work in
reverse as well. A side channel can also exist from attacker
to victim. In a reversed attack, the attacker’s behavior can
“send” some information to the victim that causes proces-
sor’s state change. Such information affects how the victim

executes, without the victim knowing there is a change. For
example, the attacker can fill processor cache with data,
causing the victim to run more slowly. Or, the attacker can
affect behavior of the branch predictor, causing the victim to
execute extra instructions before processor is able to detect
that these instructions should not be executed and nullifies
their ISA-visible change.

Side-channels can work in two different ways, attacks
based on the physical parameters of hardware architecture
(like power consumption [8], electromagnetic radiation [9],
acoustic emanation [10], memory access or fault occurrence
[5], [11], [12], [13], [14], [15], [16], [17], [18]) and software
attacks that work specifically on cache behaviors, timing,
execution, etc. All side-channels that rely on the behavior
of caches and timing are so-called cache-based timing side-
channels that constitute a rather bigger class of software
attacks and therefore focus of this study. Cache-based side-
channel attacks (CSCAs) exploit the vulnerability of cache in
terms of minute variations in timing to detect competition
for space in cache with different processes or within a
process. When all the resources are located on different cores
in modern Intel processors, there is a risk that different
resources may leak information at the time of execution.
Attackers exploit the precise timing of these cache behav-
iors to perform cache-based timing side-channel attacks.
We detail the classification of side-channels as cache-based
timing channels separately with their types in Section 3.
Side-channels can be further classified in two categories:
Transient-state channels and Persistent-state channels, that
are detailed in the following. This classification was inspired
by the research work presented in [7], which explains that
significant attacks are due to contention for microarchitec-
tural hardware resources. Other research work like [59] also
distinguished between the microarchitectural side-channel
attacks based on whether they exploit a persistent-state
channel and a transient-state channel. Persistent-state chan-
nels create the vulnerability around restricted storage space
of the targeted microarchitectural resource and transient-
state channels create vulnerability around the restricted
bandwidth of the target resource.

Persistent-State Channels: Persistent-state channels are
created by the restricted storage space and exploited by the
attacks while remaining in the targeted microarchitecture.
The restricted storage of cache sets is exploited in this type
of attacks to classify the sets used by the victim. For instance,
persistent state channels are best-suited for Prime+Probe at-
tacks [16], [60] in which the attacker fills its data in the cache
and lets the victim execute. When the victim accesses the
cache, its data are loaded into the cache by replacing some
of the attacker’s data. Thus, the attacker is able to clearly
establish relationship between the victim’s accessed data
and attacker’s own evicted data from the cache. Persistent-
state channel attacks have demonstrated their applicability
on L1-data cache [16], [19], [60], [61], L1-instruction cache
[6], [5], [62], [63], LLC [25], [64], [65], [66], branch prediction
buffers [67], [68] and DRAM open rows [69].

Transient-State Channels: The field of transient-state
execution attacks has emerged suddenly and proliferated,
leading to a situation where people are not aware of all its
variants and their implications. The concept (and potential
vulnerabilities) of transient-state execution attacks stems

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 7

from the fact that modern CPU pipelines are massively
parallelized allowing hardware logic in prior pipeline stages
to perform operations for subsequent instructions ahead of
time or even out-of-order. Intuitively, pipelines may stall
when operations have a dependency on a previous instruc-
tion, which has not been executed (and retired) yet. Hence,
to keep the pipeline full at all times, it is essential to predict
the control flow, data dependencies, and possibly even the
actual data. Crucially, however, as these predictions may
turn out to be wrong, pipeline flushes may be necessary, and
instruction results should always be committed according to
the intended in-order instruction stream. The pipeline flush
discards any architectural effects of pending instructions,
ensuring functional correctness. Hence, the instructions are
executed transiently, i.e., first they are, and then they vanish.
While the architectural effects and results of transient in-
structions are discarded, microarchitectural side effects still
remain beyond the transient execution, thus creating the
transient-state channels. These channels are the foundation
of Spectre [70], Meltdown [71] and Foreshadow [72] attacks.
These attacks exploit transient execution to encode secrets
through microarchitectural side effects (e.g., cache state) that
can later be recovered by an attacker at the architectural
level [73].

3 CACHE-BASED TIMING SIDE-CHANNELS

Observing and revealing minute timing variations is an
important aspect of timing channels, as these can exploit a
lot of secret operations including in context switching, pre-
emptive scheduling, hyper-threading, simultaneous multi-
threading and threats in multi-cores [19], [11], [74], [75], [76]
(explained in Section 4). When the state of cache is shared
between two different programs for execution, there may be
a risk of timing channel as the victim and attacker could
be sharing the same resources and attacker can observe the
victim’s execution with minute timing variations because
the timing of one program depends on the execution of the
other program [77], [78]. Cache-based side-channels are also
possible even though efforts are made to ensure some strict
partitions (i.e. attacker and victim run on separate cores).

Normal flushing of cache usually also reveals the timing
information by simply observing the timing of victim’s
program to fetch the addresses of interest. Exploiting timing
channels requires methods that really count the time needed
to perform the operations. These properties can be achieved
by using some quick and efficient counters like a pair of
clocks [79] that show that if there is a difference in timing
between two clocks, there is a timing channel between the
two. Some preventive measures were taken in the past to
avoid cache-based timing side-channels. One way to avoid
timing channels is not sufficient to avoid the contention
between different processes. One solution is introducing
noise, which reduces the efficiency of timing channels. Noise
actually makes it difficult for the spy program to observe
the timing of victim’s program activity but these solutions
did not prove to be very efficient because the victim’s
actual signal was still there. But, depending on the program
behavior, it is very important to produce an intelligent form
of noise in the program to effectively remove the traces of
victim’s timing and execution. To date, smart noise creation

mechanisms are very restrictive and difficult to integrate
in real world interactions [16], [38]. Recent studies are still
trying to find new ways to avoid cache-based timing side-
channels to prevent different processes leaking information,
which is the topic of this paper.

3.1 Cache-based Side-Channels Attacks

In this section, we describe the classification of cache-based
side-channel attacks. It is important to understand the type
of information that is leaked to distinguish and classify the
attack accordingly. [80] distinguishes between time-driven
and trace-driven attacks. Time-driven attacks have been
further classified in two sub-types known as active time-
driven and passive time-driven attacks [20].

3.1.1 Time-driven Attacks
Time-driven attacks, also known as timing attacks, result in
quantifiable execution information related to timing. This
type of timing information can relay secret cryptographic
operations. It can be comprehended as the number of
cache hits and misses relaying timing execution information
throughout the encryption process. This type of timing
difference enables an attacker to extract the complete key.
Figure 4 is a representation of time driven attacks in which
the attacker observes the victim’s timing information before
and after execution. Hence, these types of attacks are effi-
cient in measuring the entire execution time by which secret
information belonging to the victim can be recovered. De-
pending on the location of the attacker, time-driven attacks
fall into two categories: active time-driven cache attacks and
passive time-driven cache attacks. The passive attacker has
no access to the victim’s machine and is thus not able to
influence the victim’s machine directly or indirectly [19],
[81]. Consequently, the attacker cannot probe the timing
information on the victim’s machine. On the other hand,
an active attacker can influence the victim by running code
on the same machine. The attacker is then well informed
about the victim’s timing information and can manipulate
the victim’s machine [19], [82], [83].

Fig. 4: Principle behind time-driven attacks

3.1.2 Trace-driven Cache Attacks
As the name suggests, this type of attack tries to manipulate
the trace of victim’s accesses [38], [20], [80], [84], [85]. This
type of attack aims to access the cache line that has been
used by the victim by analyzing and reviewing the cache
state repeatedly as shown in Figure 5. Trace-driven attacks
are also called access-driven attacks. It can be concluded

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 8

that active time-driven cache attacks and trace-driven cache
attacks need to operate on the same machine as the victim.
If a good trace of information related to the victim has been
obtained, trace-driven attacks are more effective, resourceful
and refined than time-driven attacks.

Fig. 5: Principle behind trace-driven attacks

Trace-driven attacks are destructive in the case of si-
multaneous multi-threading (SMT) or hyper-threading that
enable the hardware to execute several threads simultane-
ously. This can be hazardous as the threads use the same
processor resources. [60] describes this kind of potential
attack on RSA where the attacker process observing L1
activity of RSA encryption can easily get the information on
multiplication and squaring operations based on Chinese
remainder theorem (CRT). CRT is a standard used in dif-
ferent RSA implementations to address modular operations
on secret RSA keys. Furthermore, trace-driven attacks [86]
proved to be more rigorous and can be performed without
multi-threading technologies. The attack was performed on
single threaded processor while attacking the Advanced
Encryption Standard (AES). Later, [11] also undertook a
similar attack to achieve full key recovery in AES encryption
and this attack proved to be a fully functional asynchronous
attack in a real life scenario. More quantifiable research on
trace-driven attacks on caches were performed by [12], [16],
a breakthrough work that analyzed the two rounds of AES.
Access-driven attacks also come under the umbrella of trace-
driven attacks. Access-driven attacks are considered fine
grained because they provide specific information related
to the victim’s access to addresses of interest.

4 LEAKAGE CONTEXTS IN INTEL X-86 ARCHITEC-
TURE

In this section, we focus on information leakage from all
levels of cache in Intel processors, which can happen both
in a virtualized environment and in standalone applica-
tions. Indeed, when executing processes on modern single
and multi-core architectures, we identified three possible
leakage contexts depending on resource sharing at the
hardware-level, as shown in Figure 6. First, these leakages
can be due to multi-threading CPUs that run both victim
and attacker threads on the same physical core despite
having separate VMs. Second, the leakage can happen due
to context-switching between various running processes,

particularly when the attacker process is waiting for the
context switch in the victim’s process. Third, leakage can
also happen in a multi-core context due to shared last
level cache (LLC), which is being used to access both the
attacker’s and victim’s data/instruction.

(a) Hardware threading in single core architecture

(b) Multi-core architecture

Fig. 6: Classification of leakage contexts in Intel x86 archi-
tecture

As illustrated in Figure 6(a), the first situation concerns
processes sharing the same core (threat to L1, L2 and
LLC) through hyper-threading in Intel processors. Hyper-
threading [7] lets the threads run concurrently on a shared
core. Such threads share a number of resources and all levels
of cache, which is considered a potential and significant
threat to side-channels. For hyper-threading, it is usually

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 9

suggested to disable the hyper-threading and for simultane-
ous execution, it is suggested to enforce gang scheduling
[20] but no software solution has yet been devised for
such threats other than simply disabling them. The second
situation also concerns processes sharing the same core
(threat to L1, L2 and LLC) and is executed through context
switching [20]. Preemptive scheduling allows two different
processes to run on the same core and to share all levels
of cache. The system can thus use the scheduling to switch
the processor between processes from different VMs. During
each context switch, the attacker process can observe all the
victim’s activity.

The third situation concerns processes executed in a
multi-core context as shown in Figure 6(b). The processes are
running on different cores and are assumed to be safer since
resource sharing is limited. However, LLC is still shared
between the cores. Because of the inclusive property of
Intel architectures, sharing LLC is a major vulnerability and
there is a significant risk of information leakage because an
attacker process on one core is still able to manipulate caches
of a victim’s process on a second core. Inclusivity in Intel
architecture ensures data coherence, which leads to better
performance in multicore architectures. In order to maintain
data coherence, however, inclusive caches allow privileged
instructions to remove cache lines. Such instructions can be
used by malicious processes in a shared memory architec-
ture to remove data/instructions of the victim’s processes
from shared caches, for instance LLC. In non-inclusive
caches, this privilege does not exist. Therefore, non-inclusive
caches are less vulnerable as they do not possess privileged
instructions.

At the software layer level, an attacker is able to build
different attack techniques to exploit these execution con-
texts. These techniques are described in the following sec-
tion.

5 LEAKAGE EXPLOITATION TECHNIQUES

This section presents the state-of-the-art techniques that
are used to demonstrate cache-based attacks using leakage
channels in various cache levels as discussed in Section 2.2.

5.1 Prime+Probe Technique

LLC based cross-core attacks are usually Prime+Probe
attacks [51] that come under the classification of trace-
driven attacks, in which the attacker process gets to know
which cache sets have been used by the victim’s process.
The attacker initiates a spy program to observe the cache
contention of the victim’s process, as shown in Figure 7.
In the prime step, the attacker process fills different cache
sets with its own code (Figure 7(a)). The attacker then
goes into idle state in which it lets the victim’s program
run and execute its code (Figure 7(b)). In the probe phase,
the attacker program observes its own filled cache and
continues to execute normally. Meanwhile, the attacker
observes the time to load each set of its data that it already
placed in the cache (primed). Some of the cache sets will be
evicted by the victim from the cache and will take a long
time to fetch, which will be observed by attacker program
using latency to fetch the data. In this way, the attacker

program obtains information on addresses that are sensitive
for the victim, described in Figure 7(c).

Prime+Probe attacks are actually harder to perform in
LLC than in the L1 level of cache due to perceptibility of
processor-memory activity at LLC [25], difficult to perform
prime and probe steps for all LLC [2], [3], [4], [6], [60],
[61], [63], classifying cache sets related to the victim’s se-
curity critical program and probing resolution. Using the
Prime+Probe technique [16], [60] to perform attacks is a
common way of exploiting a contemporary set of associative
cache. This technique has been used to exploit different
levels of cache including L1-data (L1-D) cache [16], [60], L1-
instruction (L1-I) cache [87] and last level cache (LLC) [88].
Many other attacks are performed in this way [5], [14], [16],
[25], [50], [75].

5.2 Evict and Time Technique
As the name suggests, this technique aims to evict lines
along with time measurements of complete execution (as
shown in Figure 8), and is consequently classified as a
time-driven attack. In the first step, shown in Figure 8(a),
the attacker fills the cache with its own data. This step is
referred to as the prime step. In the second step, shown
in Figure 8(b), the attacker allows the victim’s program
to execute its code and access its instructions/data in the
caches. The victim’s access to memory causes the eviction of
certain cache lines that were initially primed by the attacker
as shown in Figure 8(c). In the third step, the attacker
observes the variation in the victim’s execution time, which
clearly reveals which lines were accessed (Figure 8(d)) due
to the measured time difference in load. There are many
implementations for this type of technique with potential
attack mechanisms including in [12], [16], [89].

5.3 Evict and Reload Technique
Evict and Reload is a variant of the Evict and Time technique
suggested in [15]. Evict and Reload affects the two major
steps, eviction and reloading, described in Figure 9 and
classified as trace-driven attacks. During the initialization
step, it evicts cache lines, as shown in Figure 9(a). When
the cache is evicted, the attacker lets the victim execute and
remains in the wait state, as shown in Figure 9(b). Next,
the attacker performs a reload step to measure the time of
cache lines to observe cache hits and misses (Figure 9(c)).
This variation in time helps the attacker obtain knowledge
of the victim’s access to specific addresses.

5.4 Flush+Reload Technique
Flush+Reload [5] is a different mechanism from Prime-
Probe and Evict and Time, as shown in Figure 10 and
falls under the classification of trace-driven attacks because
it relies on the presence of page sharing, as shown in
Figure 10(a). Due to inclusive caches, Intel x86 architecture
provides privileged instructions, e.g. the clflush instruction,
on how to flush the memory lines from all cache levels,
including the last level cache (LLC), which proves to be
a major threat and core advantage for attacks using the
Flush+Reload technique. In the first phase, the attacker

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 10

(a) Attacker’s Prime phase (b) Victim’s memory accesses (c) Attacker’s Probe phase

Fig. 7: Working principal of Prime+Probe

(a) Attacker’s cache prime phase (b) Victim’s memory access (c) Attacker’s evicted cache lines (d) Attacker measures timing of
its primed cache lines

Fig. 8: Working principal of Evict and Time

(a) Eviction of cache (b) Victim’s execution (c) Reload to measure time

Fig. 9: Working principal of Evict and Reload

flushes (evicts a shared cache line) using clflush instruction
(Figure 10(b)). After flushing the cache line, the attacker
remains in the idle state and allows the victim to execute
and access its data/instructions from cache as shown in
Figure 10(c). In the next phase, called reload, it observes
the timing information by reloading the shared cache line as
shown in Figure 10(d). The timing information reveals the
interest of the victim’s program. Stealth reload indicates that
this cache line was affected by the victim and slow reload
shows that it was not. Contemporary Intel x86 architectures
can use the Flush+Reload mechanism to measure the time of
clflush instruction. The advantage of this technique is that
the attacker is able to aim at a precise cache line [5], [15],
[18], [17], [49], [11], [74], [66], [90], [91], [92] instead of whole

cache set as described in Prime+Probe technique.

5.5 Flush+Flush Technique
Flush+Flush [14], is a new Flush+Reload technique and is
classified as a trace-driven attack. It measures deviation
in the execution timing of the clflush instruction in Intel
x86 architecture, as shown in Figure 11. In this technique,
the victim and the attacker share the same address space
(Figure 11(a)). Flush+Flush relies only on the execution time
of flushing to check if the data are cached or not. In the first
step, the attacker flushes the victim’s cache line as shown in
Figure 11(b)). After flushing, the attacker allows the victim’s
process to execute and access its data/instructions as shown
in Figure 11(c). In the next step, the attacker flushes the same

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 11

(a) Shared address space of Vic-
tim/Attacker

(b) Attacker’s cache flushing (c) Victim’s memory accesses (d) Attacker’s reload

Fig. 10: Working principal of Flush+Reload

(a) Shared address space of Vic-
tim/Attacker

(b) Attacker’s cache flushing (c) Victim’s memory accesses (d) Attacker’s re-flushing

Fig. 11: Working principal of Flush+Flush

cache address again and measures the timing variation due
to the presence or absence of the victim’s data/instructions
as shown in Figure 11(d). Unlike the reload phase in the
Flush+Reload attack, Flush+Flush does not generate exces-
sive memory read operations in the second step, making it
a stealth type of technique. It is considered stealthy because
it does not access any memory and the rate of cache misses
is reduced due to constant flushing. The attacker process
in this technique is undetectable based on the rate of cache
hits. Flush+Flush runs at a higher frequency which is why
it is considered faster than any existing attack techniques.
This technique is considered noisier than Flush+Reload and
Prime+Probe attacks. It has a little higher error rate than
Flush+Reload and Prime+Probe attacks [5], [14], [38].

5.6 Prime+Abort Technique

Prime+Abort [47] is a stronger mechanism than all the above
techniques in accuracy and efficiency and is classified as
a trace-driven attack. Existing attack techniques involve
three steps: initialization, waiting and measurement. Unlike
Prime+Probe, Flush+Reload, Flush+Flush, Evict and Time,
Evict and Reload techniques, this technique does not rely on
setting a threshold for timing and determining an eviction
set to precisely measure the timing information as shown
in Figure 12. Prime+Abort takes advantage of Intel TSX
hardware which is widely used in server and consumer

processors. In this technique, the attacker primes the cache
with its own working set and waits for the victim to operate
with no initial threshold calculation and determining evic-
tion set (which is a prior step in other techniques) as shown
in Figure 12(a). Whenever the victim executes, it evicts an
attacker’s cache line that was primed (Figure 12(b)). This
flag leads the system to activate the abort mechanism. In
this way, the attacker does not need the timing information.
The attacker will always be able to know whenever victim
has accessed the cache by the abort mechanism (Figure
12(c)). To date, this technique has been applied as a proof-of-
concept for Prime+Probe and Flush+Reload techniques and
is considered to be effective in its variants of Evict and Time,
Evict and Reload and Flush+Flush because they all monitor
timing. This technique takes advantage of the hardware
properties of Intel x86-64 processors. Note that Prime+Abort
does not fall into the category of timing-attacks because
it does not depend on the timing measurements. For this
reason, this attack is not directly comparable with other
techniques based on timing.

5.7 Discussion

After describing attack exploitation channels, classification
of attacks, and attack techniques, we conclude this section
with a review of all the attacks published in the literature
with respect to their algorithmic implementations, level

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 12

(a) Attacker’s cache Prime phase (b) Victim’s memory access (c) Attacker’s abort phase on vic-
tim’s detection

Fig. 12: Working principal of Prime+Abort
TABLE 3: Summary of State-of-the-Art Trace-driven Cache-based Attacks

No. Leakage
Exploitation
Techniques

Exploitation Features of the Attack Target Level of
Cache

Cryptographic
Implementation

Year of Publica-
tion

1

Flush+Reload

Inclusive Cache, Page Sharing [18], [25], [11] LLC RSA, AES 2014, 2015, 2011

Shared Libraries [66], [90], [91] LLC ECDSA 2015, 2016, 2014

Shared Libraries [74] LLC DSA 2016

Memory Mapping [11] LLC AES 2011

Page De-duplication [18] LLC AES 2012

2 Flush+Flush Stealth Flushing, Inclusive Cache [14] LLC AES 2016

3

Prime+Probe

Hyper threading, Cache bank conflicts [7] L1-D RSA 2017

Symmetric Multi-threading [12], [16], [60] L1-D RSA, AES 2010, 2006, 2005

Addresses in Look-up Tables [12], [16] L1-D AES 2010, 2006

Preemption of RSA in Minute Intervals [62] L1-I RSA 2007

Spy Process Entry in RSA as a routine [63] L1-I RSA 2010

Symmetric Multi-threading [61] L1-D ECDSA 2009

Symmetric Multi-threading [63] L1-I DSA 2010

Interprocessor Interrupts [6] L1-I ElGamal 2012

Huge Page [25], [92] LLC RSA, ElGamal 2015, 2016

Huge Page [65] LLC AES 2015

Inclusive Cache, Large page Mappings [25] LLC RSA, ElGamal 2015

Collision Entropy [93], Right-to-Left Sliding
Window Exponentiation [94]

LLC RSA 2017

Branch Prediction, Exploiting Average time to
read Instruction from Memory [62], [87]

L1-I AES 2007, 2008

Preemption in Short Intervals [86] L1-D AES 2006

4 Prime+Abort No timing dependency needed to attack, Intel
TSX Hardware [47]

LLC AES 2017

5
Evict+Time

Virtual and Physical Addresses of lookup tables
[12], [16]

L1-D AES 2010, 2006

Addresses in Look-up Tables [12], [16] L1-D AES 2010, 2006

6 Evict+Reload Shared Libraries, Key-stroking [15] LLC AES 2015

of cache (which is exploited) and technique in which they
fall as described in Table 3. This table identifies recent
attacks and provides an exhaustive taxonomy of techniques
published up to 2017.

It is worth noting that the six techniques described
in this section can be used in the three leakage contexts

described in Section 4. However, their efficiency is affected
by the model in which they are actually implemented. For
instance, Evict and Time only targets L1 caches because it
is sensitive to noise. Flush+Reload and Flush+Flush, which
rely on the clflush instruction, are particularly efficient in a
multi-core model when the attacker is able to share memory
with the victim’s process. That is why these attacks have

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 13

been used for cross-VM attacks through the LLC sharing
between virtual machines. Finally, Prime+Probe and Evict
and Reload are the most generic techniques that can be used
efficiently in the three leakage contexts described in Section
4.
Table 3 lists the implementation vulnerabilities of the cryp-
tographic systems used. For instance, different versions of
RSA have been developed for secure cryptographic imple-
mentations, but they have all been exploited in the past.
In this paper, we focus on implementations of RSA in past
decade (2007-2018) and discuss why they were vulnerable
when deployed on hardware. Some countermeasures have
been proposed against these attacks. We analyze the effi-
ciency of these countermeasures at their respective threat
level in these implementations. We discuss the weakness
of different sets of operations that make it easier for the
attackers to exploit these features. The aim of the state-of-the
art in Table 3 is thus to stress one direction of trend in type
of cryptographic implementation and to discuss it in detail.
In later sections, we identify vulnerabilities that have been
exploited in RSA implementations and analyze whether the
published countermeasures are able to completely stop such
leakages.

6 RSA PUBLIC KEY CRYPTOSYSTEM IMPLEMEN-
TATIONS

The scope of this survey is limited to state-of-the-art attacks,
detection and mitigation techniques that target RSA cryp-
tosystems. This section reviews the fundamental concepts
of RSA to facilitate the reading of the rest of the paper.
RSA (Rivest, Shamir and Adleman) is an extensively used
public key cryptosystem that ensures encryption and digital
signature [95]. RSA proposes a specific mechanism for the
encryption and decryption of messages. The use of RSA as
public key encryption is described below.

• Choose two large prime numbers p and q of roughly
the same bit length
Compute n = pq and Compute ϕ = (p− 1)(q − 1)

• Select a random component as exponent:
e = 65, 537, such as 1 < e < ϕ, gcd(e, ϕ) = 1,
ed ≡ 1(modϕ)

• Estimate the private exponent:
d ≡ e−1 (mod(p− 1)(q − 1))

• Public key: (n, e)
• Private key: (p, q, d)

The components e and d are called encryption exponent
and decryption exponent, respectively, n is the modulus. To
encrypt the message m, the sender undertakes the following
steps:

• Displays the message m in interval [0, n− 1]
• Encryption Function: E(m) = me mod n

To retrieve the message m in plain text or to decipher the
message c, the receiver of message computes:

• Decryption Function: D(c) = cd mod n

RSA-CRT (Chinese Remainder Theorem) [7], is the
fastest optimized decryption mechanism proposed by RSA.
It actually splits the private key into two parts to perform

an optimized and fast decryption. So the secret key d is
split into parts dp = d mod (p− 1) and dq = d mod (q − 1),
two sections of the message can be computed, message m
can be computed as, mp = cdp mod p and mq = cdq mod q.
The message m can be computed from mp and mq using
Garner’s formula, which states:

h = (mp −mq)(q
−1 mod p) mod p

m = mq + hq

For some attacks, it is possible to achieve more than 50%
of bits, and other bits are recovered just by chinese remain-
der theorem coefficients, dp and dq . To have the full knowl-
edge of key and recover it, Heninger and Sacham algorithm
[96] and [64] was used in some attacks, which provides us
with following modular multipliers, KpKqN mod e. While
Kp and Kq can be used to derive the values of dp and dq
of RSA-CRT. The important operation achieved during RSA
deciphering is the modular exponentiation which calculates
ab mod k, for some private or secret exponent b and several
implementations have been proposed in the literature to
achieve it. As an encryption standard, RSA uses different
exponentiation algorithms such as squaring and multipli-
cation exponentiation [97], sliding window exponentiation
[60], fixed window exponentiation [7], left to right and right
to left sliding window exponentiation [94] in combination
with GnuPG and diverse versions of Libcrypt libraries. All
these algorithms offer different degrees of confidentiality in
implementation. In Section 4, we explained the leakage con-
text that helps exploit different algorithmic implementations
of RSA with the latest libraries. The following sections detail
the implementation of each algorithm and the exploitation
of leakage for a better understanding of attacks (Section 7)
and countermeasures that enhance confidentiality (Section
8).

7 CACHE-BASED SCAS ON RSA
This section provides a detailed overview of cache-based
side-channel attacks that target various algorithmic imple-
mentations of RSA as well as the underlying caching hard-
ware. First, Table 4, provides a systematic categorization and
we describe the attacks in Section 7.1, which is followed by
a description of various RSA implementations and attacks
that target such implementations in Sections 7.3–7.6. We
also discuss the effectiveness of specific attacks on specific
implementations.

7.1 Systematic Categorization

This section presents known cache-based side-channel at-
tacks on different implementations of RSA. Our systematic
categorization of these SCAs is based on multiple param-
eters. Table 3 provides a first categorization based on the
way the attacks target underlying hardware. The motiva-
tion behind this classification is that difference SCAs target
different cache levels and therefore use different exploita-
tion features of caching hardware to mount an attack. Our
extensive study of cache SCAs (Sections 2) revealed that,
to date, no single cache SCA is capable of exploiting the
entire cache hierarchy for information leakage. Table 3 thus

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 14

provides an essential categorization based on the type of
CSCA, leakage exploitation technique, target cache level
and the features of caching hardware being exploited by
these attacks. The same table lists cryptosystems currently
targeted by the attacks along with their publication date.

The classification provided in Table 4, categorizes attacks
specific to the algorithmic implementations of RSA. This
categorization divides attacks into five major categories with
attributes such as the type of information leakage channel,
target level of cache, the cache feature(s) exploited, imple-
mentation platform, complexity of attack in terms of the en-
cryption required to mount a successful attack, bit retrieval
rate and the underlying leakage exploitation techniques
used against each algorithmic implementation of RSA. Table
4 also details the leakage context to demonstrate the threat
to the caching hardware used. The categorization in Table
4 provides the reader with specific knowledge of potential
attack surface against the selected RSA implementation,
this may help select the appropriate mitigation techniques.
When discussing mitigation techniques in Section 8, we
highlight the techniques that are effective against the attacks
included here.

7.2 Attacks Specific to Algorithmic Implementations of
RSA
In this section, we present individual RSA algorithmic im-
plementations, their vulnerabilities and the attacks that ex-
ploit these specific vulnerabilities. We analyze the strengths
and weaknesses of the attacks with respect to specific
implementations and the effectiveness of countermeasures
designed by authors to counter the attacks as a quick patch.
Details on countermeasures are given in Section 8.

7.3 Square and Multiply Modular Exponentiation
Algorithm 1 shows the implementation of RSA’s public key
square and multiply algorithm for modular exponentiation.
The algorithm illustrates the different operations performed
by RSA to calculate modular exponentiation while encrypt-
ing a (victim’s) process. When RSA is applied to the vic-
tim’s process, it performs two major Square and Multiply
operations of, each followed by a Modulus/Reduction in this
implementation.

Algorithm 1 Square and Multiply Exponentiation [5]

1: Function exponent(b, d,m)
2: x← 1
3: for i← |d| − 1 downto 0 do
4: x← x2

5: x = x mod m
6: if (di = 1) then
7: x← xb
8: x← x mod m
9: end if

10: done
11: return x
12: end for

There are two possible sequences of operations. The
first sequence is when a square is trailed by a modu-
lus/reduction that is again followed by a multiply trailed

by modulus/reduction. In this case, the computation corre-
sponds to a bit ”1” (lines 3 − 9). The second operation se-
quence is when a square is trailed by a modulus/reduction
that is again followed by a square trailed by a modu-
lus/reduction. In this case the computation corresponds to a
bit ”0” (lines 6− 9). The extraction of a pattern of exponents
also reveals the pattern of secret key/operations.

Based on this understanding, we present an attack on
the RSA square and multiply algorithm for modular expo-
nentiation implementation. Flush+Reload is one of the most
popular attacks on the last level cache with a high resolution
as demonstrated in [5]. It focuses on cross-core VMs, where
one VM acts as an attacker and spies on the information of
another victim VM. The attacker relies on page sharing to
trace the instructions performed by the victim. Indeed, the
attacker process flushes (or reloads) specific memory lines
corresponding to instructions executed for square, multiply
and modulus/reduction operations. For each monitored
instruction, if a cache hit is detected during the reload
step, the attacker considers that the instruction has been
executed by the victim. Based on the observed sequence of
instructions, the attacker can retrieve most of the exponent
bits. There are two characteristics of this attack that make it
significantly more effective than previous microarchitectural
attacks. First, it can identify access to specific memory lines
instead of larger cache sets as it has a higher resolution.
Second, it focuses on last level cache, which is farthest
of all cores and is shared by multiple cores (all levels).
Attacking LLC is common in many other attacks [2], [4],
but no attack has this level of resolution, frequency, and the
fine granularity required for cryptanalysis.

Flush+Reload is an attack that depends to a great extent
on memory sharing to achieve high resolution. Virtual-
ization vendors do not suggest sharing between different
VMs and nor does any IaaS provider ignore this fact either
[13]. It is strongly recommended to perform constant-time
implementations for such attacks. Memory locations and
sequences of operations that are detectable in such attacks
cannot be further detected by constant-time implementa-
tions due to having no branching operations. In [5], an
attack was demonstrated on the RSA implementation in
GnuPG version 1.4.13. The authors demonstrated a one-
round decryption attack, which was sufficiently precise and
strong to retrieve an average of almost 96.7% of the bits of
the secret key.

7.4 Fixed Window Exponentiation

CacheBleed [7], is an attack on scatter-gather technique that
prevents cache-based timing attacks. After the exploitation
of square and multiply exponentiation [5], to accomplish
the modular exponentiation required for execution of RSA
secret key operations, OpenSSL 0.9.7c used sliding window
exponentiation but it was also attacked [25], as described in
Section 7.5. Implementing sliding window exponentiation
clearly showed that each multiplier deals with a different
set of cache lines and it is easy to identify the retrieved
multipliers and to recover the secret key [16], [19]. Fixed
window exponentiation was proposed to provide a patch
for sliding window exponentiation [60], [96], it depends
on scatter-gather implementation [98]. In scatter-gather, Intel

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 15

TABLE 4: Timing Channel Attacks in RSA due to Cache contention: Detailed Review

List of Implementations in Attacks
Attributes Square & Mul-

tiply Modular
Exponentiation

Fixed Window
Exponentiation

Sliding Window Exponentiation Left-to-Right
Sliding Window
Exponentiation

[5] [7] [25] [62] [94]
Year 2014 2017 2015 2007 2017
Channel Persistent-

Channel
Transient-
Channel

Persistent-
Channel

Persistent-
Channel

Persistent-
Channel

Target Level of
Cache

LLC L1-D LLC L1-I LLC

Target
cryptosystem

RSA
(GnuPG 1.4.13)

RSA (OpenSSL
1.0.2f) with CRT
Heninger-
Shacham Algo-
rithm

RSA, ElGa-
mal (GnuPG
1.4.13, 1.4.18)

RSA-
1024(OpenSSL-
0.9.8d)

RSA1024, 2048
(Libcrypt 1.7.6)
with SWE

Exploitation
Features by
Attack

Inclusive Cache,
Page Sharing,
Page De-
duplication

Cache Bank
Conflicts,
Scatter Gather
Technique,
Hyper-threading

Inclusive Cache,
Large Page
Mappings

Microarchitectural
Attacks,
Branch Predic-
tion,
Exploiting
Average time to
read Instruction
from Memory

Collision Entropy
[93],
Right-to-Left
Sliding Window
Exponentiation

Implementation
Platform

Intel core i5-3470
Ivy Bridge, Intel
Xeon E5-2430,
VMware, KVM

Intel Xeon E5-
2430, Sandy
Bridge Processor

MC, Dell Server
Platform-R720,
HP Elite 8300
(Desktop)

HP Elite 8300
with Intel i5-3470

MC, HP Elite
8300 with Intel
i5-3470

Complexity
(No. of
encryptions
required for
successful
attack)

Single decryption After observ-
ing 16,000
decryptions:
1st Part- 60%
bits extraction of
4096-bit secret
key, 2nd Part-
Remaining 40%
extraction of
4096-bits secret
key

1-decryption for
S & ME at RSA,
Elgamal (GnuPG
1.4.13, 2-step
decryption for S
& ME at ElGamal
(GnuPG 1.4.18)

single decryption:
scattered 200 bits
of per 512-bits
key

single encryption
for both key of
1024 and 2048-
bits: less than
40% for w = 4
and less than 33%
for w = 5

Bit Retrieval 96.7% of 1024-bit
key

Full 4096-bit Key Full 3072-bit Key 39% of 1024-bit
Key

Full 1024-bit Key,
13% of 2048-bit
Key

Leakage
Exploitation
Technique

Flush+Reload Prime+Probe Prime+Probe Prime+Probe Flush+Reload

Leakage
Context

Multi-core HW-Threading Multi-core HW-Threading Multi-core

proposed a countermeasure that changed the memory lay-
out of precomputed multipliers that scatters the multipliers
in memory to make sure that similar cache lines will be
accessed regardless of the multiplier used [99] and the
gather process accesses all cache lines with the use of bit
mask pattern to obtain those that contain the fragment of
the required multiplier, as explained in Algorithm 2. The
main operation performed by OpenSSL during encryption
or decryption (using RSA) is modular exponentiation. To
calculate this exponentiation, OpenSSL frequently does five
squaring operations followed by one multiplication, with
reduce operations between each. There are thus 32 possibili-
ties in the multiplications for a multiplier candidate. Knowl-
edge of the multiplier in the multiplication in fact discloses
the private exponent and the key. In the past, OpenSSL and
GnuPG traced the multipliers by observing the cache lines
in which multipliers are located. To protect the multipliers
against such attacks, several multipliers are kept in each

cache line by making sure that all cache lines are used in
each multiplication. Hence, we know that multipliers are
intelligently placed in the cache banks.

This technique describes the fact that scatter-gather
technique is not time constant and it is exploited in
CacheBleed [7]. CacheBleed exploits the cache bank
conflicts on Sandy Bridge microarchitecture. Cache bank
conflicts happen when many requests are made in parallel
to the same cache bank and in the case of conflict, some of
the clashed requests are postponed. The attacker recognizes
the timing information at which the victim accesses its
data in observed cache bank by determining the delays
caused by clashes on the cache bank. In the case of attack,
it is considered that victim and attacker are running in
parallel hyper-threads of the same core of processor. The
victim and the attacker share the same L1-Data cache.
The L1-Data cache is divided into multiple banks and
banks cannot handle multiple requests at the same time.

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 16

So the attacker takes advantage of this situation and
launches a large number of load accesses to the cache
bank. Meanwhile, the attacker observes the time needed
to accomplish these accesses. If during this process, the
victim also accesses the same cache bank, there will
be a clash between the victim’s and attacker’s accesses
to the same cache bank which causes the access to be
suspended. Therefore, it means that if victim accesses the
same cache bank, it will take longer for the attack to process.

Past studies [12], [16], [19], [100], mentioned that cache
bank conflicts cause timing variations and already warned
that such timing-based channels may leak low address bit
information. The fragments of all multipliers are stored
in prefixed offsets of each cache line. All the scatter-gather
implementations contain memory accesses that rely on used
multiplier and the secret key. Only the last three bits of
the multiplier are encoded as addresses, while the other
two bits are considered as the index of cache line within
the group of cache lines containing the fragment. It was
considered that secret-dependent accesses are at a finer level
than cache line granularity, so the scatter-gather approach
was considered secure toward SCAs. But cache bandwidth
is also a bottleneck in Intel processors, due to which, Intel
introduced multiple banks [101]. Delays due to cache bank
conflicts have also been documented for many processor
versions [102]. CacheBleed takes advantage of causing many
accesses to the same cache bank. The memory layout is
designed in such a way that fair scheduling is applied to
respond to each process request. Thus, the attacker takes
advantage of causing these conflicts at the cache bank to
observe timing variations. Attacks have demonstrated that
the memory layout of Intel Sandy Bridge processors was
designed to scatter multipliers intelligently but by causing
cache bank conflicts, it is still possible to leak information
of multipliers. This type of vulnerability works on Sandy
Bridge, Nehalem and Core 2 processors but does not work
on Intel Haswell processors, where, apparently cache bank
conflicts are no longer an issue.
scatter-gather has no secret-dependent accesses to cache
lines, but it does have secret-dependent access to the cache
bank. So, knowledge of lower bits makes it easy to observe
the number of accesses to the cache bank and to visualize
the corresponding cache banks with bins in the memory
allocation. For example, having this knowledge of lower
bits, we can understand that lower bits 000 correspond to
multipliers 0, 8, 16, 24 with bin 0 that span cache banks
0 and 1. 001 correspond to multipliers 1, 9, 17, 25 and
bin 1 that span cache banks 2 and 3. This was the first
round of attack that explored the 3 least significant bits of
attack by extracting almost 60% of the key. This information
explained that three least significant bits are enough to
explore 100% of the multipliers and out of 32 multipliers,
we have reduced the knowledge of multipliers to four.
By having the knowledge of three least significant bits of
every window of five bits for Chinese remainder theorem
coefficient dp and dq , we used Heninger and Shacham [64],
[96] algorithm. It extracts all information of RSA secret key
which will give us kpkqN mod e mode and we can deduce
the information on dp and dq . Later, using the branch and
prune algorithm [96], we extract exact multiplier and the

complete key (the second round of complete key extrac-
tion). CacheBleed proposes some mitigation techniques for
this attack e.g. disabling hyper-threading [46], [48] (Table
5, Section 8). Another proposed solution is increasing the
bandwidth of caches to reduce the contention in cache banks
(Table 5, Section 8).

Algorithm 2 Fixed Window Exponentiation [7]

input : window size w, base a, modulus k, n-bit exponent
b =

∑dn/we
i=0 bi · 2wi

output : ab mod k

1: //Precomputation
2: a0 ← 1
3: for j = 1, ..., 2w − 1 do
4: aj = aj−1 . a mod k
5: end for
6:
7: //Exponentiation
8: r ← 1
9: for i = dn/we − 1, ..., 0 do

10: for j = 1, ..., w do
11: r ← r2 mod k
12: end for
13: r ← r · abi mod k
14: end for
15: return r

7.5 Sliding Window Exponentiation
Sliding window exponentiation is a countermeasure patch
provided by Intel in response to Flush+Reload attack on
square and multiply algorithm for modular reduction. As
shown in Algorithm 3, sliding window exponentiation pre-
computes the set of multipliers and utilizes the multiply
pattern to measure squares. Multiplication is used to point
the multiply routines that include square and real multiply
operation in itself. So, we conclude that sliding window
exponentiation performs the necessary number of multipli-
cations and precomputes multipliers for better performance
and stores them in tables that can be indexed at any time.
The algorithmic implementation images the exponent from
the most significant bit to the least significant bit and for
each digit, intermediate results are squared. Whenever, it
reaches the least significant bit of a non-zero window, a
multiplication occurs. Therefore, sliding window exponenti-
ation still leaks the location of non-zero multipliers that can
be noted between square and multipy operations. Further-
more, the number of squarings between constant multipliers
can leak the value of some zero bits [60]. The attacker can
distinguish the location and value of the non-zero multiplier
used needed to explore the exponent.

The authors in [25] present the first Prime+Probe type of
attack on LLC that targets both the square and multiply
modular exponentiation and sliding window exponentia-
tion on different versions of GnuPG (1.4.13, 1.4.18). The im-
plementation of sliding window exponentiation with other
cryptographic implementations such as Elgamal are also
tackled in this paper with version1.4.18 of GnuPG [25]. Two
basic techniques have been demonstrated in this attack; 1)

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 17

probing one specific cache set with no knowledge of virtual
address mapping because it is hard for attackers to probe all
LLC as this requires many more probe cycles, and 2) use of
temporal access patterns instead of traditional spatial access
patterns to classify the victim’s critical accesses.

There are certain challenges to exploiting the attack
on SWE (GnuPG 1.4.18), these include some precomputed
multipliers that are called dynamically and we do not
know to which cache set they are allocated because they
are sparse and irregular, making it difficult to distinguish
squares from multiplications. To do so, we need to find
the multiplication operation in the same way as the
square operations were found in the previous discussion
(exploiting the square and multiply algorithm for modular
exponentiation, Section 7.3). In the trace execution, we will
have all the multipliers, but they do not filter the exact
location of every multiplication.

One property of multipliers is that the multiplier access
pattern repeats itself across multiplications. The means that
if a specific multiplier is used in the third multiplication,
it will always be used in the third multiplication. Thus,
we know that there is a temporal access pattern we need
to discover. This can be achieved by identifying enough
patterns that can cluster similar properties (repeating
patterns). By collecting a long trace with clustering
algorithm, it is possible to understand the pattern of the
multiplication line and arbitrary cache sets, i.e., for the
multiplication set to know when multiplication is taking
place. This method makes it possible to recover all the
multipliers and with all the multipliers we have knowledge
of exactly eight precomputed multipliers. This attack has
two rounds, in the first round it collects the traces and in
second round it computes the multipliers by clustering.

Certain mitigation techniques are proposed for this type
of attack like fixing GnuPG and writing a sensitive code
for exponent blinding. Writing a constant-time code with-
out branching conditions and secret memory dependent
accesses has also been suggested. This paper proposes fixed
window exponentiation as a countermeasure against such
attacks but it has also been tested and some leakage of
information occurred proving that it is not a constant-time
implementation (detailed in Section 8.5).

Author in [62], has introduced the Instruction-cache
(or I-cache) as another source of side-channel attack. He
experimentally verified leakage of execution flow through
I-cache by targeting the Sliding Window Exponentiation
implementation of RSA-1024 as implemented in OpenSSL
(version 0.9.8d). This I-cache attack is based on the con-
cept of executing a spy process, which keeps track of the
changes in the state of interested I-cache lines of level-1
during the execution of a cipher process. Attacker observes
the changes in state of I-cache by passing through three
phases. First, attacker initializes the predetermine state of
particular Instruction-cache lines with dummy instructions
by prefetching. Then let the cipher program to execute for a
short time, which, depending on execution flow of cipher
may replace the dummy instruction from I-cache. Lastly,
spy observes the existence of same dummy instructions
in previously loaded I-cache lines by measuring execution

Algorithm 3 Sliding Window Exponentiation [25]

input : window size S, base b, modulo m, n-bit exponent
e represented as n windows wi of length L(wi)
output : be mod m

1: //Precomputation
2: g[0]← b mod m
3: s←MULT (g[0], g[0]) mod m
4: for j from 1 to 2s−1 do
5: g[j]←MULT (g[j − 1], s) mod m
6: end for
7:
8: //Exponentiation
9: r ← 1

10: for i from n downto 1 do
11: for j from 1 to L(wi) do
12: r ←MULT (r, r) modm
13: end for
14: if wi 6= 0 then
15: r ←MULT (r, g[(wi − 1)/2]) mod m
16: end if
17: end for
18: return r

time. That re-execution would take more time if dummy
instructions were evicted by the cipher during execution,
which indicated the cache line were modified by the cipher.
On the other hand, re-execution takes short time if cipher
did not modified the cache line during execution. This I-
cache access information directly indicates the execution
flow of RSA that relates with the key bits (secret informa-
tion). Author remained unsuccessful in retrieving full key
because of the encoding in SWE and reported the extraction
of 200 ”scattered” key bits. Also, author did not relate the
extracted execution flow with key bits. This attack presented
experimental results in the form of execution flow of RSA
captured while execution of single decryption round of RSA.

7.6 Right-to-Left and Left-to-Right Sliding Window Ex-
ponentiation

Sliding window exponentiation (SWE) is an efficient
implementation of RSA shown in Algorithm 4. Algorithm
4 consists of a precomputation step (lines 3-5) and an
exponentiation step (lines 8-21). Odd multiples of base are
computed once in the computation step, and are then used
repeatedly in the exponentiation step. In the exponentiation
step, first key is divided into zero and non-zero groups (lines
9-14) and the exponent is then computed by squaring (line
16) and multiplication (line 18) based on zero and non-zero
groups respectively. The non-zero groups are created such
that each group can be represented in odd digits, so that
the odd multiples computed in the precomputation step can
be used. RSA using sliding window exponentiation encodes
the key to compute the exponent efficiently, and it also limits
the leakage of key bits from the cache. The encoded key,
which is a sequence of zero and non-zero digits, defines
the squaring and multiplication rather than the binary key,
as discussed in Section 7.3. Hence, the sequence of square-
and-multiply access patterns extracted using side-channel

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 18

Algorithm 4 Left-to-Right Sliding Window Modular Expo-
nentiation [94]

input : Three integers b, d and p where dn......d1 is the
binary representation of d.
output : a ≡ bd(modp)

1: b1 ← b, b2 ← b, a← 1, z ← 0
2: //Precomputation
3: for i← 1 to 2w−1 do
4: b2i+1 ← b2i−1 · b2 mod p
5: end for
6: i← n
7: //Exponentiation
8: while i from n downto 1 do
9: z ← z + COUNT LEADING ZEROS(di....d1)

10: i← i− z
11: l← min(i, w)
12: u← di....di−l+1

13: t← COUNT TRAILING ZEROS(u)
14: u← SHIFT RIGHT(u, t)
15: for j ← 1 to z + l − 1 do
16: a← a · a mod p
17: end for
18: a← bu · a mod p
19: i← i− l
20: z ← t
21: end while
22: return a

attacks represents the zero and non-zero digits without the
value of non-zero digits, which hide much of the informa-
tion about the location and number of bits ”1” in the key.
Because of encoding, the attack presented in [62] failed to
retrieve the full key and reported the extraction of only 200
”scattered” key bits per 512 bits of key.

There are two approaches to encode keys based on the
direction of scanning key bits: 1) Left-to-right encoding
approach and 2) right-to-left encoding approach. RSA using
SWE typically encodes the key by scanning starting from the
most significant bit is called the left-to-right approach. This
approach represents the key in a sequence of odd decimal
digits ranging from 0 to 2w, where w is the window size.
To generate odd decimal digits, the left-to-right approach
creates groups that start and end with a bit ”1” of at most
window size. It first tries to create a group of maximum
size w but if it cannot find bit ”1” that is w bits apart from
the starting bit, it reduces the size of group so it finds bit
”1” at the end. For example, let key = key = 10100110
and window size=3, then the left-to-right approach creates
a group of keys such as 101 00 11 0 and yields decimal digit
representation of key as 005 00 03 0. Algorithm 4 is a left-
to-right sliding window exponentiation that creates a group
in each iteration of the loop by removing the leading zeros
to find a starting bit ”1” and trailing zeros to find an ending
bit ”1”. The algorithm then executes a squaring operation
on each zero digit and both square and multiply operations
on non-zero digits.

In cache-based side-channel attacks, the square and
multiply pattern extracted by the attack indicates sequences

of zero and non-zero digits in the encoded key without
the non-zero digits. Because the value of non-zero digits
is not known, the attacker has no information about the
number of bits ”1” or the exact location of bits ”1” in
each group. Right-to-left is another encoding approach
used in the sliding window exponentiation method. This
approach starts scanning the binary representation of the
key beginning from the least significant bit and groups the
key bits of fixed window size that satisfy the two following
conditions: 1) each group contains at least one bit ”1” and 2)
each group starts (right most bit) with bit ”1”. The right-to-
left approach then converts each group of binary bits into
its decimal representation. For example, let key = 10100110
and window size=3, then the right-to-left approach creates
a key group such as 101 0 011 0 and yields a decimal
digit representation of key as 005 0 003 0. Lastly, to
compute the exponent, it again scans the encoded key and
executes square and multiply operations based on zero and
non-zero digits: only square operation on each zero digit;
both square and multiply operations on each non-zero digit.
After understanding the working principle of left-to-right
and right-to-left SWE, the weakness of both algorithms is
exploited in [94] which states that both implementations
help mount an attack and that both implementations are
vulnerable, but left-to-right SWE is more vulnerable than
right-to-left SWE; the paper thus provides a larger window
to compute maximum exponent bits of a secret key. The
author in [94] demonstrated vulnerability of the left-to-right
sliding window exponentiation using probabilistic theory
and showed that the left-to-right approach leaks about 18%
more key bits than the right-to-left approach.

Trailing Zeros: The left-to-right encoding algorithm tries
to group the key bits such that odd non-zero digits are
created. To do so, the algorithm creates a group that starts
and ends with bit ”1” of the key. In addition, the group
cannot be bigger than the size of the window.

Leading One: The case of shorter window size in which
left-to-right encoding creates a group with no trailing zeros.
This yields two immediately consecutive multiplications
in the sequence of squaring-and-multiplication pattern
extracted using cache-based side-channel attacks.

Leading Zeros: The encoded key bits between two
consecutive groups are vulnerable because they are
always”0” bits. In the square and multiply pattern,
the attacker reveals ”0” bits if it finds two consecutive
multiplications that are more than the window size apart.
This type of scenario exists in both left-to-right and right-
to-left encoding of key bits.

The attack in [94] comprises the following three steps:
first, the attack extracts the square and multiply access
sequence from I-cache using a Flush+Reload attack. The
attack then applies recovery rules to reveal trailing zeros,
leading one and leading zeros in the key. This results in the
recovery of key bits that are less than or equal to the partial
key. Lastly, if previous phases yield more than or equal to
50% of key bits, the attack applies the modified-Heninger-
Shacham algorithm to recover the entire key. Some solu-

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 19

tions are proposed to counter the attack, such as restricting
flushing property (Section 8.3.5) or reducing clock and noise
resolutions (Section 8.2).

7.7 Discussion

After being subjected to many attacks, RSA is in constant
danger and a solution in GnuPG is highly desirable because
it does not address the issue of maintaining isolation and
preventing information leakages. For the moment, hardware
developers’ efforts have targeted efficient utilization, main-
taining coherency and optimized cache architecture [38],
[103]. Consequently, providing further hardware solutions
is not possible for the moment. Instead software-based
countermeasures are urgently required that are quick and
efficient solutions to the problem of information leakage,
which compromises the confidentiality and integrity of sys-
tems which is also a concern in this paper.

8 COUNTERMEASURE TECHNIQUES

There has been extensive research work on countermea-
sure techniques to mitigate cache-based side-channel at-
tacks. These countermeasure techniques broadly fit three
categories; mitigation techniques based on new hardware
design [21], [104], [105], [106], application-specific (software)
mitigation techniques [12], [16], [107], and compiler-based
mitigation techniques [108]. Table 5 provides a detailed
overview of software and hardware mitigation techniques
that have been proposed so far with respect to cache hier-
archy. The table also includes architectural and application-
specific features of these techniques. The countermeasures
in Table 5 are categorized according to different types and
levels of cache along with their description. Unfortunately,
there are not many general hardware-based mitigation tech-
niques for classical systems that can be adopted for main-
stream processors. These mitigation techniques have a huge
performance overhead rendering their practical adaptation
nearly impossible [59], [20].

In this section, we discuss several software mitigation
techniques proposed over the last decade or so. Since these
mitigation techniques often exploit architecture-specific or
application-specific features, as discussed in Section 7, we
cannot suggest one recipe for all types of implementations.
Different mitigation techniques deal with different levels of
threat at application and architecture levels as explained
in Section 4. Recent countermeasures for hardware and
software are listed in Table 5. They were identified in major
classes including hardware threading (core-shared state at
L1-L2 levels of cache due to hyper-threading/simultaneous
multi-threading), time slicing (core-shared state on L1-L2
levels of cache due to timing variation and self-contention)
and multi-core (package-shared state on LLC creating side-
channels and covert-channels) [38].

We present some practical techniques along with their
advantages and disadvantages. Table 6 provides an exhaus-
tive list the software-based countermeasures published to
date. These countermeasures are divided into sub-categories
to make it easy to distinguish the class of related software
countermeasures. Table 7 lists all software countermeasures
w.r.t the cache hierarchy for which the mitigation can be

used, the threat level (hardware-threading, context switch,
multi-core) it addresses, and leakage context as discussed
in Section 4. This categorization was inspired by a work
presented in [13].

These countermeasures can be used against the specific
attack category of RSA referred to in Section 7, and can
also be used to mitigate exploitation in other cryptographic
algorithms. Software countermeasures are not restricted to
solving one type of problem in one type of cryptographic al-
gorithm. Rather these countermeasures are used in a generic
sense to mitigate cache-based side-channel attacks. Modern
architectures are complex in nature, and mitigation tech-
niques proposed for a specific leakage may consequently not
fully protect the system. As discussed in Section 4, hardware
and software developers need to consider the entire threat
model that could be exploited by the malicious applications.
While discussing existing mitigation techniques, we also
carefully review the architectural features that are exploited
and their effects on these mitigation techniques within the
scope of proposed threat model. We also consider security
critical parameters in both the application layer and the
architectural layer that can be used in mitigation without
changing the underlying architectural features. At the end
of this discussion, we will be able to analyze the practicality
and efficacy of the countermeasures on our threat model
explained in Section 4.

8.1 Logical/Physical Isolation-based Countermeasure
Techniques

Disabling resource sharing and executing applications in
complete physical and/or logical isolation to protect against
adversaries has been a popular mitigation technique, even
though it is still conceptually trivial. In this section, we
present software mitigation techniques based on partition-
ing/isolation to counter recent cache-based side-channel
attacks.

8.1.1 Cache Coloring
Cache coloring is a mechanism to partition the cache with
the help of software. Cache coloring is intended to generally
enhance cache performance in real time and to reduce cache
contention [123], [153], [154]. Cache coloring has proved to
be an important mitigation technique against cache-based
timing SCAs. Cache coloring segregates the memory into
colored pools and assigns memory from distinct pools to
be transformed into a security restricted domain. Physical
frames whose addresses differ from the colored bits are
never mapped to the similar cache set. There are many
implementations for cache coloring including static and
dynamic cache coloring [103], [120], [121], [123].

In static coloring, some static colors are allocated for
security critical applications. As the number of security-
demanding applications is increasing, static coloring is un-
able to respond to all the requests dynamically. That is
why an approach for dynamic coloring was introduced,
which considers a dynamic number of secure colored pages
to the security critical applications at run time. One such
approach in [121] proposes a non-intrusive and low over-
head technique of page coloring named Chameleon. The
Chameleon technique provides secure color to the secure

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 20

TABLE 5: State-of-the-Art on hardware/software countermeasure techniques w.r.t. cache hierarchy

Cache Level Countermeasure Description Year Type

L1

Disable Hardware Threading [60], [109] A way to reduce the cache
flushing

2005, 2010

Hardware ThreadingNewcache [110] Dynamic randomized memory-
to-cache mapping

2016

Auditing [111] Detecting malicious behaviors 2014

Increasing bandwidth of Cache [46],
[48]

Reducing Contentions 2014, 2012

Constant-Time Techniques [7], [112],
[113]

Fixed time instructions 2017, 2015, 2016
Time Slicing

Cache Flushing [114], [115], [116] No privilege to flush specific
lines

2014, 2013, 2013

L2

Hardware Cache Partition [21], [117],
[118], [22]

Partitioning cache for security
sensitive applications

2012, 2007, 2015,
2005

Hardware ThreadingRP Cache [105], [117] Random Indexing of lines 2009, 2007

Disable Hardware Threading [60], [109] A way to reduce the cache
flushing

2005, 2010

Minimum Timeslice [114] Preventing attacker to observe
cache state in preemptions

2014

Cache Flushing [114], [116], [115] No privilege to flush specific
lines

2014, 2013, 2013

Retired Instruction Count [119] Scheduling based on retired
instruction counts

2013

LLC

Hardware Cache Partition [38] Isolation of cache for sensitive
applications

2016

Multi-coreCache Coloring [103], [120], [121] Allocating colored pages for
sensitive application

2014, 2014, 2011

STEALTHMEM [20] Allocating colored pages for
sensitive applications

2012

Quasi-Partitioning [122] Allocating a budget per cache
to set security domain

2016

RP Cache [38] Random Indexing of lines 2016

Noise
Fuzzy Time
Reducing Resolution of Clock
Time Warp
[19], [77], [66], [100], [123], [124]

Adding external processes to
confuse attacker process

2005, 1992, 2015,
2013, 1994, 2012

Disable Page Sharing [16], [122] Prevention, copy-on access
scheme

2006, 2016

Disabling Cache Sharing [109] Logical isolation with in a
physical cache

2010

Scheduling-based Obfuscation [125] Scheduled noise induction 2014

Leakage Feedback [126] Quantify leakage to use as an
input to mitigate the attacks

2017

process so that a strict isolation in virtualized environment
can be maintained. Before a process goes to a security critical
section, hypervisor is notified and during that section, the
secure color is only available for security critical operations
and cannot be used by any other VMs co-located on the
same hardware platform. This technique provides both full
mode and a selective mode protection mechanism, but does
not compare the results with other dynamic coloring ap-
proaches to evaluate the performance parameters, and the
impact of this approach on stopping any kind of cache-
based side-channel attacks is not documented in paper [120]
.

In static coloring, some static colors are allocated for
security critical applications. If the number of security de-

manding applications increases, static coloring is unable to
respond all the requests dynamically. That is why, approach
for dynamic coloring was introduced, which represents dy-
namic number of secure colored pages to the security critical
applications at run time. One such approach is discussed in
[121], which proposes non-intrusive and low overhead tech-
nique of page coloring named as Chameleon. The Chameleon
technique provides secure color to the secure process so
that a strict isolation in virtualized environment could be
maintained. Before a process goes to a security critical
section, hypervisor is notified and during that section, the
secure color is only available for security critical operation
and cannot be used by any other co-located VMs of the
same hardware platform. This technique provides both full

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 21

TABLE 6: Categorization of state-of-the-art software coun-
termeasures

Category Countermeasures
Logical/Physical
Isolation-based
Counter-
measure
Techniques
(Section8.1)

• Cache Coloring [103], [120], [121], [123]
• CloudRadar [127]
• Migration of VMs [128]
• STEALTHMEM [20]
• CacheBar [122]

Noise-based
Counter-
measure
Techniques
(Section 8.2)

• Fuzzy Time [77]
• Eliminating Fine Grained Timers [88]
• Bystander Workloads [129]
• Anti-correlated Noise [103]

Scheduler-
based Coun-
termeasure
Techniques
(Section 8.3)

• Scheduling-based Obfuscation [6],
[125], [130]

• Leakage Feedback [126], [131] [132]
• Server Side Defenses (cache Flushing)

[116]
• Retired Instruction [119]
• Minimum Timeslice [114]
• Cache Flushing [6], [115], [116]

Partitioning-
Time Coun-
termeasure
Techniques
(Section8.4)

• Kernel Address Space Isolation [75],
[29]

Constant
Time Coun-
termeasure
Techniques
(Section 8.5)

• CacheAudit [133]
• FlowTracker [134], [135]
• Valgrind [136]
• Catalyzr [137]

Auditing &
Detection
Techniques
(Section 8.6)

• NIGHTs-WATCH [138]
• SCADET [139]
• HExPADS [140]
• Deja-Vu [141]
• CacheShield [142]
• SpyDetector [143]
• CloudRadar [127]
• Misc. [144], [145], [146], [147], [148],

[149], [111], [150], [151], [146], [152]

mode and selective mode protection mechanism, but it did
not compare the results with other dynamic coloring ap-
proaches to evaluate the performance parameters. Further-
more, the impact of this approach to stop any kind of cache-
based side-channel attacks has not been documented in the
paper [121].

Another form of cache coloring is XEN’s memory man-
agement tool in [120]. This technique demonstrates a com-
plete closure of side-channel between different virtual ma-
chines with the help of cache coloring. The authors also
managed to analyze the performance cost that is 50% for
Apache-2013 benchmark and there was far less penalty with
small working sets. One problem seen with cache coloring
is that technique is unable to use large pages, whereas many
processors are able to use large pages up to nearly 1 GB in
x86 architectures. One benefit of having large pages would
be the reduction of overlapping pages and requirement for
colored pages will be reduced to a very small number.

The effectiveness of using cache coloring to reduce the
impact of cache-based covert-channels is described in [103].
The mechanism has been proved to be more efficient on
cores with simpler structures than in cores with complex
structures because of TLB contention that can be solved by
flushing TLBs on a context switch of VMs. A rather new
challenge moving from directly-mapped cache to cache sets.
While we know that LLC is divided among cores connected

with a ring bus as illustrated in Figure 2, locating the
physical address of the cache line depends on addressing
a cache block and a set within that block. The newer Intel
microarchitectures contain a hash function to locate these
blocks. Without prior knowledge of hash functions, the
available colors are confined within a cache block [53].
Several authors have reverse-engineered the hash function
of multiple processor models that support the use of mul-
tiple colors [51], [52], [53], [65], [155] but this might not be
possible for future CPUs [38].

8.1.2 STEALTHMEM
STEALTHMEM [20] is a software mitigation approach that
uses a limited principle of cache coloring to mitigate cache-
based side-channel attacks with three different perspec-
tives; it checks the impact of its proposed stealth pages
in the case of context switch, hyper-thread and sharing
the LLC and analyzes its performance with dynamic cache
coloring. It provides a small amount of colored memory,
which was targeted to avoid contention and flushing in
the LLC. The aim of this approach is to provide stealth
pages for secure critical data that are encrypted. This specific
approach reserves stealth pages for each core on which each
VM is located. Using the same stealth page for two different
cores is made impossible in this approach and a regular
check system is maintained called a PTA (Page table alert)
scheme. The PTA scheme ensures that the cache implements
K-LRU mechanism, in which a cache miss is declared not to
flush any of the K lines from recently accessed lines. This
mitigation technique ensures use of small number of stealth
pages and locks them for each core in the LLC. Therefore,
an attempt to access any other page that is reserved triggers
a page fault in the form of STEALTHMEM. Pre-arranging
cache colors minimizes the number of cache sets utilized.
This mechanism was analyzed against the probability of a
context switch and sharing cores but for hyper-threading
only disabling hyper-threading has been suggested as a
straightforward solution. The performance of STEALTH-
MEM was analyzed and showed relatively small overhead
for SPEC-2006 benchmark, around 5.9% for STEALTHMEM
and 7.2% for PTA due to having extra faults. The overall
performance degradation of using this mitigation is around
2 − 5% for three encryption algorithms, DES, AES and
Blowfish.

8.1.3 Migration of VMs
Information leakage in co-residing VMs has become a major
threat to cloud environments. To mitigate such channels, No-
mad [128] implemented a software-based solution to medi-
ate the migration of VM workloads. Migration-as-a-Service
cloud computation model believes in placement algorithm
of VMs. Past and current VM assignments are saved in
epochs as input and the next placement of VMs is decided
based on this information. It identifies provider-assisted
VM migration as a novel defense strategy for information
leakage that happens due to side-channels. The system is
analyzed on a scalable online VM migration where it has
shown that this heuristic is able to handle massive data cen-
ter workloads. To minimize the effect of services running on
each VM, Nomad provides client API, which allows clients
to monitor non-relocatable VMs. This mitigation technique

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 22

provides performance overhead for traditional cloud appli-
cations such as web services and Hadoop MapReduce.

8.1.4 Quasi-partitioning
Manipulation of resources helps the attacker to obtain in-
formation on the victim and to conduct an effective access-
driven side-channel attack. CacheBar [122] is a mitigation
technique against access-driven side-channel attacks that
target last level caches (LLC) shared across cores in pro-
cessors. The property of sharing makes it possible to leak
information between security domains such as clouds and
tenants in a big picture. CacheBar arranges physical memory
pages in a dynamic way to prevent sharing of LLC lines
and to prevent side-channels occurring due to Flush+Reload
techniques in LLC. It also creates a cacheability mechanism
of memory pages to work against Prime+Probe attacks
happening in LLC. CacheBar is a memory management
subsystem within Linux kernel to effectively work on such
side-channels. It allocates a budget in cache for the security
sensitive applications to execute.

8.2 Noise-based Countermeasure Techniques
Except Prime and Abort, all the attacks we analyzed in
Section 7 refer to the accuracy of measurement of minute
timing variations by the attacker, whether encryption itself
or access to the attacker’s memory. A suggestion to counter
timing attacks is to introduce noise in the observed timings
by executing random delays in the operations being per-
formed. This slows down the attacker’s performance and
the attacker will then have to average many executions and
measurements. Theoretically, it was suggested to prevent
the exploitation of timing channels through an increase in
contention, thereby ensuring that the attacker’s measure-
ments have to deal with a lot of noise that in practice,
it is worthless for the attacker to monitor. Noise-based
countermeasure techniques are one of the most popular
approaches to mitigate side-channel attacks. The main goal
of such approaches is to reduce the attacker’s measurement
precision in such a way that the gathered data cannot be
exploited to retrieve the targeted secret information. It is
worth noting that this approach does not remove the source
of leakage and hence, does not provide full protection.
Consequently, the attacks presented in Section 7 can still be
performed in a noisy environment. However, the attacker
has to invest much more effort to collect and analyze the
measurements. Depending on the execution context of the
victim, this could lead to a situation in which the attacker
can only retrieve partial information that is not sufficiently
relevant to finalize the attack.

8.2.1 Fuzzy Time Approach
Fuzzy time approaches [77] introduce noise into all the
events that are visible in a process aimed at mitigating
attacks. Modification of XEN hypervisor to inject noise to
eliminate fine grained timers is explained in [88], where
noise is injected into high resolution timing measurements
in VMs by modifying the results of RDTSC instruction.
This mitigation technique addresses some potential research
questions of other sources of fine-grained timers. A by-
stander VM for injecting noise into the cross-VM L2-cache

covert-channel is described with a configurable workload
in [129]. This technique uses a time Markov process to
check the effect of bystanders on a cross-VM covert-channel.
The effect is analyzed in two terms: scheduling of the
virtualization platform and the workload (bystanders). In
this study, influential factors that affect covert-channels in
Prime+Probe attacks are analyzed by scheduling on XEN
(to evaluate the error rate of bystander VM). In checking
this, the authors were able to see that as long as bystander
VMs tune the consumption time of CPU, they are unable to
affect cross-VM covert-channel. It was demonstrated in this
attack that when injecting noise into Prime+Probe channels,
bystander VMs need to modulate their working sets and
memory access patterns. The efficiency of said mechanism
is evaluated through trace-driven simulations in which VMs
are supplied with provisioning strategies.

8.2.2 FLUSH+PREFETCH Technique

A noise-based mitigation known as FLUSH+PREFETCH
[156] technique has been proposed to obfuscate the mem-
ory access behavior of a secure application using inde-
pendent threads that randomly access the memory be-
longing to secure applications. As a proof of concept,
FLUSH+PREFETCH defends the secret key of RSA cryp-
tosystem against a high-resolution cache-side channel at-
tack known as Flush+Reload. The countermeasure benefits
from two attacker shortcomings; the attacker is unable to
identify the source that generated a specific cache access
and attacker cannot detect multiple operations happening
simultaneously on a cache line. The two limitations have
been exploited by injecting noise into cache access pattern
using concurrent threads that contain prefetch and clflush
instructions. Generating noise in such a way makes it dif-
ficult for the attacker to extract the encryption/decryption
key from cache access information.

8.2.3 Anti-correlated Noise

Anti-correlated noise is suggested in [103], which can
in theory completely close the channel. The rate of
(uncorrelated) noise increases as the channel capacity
decreases dramatically. But the use of such mechanisms has
a significant performance overhead and it is considered
unrealistic to reduce the bandwidth of channels in such
magnitudes [38].

Approaches for eliminating hardware timing channels
require new hardware design architecture to minimize the
risk of sharing or loosely-coupled architectures to minimize
the availability of shared resources. System designers are
trying to design highly secure systems and such approaches
may be a drawback in terms of performance degradation
[77]. Abandoning contemporary processors means aban-
doning the installed application layer as well as OS. The
existence of hardware timing channels is thus a major threat.
However, introducing noise to obtain highly secure systems
has been shown to be inefficient [103]. Previous techniques
cannot deal with them because closing the signal for the
channel is a difficult task and those that can be closed
undergo a dramatic reduction in performance [38], [103].

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 23

8.3 Scheduler-based Countermeasure Techniques
Scheduling is another effective technique to mitigate timing
channel attacks. Such attacks are passive, so dealing with
them is not a simple task. The hypervisor scheduler cannot
differentiate between malicious and victim VMs. But it is
possible to limit information leakage using novel scheduling
schemes to minimize the attacking VMs intervention in the
victim’s memory accesses. One way of scheduling is to
minimize the overlap time of VMs but it comes with a major
performance cost due to excessive context switching. The
time overlap can be limited by the hypervisor introducing
some noise before the timeout for each VM can interrupt
the transmission of data to an attacker VM through a tim-
ing side-channel. Attacks with simultaneous or consecutive
access that share the same hardware resources can be miti-
gated in two ways: either by providing exclusive time sliced
accesses or by carefully managing the transition between
each time-slice.

8.3.1 Scheduling-based Obfuscation
A hypervisor scheduler can call obfuscation functions in
order to inject noise into the potential side-channel. In [125],
the authors modified the XEN scheduler and proposed
a new scheme that uses two parameters: overlap cap and
noise function. overlap cap is the ceiling value for overlap-
ping time of execution of two VMs, and noise function
is injected noise for different side-channels. For example,
in order to cater to memory bus contention based side-
channel attacks [157], the administrator can induce the
noise function as some atomic memory access. Hence the
attacker will not be able to distinguish whether the signal
is coming from the victim or is caused by hypervisors’s
noise. These parameters could be used to achieve the ap-
propriate security/performance trade off depending on the
administrator’s preference. The authors in [130] propose a
scheduling based technique called as Shuffler that efficiently
limits the vulnerable probability of attacks in VMs. The
solution claims to distribute CPU time to vCPUs with equal
probability which would reduce the overall vulnerable
probability of the system. Shuffler scheduler, hence, shows
minimum information leakage to mitigate cross-VM SCAs
with negligible performance penalty while preserving high
resource utilization.

8.3.2 Leakage Feedback
Schedulers are not aware of any security related task that
may leak the information. However, if schedulers are de-
signed in a way that they are conscious of the sensitivity of
a process, information leakage can be minimized. Some ap-
proaches like those in [131] and [132] use the flushing mem-
ory at the end of every sensitive operation to remove the
footprints of traces. But such frequent flushing operations
jeopardize schedulability and can be expensive especially
for real-time tasks in meeting their deadlines. Schedulers
can be designed such that the information leakage can be
quantified to be used as feedback to suppress it. The authors
in [126] follow a workflow model used in real-time systems
in which jobs are periodically produced to be scheduled and
to be completed before assigned deadlines. The tasks are
divided into steps that individually consist of three param-
eters: execution time, leakage value and security level. The

steps consist of atomic operations independent of scheduler
preemption and help assess the behavior of the tasks. The
authors propose a heuristic approach to flushing to achieve
zero leakage while still achieving acceptable scheduling.

8.3.3 Retired Instructions
Another way of secure scheduling can be based on re-
tired instructions (RI) count. RI is a parameter available in
hardware performance counters (HPC) in modern CPUs. In
[119], the authors suggest an instruction based scheduler
that does not impact timing in hardware in terms of cache,
TLB and CPU buses. The authors claim that the impact of
their implementation on performance is minimal compared
to time based scheduling. However, their solution, needs to
be tested for multi-core architectures.

8.3.4 Minimum Time Slicing
This mitigation technique investigates the principle of soft-
isolation to minimize the risk of sharing by providing a
sophisticated scheduling mechanism that confines the oc-
currence of preemptions for VMs and can effectively pre-
vent existing Prime+Probe cache-based side-channel attacks
[114]. Determining a minimum time slice for exploitable
component prevents the attacker from scrutinizing the state
in the middle of any sensitive operation at the cost of
increased latency. Attacks containing the Prime+Probe ap-
proach [6], are dependent on the ability to inspect the state
of victim by frequently targeting preemptions. The soft-
isolation approach increases the latency to such a mediation
point that the preemption interval increases and the attacker
cannot inspect the state of the victim. This defense mech-
anism is specific to one approach (Prime+Probe) but can
probably be exploited by more sophisticated attacks such as
Flush+Flush, Flush+Reload, etc. [38].

8.3.5 Cache Flushing
The obvious problem in context switching is that the at-
tacker VM can observe the state of the victim VM during
switching. The obvious solution to this problem is flushing
the victim’s data VM before every switch. This mechanism
makes it hard for the attacker VM to observe the state of the
victim’s VM. Flushing during switching has been proposed
in a technique named Düppel in [115]. This defense system
includes mitigation for time-shared caches such as L1 and
L2, TLB and BTB. In this mechanism, a tenant can construct
its VM to introduce additional noise into the timings that the
attacker might observe from the cache. This timing informa-
tion is very important for the attacker because it enables
him to infer the victim’s sensitive information, and injecting
noise makes his job difficult. Düppel modifies the guest OS
Kernel and does not need to change hypervisor or cloud
providers. Unlike noise producing techniques, Düppel re-
peatedly cleans the L1 cache along with the execution of
tenant workload. But this mitigation, i.e. flushing the local
state of cache, has a performance overhead.

The scheduling policy and its implementation can help
to mitigate the cache-based side-channel attacks presented
in Section 7 by removing or reducing the time period when
an attacker and a victim share cache memories or by apply-
ing a strict security policy that cleans the microarchitectural

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 24

states between context switches. The solutions proposed
above effectively mitigate the attacks on time shared caches
by flushing but both have a cost in terms of performance
overhead; and the effect of flushing L1 cache is analyzed
in [114]. A 17% increase in latency has been reported when
these types of mitigation techniques are applied. Flushing
the upper levels of cache in a VM switch is appropriate if it
reduces performance degradation. The size of the L1 level
cache is relatively small (32 KB in Intel x86 architectures)
[46] and the typical expected context switch rate is also low.
The normal switching rate of schedulers in XEN to make
scheduling decisions is 30 ms [6]. There is thus limited
probability of a newly scheduled VM finding any data or
instruction in the cache, meaning that the indirect cost of
flushing the L1 caches on switching the VMs is insignificant
[50]. But for the lower level of caches that are larger, flushing
involves significant performance degradation.
Some of the server-side defenses suggest flushing all levels
of cache during the context switch of VMs in cloud com-
puting. This is a server-side approach to improve security
without inconveniencing the cloud [116]. This research mo-
tivated two perspectives; 1) cloud architecture is particu-
larly susceptible to cache-based side-channel attacks and
2) attacks in clouds cannot be solved without interfering
in the cloud model. The technique proposed is a server
(hypervisor) based solution in an entire cloud system with
no interference in the cloud’s mode of operation (requires
no changes to client or underlying hardware).

8.4 Partitioning Time Countermeasure Techniques
With the introduction to prefetch side-channel [75] and
Meltdown [27] attacks, it has been demonstrated that by-
passing memory addresses of kernel space is possible which
raises the question of more potential attacks on modern
computing systems. One of the countermeasures based on
time partitioning was proposed to isolate the kernel from
the user space and is explained below.

8.4.1 Kernel Address Space Isolation
Prefetch side-channel attacks have been proposed as a new
class to exploit potential weaknesses in prefetch instructions
[75] that allow unauthorized attackers to obtain addresses
to compromise the whole system. Prefetch instructions can
fetch unreachable confidential memory in caches in Intel
x86. Meltdown attacks [27] also target the memory ad-
dresses in kernel address space and one phase of the attack
uses the CSCA technique (Flush+Reload) to retrieve infor-
mation concerning the victim’s addresses. As a mitigation
technique, some strong kernel address space isolations at
OS level are also proposed in [75], to reduce the impact of
a prefetch instruction that exploits the victim’s secret infor-
mation. For this reason, distinct kernel threads do not run
in the same address space as user threads. This mitigation
requires some modifications to OS kernels. This type of
mitigation is useful for attacks on time shared caches that
follow prefetch instructions. The performance cost of this
mitigation technique appears to be 0.06 to 5.09%. Kernel
isolation is also proposed in the Meltdown attack named
KAISER [29], which completely isolates the kernel from user
address space so that no exception can lead to memory
addresses in the kernel space.

8.5 Constant-Time Countermeasure Techniques

A well-known approach for mitigating information leakage
focuses on cryptographic operations using constant-time
techniques. They are mathematically sound but when we
implemented them on certain hardware, they tended to leak
information in different ways, so some changes are required
to these cryptographic algorithms such as: use of fixed time
instructions that depend on secret data, there should be
no conditional branches that lead to secret data and there
should be no memory access patterns that lead to secret
data. Considerably difficulty and complexity is involved in
changing cryptographic operations for remote attacks and
contention-based attacks [19]. Implementations that provide
secret-dependent accesses at coarser grain than cache line
granularity can leak secret information. In [16] Osvik warns
that processors can still leak information on address bits,
and proof of this claim is provided in CacheBleed [7]. The fact
these problems can evolve in Intel processors as described
in [100] has been consistently red flagged. If we consider
the fact that secret memory accesses should not depend
on secret information that might be leaked, then mitigating
such leaks is still not sufficient. Many possible leaks have
been demonstrated such as instructions that are data depen-
dent, timing of execution and memory dependent data of
cryptographic operations [108]. Many tools and frameworks
have been developed to provide mitigation by constant-time
techniques [135], [136]. The authors in [136] presented a
formal framework to design a constant-time code able to
detect the flow of secret information. [135], described an
upper bound of information that can leak from the imple-
mentation of a cryptographic algorithm. Some approaches
like CacheAudit [133] and FlowTracker [134] have helped
provide security at better level of abstraction and modified
existing compilers to keep track of the flow of information
for detection of channels. Another tool, Catalyzr [137] func-
tions based on finding the relation between vulnerabilities
and exploitations. It propose a method to characterize the
leakage induced by non-constant-time constructs of the
source code. Catalyzr recovers known attacks and suggests
possible unknown attacks.

Constant-Time Countermeasure Techniques are really
efficient in mitigating side-channel attacks. However,
Section 7 has shown that being able to propose a leakage-
free implementation is very challenging. Indeed, the main
disadvantage of constant-time implementations is that
they work on one hardware deployment constantly but
not on other hardware platforms. For example, [103] is a
constant-time mitigation of Lucky 13 attack [158], but it is
not applicable on ARM platforms (AM3358).

Similarly, some attacks do not work on different proces-
sors such as CacheBleed [7] which works only on Sandy
Bridge processors but cannot work on other processors
that do not include multi-threading and Flush+Reload [5],
which does not work on ARM architectures because ARM
processors do not have inclusive caches. The same goes
for constant-time techniques, that are specific to a certain
hardware platforms, and we thus need to develop different
parameters of constant-time implementations for different
hardware platforms.

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 25

8.6 Detection techniques

SCA detection techniques can be divided into two main
categories: signature-based detection and anomaly-based
detection. [150] presents a method to check the robustness of
NIST post-quantum standardization for timing-based cache
attacks. The proposed vulnerability tool explains that 80%
of the analyzed implementations contain at least one sig-
nificant flaw. It provides a comprehensive study to identify
flaws in present implementations and how to fix them. De-
tection approaches propose a first line of defense to counter
an attack as soon as it is detected. There are detection
mechanisms that inherit the properties of both anomaly and
signature-based detection mechanisms such as [127], [149].
The majority of CSCA detection approaches use signature-
based techniques [144], [145], [159], [140], [160], [161], [162],
[141], [138], [146], [151], [152], [139] or a combination of
signature and anomaly-based detection techniques [127],
[149], [148].

8.6.1 Signature-based Detection Techniques
One of the CSCA detection techniques able to detect mal-
wares/CSCAs based on their signatures is presented in
[144]. The authors in [144] used HPCs to detect malwares
and CSCAs. Another signature-based detection technique
in [145] inspects Prime+Probe and Flush+Reload CSCAs
while using machine learning (ML) models and HPCs and
running the AES cryptosystem. [151] debates the use of ML
in security and explains selection metrics for ML models
to perform run-time detection in real-time. Three recent
research works [138], [146], [152] perform signature-based
detection. This research targets a larger set of attacks includ-
ing Flush+Reload, Flush+Flush and Prime+Probe running
on RSA and AES cryptosystems. The authors in [138] pro-
pose a run-time detection mechanism called the NIGHTs-
WATCH. NIGHTs-WATCH considers HPCs as input fea-
tures under attack/no-attack scenarios. NIGHTs-WATCH
claims to have low performance overhead thanks to embed-
ding detection inside the cryptosystem. In a similar work,
the authors in [146] use both linear and non-linear ML
classifiers to detect variants of Prime+Probe attack running
under AES cryptosystems. [152] uses machine learning and
HPCs to perform run-time detection of Flush+Reload and
Flush+Flush attack and their variants on RSA and AES cryp-
tosystems. [152] claims the proposed detection mechanism
works with high detection accuracy under realistic system
load conditions. A novel approach named SCADET [139] is
a signature-based detection tool that detects Prime+Probe
attacks using high-level semantics and invariant patterns of
attacks. One of the HexPADS [140] uses the values of cache
miss rates and page faults to detect an attack. HexPADS is
able to detect CSCAs (Flush+Reload), cache template attacks
[15] and CAIN (C5) based on Prime+Probe. A detection
approach based on threshold determination, named Deja-
Vu, was introduced to detect attacks on programs guarded
by SGX [163].

8.6.2 Anomaly-based Detection Techniques
Some novel detection techniques rely on anomaly-based
detection of CSCAs [147], [142], [143]. The detection mech-
anism in [147] is based on Intel Cache Monitoring Technology

(CMT) and HPCs using Gaussian Anomaly detection for in-
specting CSCAs at the level of VMs in IaaS Cloud platforms.
CacheShield [142] is an Anomaly-based detection mecha-
nism for CSCAs on legacy software (victim applications)
which involves monitoring of HPCs while using an unsu-
pervised anomaly detection algorithm. Another anomaly-
based detection mechanism, SpyDetector [143], is proposed
to detect CSCAs using HPCs and has been validated on
Flush+Reload, Flush+Flush and Prime+Probe attacks run-
ning on RSA, AES and ECDSA cryptosystems.

8.6.3 Signature+Anomaly-based Detection Techniques
Some detection techniques use a combination of signature
and anomaly-based detection techniques [127], [149], [148].
[148] proposes a machine learning based detection mech-
anism for Flush+Reload attack on AES and ECDSA cryp-
tosystem. Another technique CloudRadar [127], correlates
cryptographic execution of applications on virtual machines
and the anomalous behavior of caches to detect CSCAs in
cloud systems. A three-step detection mechanism on cache
and branch predictor based CSCAs is proposed in [149]. This
method includes HPCs and machine learning models and
comprises three stages: detecting the anomaly, finding the
class of anomaly and correlating the malicious process with
the victim.

9 TRENDS, CHALLENGES, AND FUTURE DIREC-
TIONS

This section summarizes some of the trends in modern
attack approaches and their defenses both at software and
hardware level.

9.1 Future Directions in Attacks

The extensive literature review we conducted revealed that
attacks have been practically demonstrated across the entire
computation stack exploiting resource sharing. Cache-based
attacks have targeted all levels of the cache hierarchy. For
instance, attacks on L1 and L2 caches of platforms on
which hardware threading is enabled are presented in [60],
[62], [63], [7], [87]. Attacks targeting last level cache are
presented in [5], [25], [50], [53], [94]. In this survey, we
provide a (non-exhaustive) list of important cache-based
attacks and their classification (Table 3) along with their time
line, threat level, leakage metric, and the implementation
platforms they target. There are many attacks that do not
exploit multi-threading, yet they are successful in attacking
L1 cache simply by generating cache-contentions between
various processes and interactive VMs such as [6], [62], [7],
[87]. The trend in these attacks is to exploit system-wide
shared resources because defenses against these attacks
incur heavy performance penalties. Primarily, the proposed
solutions are based on cache partitioning such as RPcache,
random fill cache, minimum time slicing techniques, and
cache coloring [114], [103], [120], [121], [123]. Other than
caches, attacks have also been demonstrated on cores. These
attacks are based on cores shared for computation, which
is relatively easy to mitigate by disallowing shared com-
putation between multiple processes. While caches reveal a
lot of sensitive information about the content and order of

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 26

TABLE 7: State-of-the-art software countermeasures for different levels of cache and threat model within Intel x86

Cache Level Context Switching HW Threading Multi-core
L1/D-I Constant Time Implementation

[133], [134], [135], [136], Minimum
Timeslice [114], Düppel [115],
Server Side Defenses [116], Kernel
Address Space Isolation [75],
[29], Migration of VMs [128],
CloudRadar [127]

Cache Flushing [6],
[115], [116], Auditing
[6], [115], Retired
Instruction [119]

Minimum Timeslice [114], Cache Flushing [6], [115],
[116], Constant Time Implementation [133], [134], [135],
[136], Fuzzy Time [77]

L2 Eliminating Fine Grained Timers
[88], Bystanders Workloads [129],
Anti-correlated Noise [103], Düppel
[115], Auditing [6], [115], Retired
Instruction [119]

Eliminating Fine
Grained Timers [88],
Bystanders Workloads
[129]

Minimum Time Slicing [114], Cache Flushing [6], [115],
[116]

LLC/L3 STEALTHMEM [20], Auditing [6],
[115]

Gang Scheduling [20] STEALTHMEM [20], Cache Flushing [115], [116],
Cache Coloring [120], [121], [123], Injecting Noise [77],
[88], [103], [129], CacheBar [122], Quasi-Partitioning
[122], Auditing [6], [115], CloudRadar [127], Quasi-
Partitioning [122], CacheBar [122], Scheduling-based
Obfuscation [125], Leakage Feedback [126]

execution, they can still be kept isolated even if the cores are
shared. Another vulnerability already highlighted in earlier
research [5] is the privilege level of certain instructions, such
as clflush in Intel x86 architecture. Intel x86 architecture
supports non-selective flushing of L1 cache, which is already
being successfully exploited by attackers. More recent cache-
based attacks have moved to the last level cache (LLC),
which is shared by multiple processes. LLC attacks have
proven to be very effective as have high resolution cross-
core attacks, as described in [5], [14], [15], [53], [66], [91],
[94]. There are high resolution attacks that do not even need
memory sharing to attack a system as described in [25],
[164], [92].

Moving to the system level, as a future direction, side-
channel attacks on the interconnect network are possible,
although we have not yet come across any attack on the
interconnect network, but SCAs through snooping could be
an interesting future direction. Future trends in attacks will
move towards stealthier approaches as defenses are getting
stronger and detection mechanisms using hardware perfor-
mance monitoring have made early-stage attack detection
possible.

9.2 Future Directions in Mitigation Techniques

A general and somewhat obvious trend in mitigation tech-
niques over the last decade is preparing defenses against
known attacks. However, this trend is now shifting towards
more Secure-by-Design approaches in both hardware and
software. Hardware, architecture platforms such as Intel’s
SGX [165] and HARP [166] or ARM’s TrustZone [167], are
serious attempts in this direction. Software-based coun-
termeasure approaches are also moving towards secure-
by-design systems. For instance, operating-system-based
countermeasure techniques that use run-time monitoring of
system performance using PMUs is one such approach that
is being put into practice. These approaches offer detection
as well as mitigation of attacks on-the-fly, which helps
reduce performance overheads. OS-based countermeasure
techniques obfuscate the execution order of processes to
prevent leakage of useful timing and/or access information
at cache level.

Some recent research [13] argues strongly in favor of
resource isolation alone as a defense against SCAs. Such
countermeasures, although very effective from the point of
view of security, are simply not viable for certain application
domains, such as cloud computing, where security repre-
sents a trade-off with the fundamental economic model,
which in this case, is based on resource sharing. Existing
solutions based on resource isolation suggest physically
and temporally isolating process execution. Techniques that
provide physical isolation with the help of software imple-
mentations include cache coloring [103], [120], [121], [123],
STEALTHMEM [20], Migration of VMs [128], Quasi Parti-
tioning, CacheBar [122], Auditing/Detection [6], [14], [115],
[148] and CloudRadar [127]. There is still room to analyze
these approaches in terms of complete protection of cache
hierarchy and performance penalty. On the other hand, tech-
niques that provide temporal isolation at software level in-
clude Minimum time-slicing [114], Cache Flushing, Düppel
[115], Kernel Address Space Isolation [75], [29]. However,
all these techniques have proven to be expensive as they
involve significant performance overheads, particularly for
application domains where resource sharing is vital for
financial and performance benefits. Another issue with these
techniques is that they do not protect the entire computa-
tion stack. For instance, cache coloring and STEALTHMEM
provide protection mechanisms against LLC but creating
colored pages for relatively smaller L1, which is virtually
indexed, is not supported. LLC is physically indexed and
larger in size, which is why these solutions worked for
other LLC. Therefore, future mitigation techniques must
take a holistic approach and provide solutions that are not
necessarily based entirely on resource isolation.

A very important aspect in mitigation against attacks
that requires the research community’s focus is detection.
Detection based solutions [148], [138], [146], [151] determine
whether a system is in safe mode or under attack by moni-
toring system features such as timing, access behavior, and
traces of execution of instructions with the help of hard-
ware performance monitoring. Detection techniques are a
good first line of defense to mitigate side-channel attacks.
Indeed, when an attack is known, an efficient early detection
mechanism can be provided. Moreover, these approaches

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 27

are a solid base on which to build detection mechanisms
that enable detection of new attacks or variants of known
attacks by monitoring microarchitectural behaviors at run-
time. In this context, the capability of a detection system
is closely linked to the sensors available to perform the
monitoring task. An all-weather protection against attacks is
computationally expensive and implies a performance cost.
However, if the mitigation is coupled with high-resolution
detection, it can be activated whenever an attack is detected,
thereby reducing performance cost. A word of caution for
detection-based protection is needed as these solutions may
generate false positives if detection is imprecise and low res-
olution while the system is under attack. In this survey, we
argue in favor of need-based protection for future mitigation
to maintain the performance benefits of highly optimized
architecture platforms.

10 CONCLUSION

This paper provides an overview of cache-based side-
channel attacks, along with the microarchitectural details,
auditing and mitigation techniques that have been proposed
over the last decade (2007-2018). Our particular focus has
been on the identification of vulnerabilities in different
RSA cryptographic implementations, which leak informa-
tion when deployed on underlying hardware platforms. The
paper provides a threat model based on the features in
caches that are being leveraged for such attacks across cache
hierarchy in underlying platforms such as Intel x86. It also
classifies these attacks based on the source of information
leakage. The main focus of this paper has been on the
qualitative analysis of existing attacks in terms of secret
key retrieval efficiency, complexity, and the features being
exploited on target cryptosystems. We also conducted an
extensive review of the mitigation and auditing techniques
currently proposed against such attacks in a similar fashion
and classified them based on their effectiveness at various
levels in the cache hierarchy and leveraged features.

Finally, we looked at future research trends, challenges,
and directions for cache-based side-channel attacks as well
as for mitigation techniques. We argue in favor of a holistic
approach to counter SCAs through a secure-by-design ap-
proach to hardware and need-based protection approach to
software. We conclude that future trends in SCAs are mov-
ing towards stealthier approaches as defenses are getting
stronger. What is more, in the future, mitigation based on
resource isolation will not be viable from an economic and
performance point of view, as resource sharing is tending
to increase in modern computing infrastructure to sustain
performance benefits. We also underline the importance of
high-resolution detection techniques using hardware per-
formance monitoring to detect sophisticated and stealthier
attacks in future.

11 ACKNOWLEDGMENTS

This work was partially supported by the Pak-France joint
research project e-health. SECURE under PHC PERIDOT
Program (ID: 3-6/HEC/R&D/PERIDOT/2017) and the Na-
tional Center for Cyber Security (NCCS), Pakistan.

REFERENCES

[1] B. P. Rimal, E. Choi, and I. Lumb, “A Taxonomy and Survey
of Cloud Computing Systems,” in 2009 Fifth International Joint
Conference on INC, IMS and IDC, Aug 2009, pp. 44–51.

[2] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey,
You, Get off of My Cloud: Exploring Information Leakage in
Third-party Compute Clouds,” in Proceedings of the 16th ACM
Conference on Computer and Communications Security, ser. CCS ’09.
New York, NY, USA: ACM, 2009, pp. 199–212. [Online].
Available: http://doi.acm.org/10.1145/1653662.1653687

[3] Z. Wu, Z. Xu, and H. Wang, “Whispers in the Hyper-space: High-
speed Covert Channel Attacks in the Cloud,” in Proceedings of the
21st USENIX Conference on Security Symposium, ser. Security’12.
Berkeley, CA, USA: USENIX Association, 2012, pp. 9–9. [Online].
Available: http://dl.acm.org/citation.cfm?id=2362793.2362802

[4] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and
R. Schlichting, “An Exploration of L2 Cache Covert Channels
in Virtualized Environments,” in Proceedings of the 3rd ACM
Workshop on Cloud Computing Security Workshop, ser. CCSW ’11.
New York, NY, USA: ACM, 2011, pp. 29–40. [Online]. Available:
http://doi.acm.org/10.1145/2046660.2046670

[5] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-channel Attack,” in Proceedings of
the 23rd USENIX Conference on Security Symposium, ser. SEC’14.
Berkeley, CA, USA: USENIX Association, 2014, pp. 719–732.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2671225.
2671271

[6] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart,
“Cross-VM Side Channels and Their Use to Extract Private
Keys,” in Proceedings of the 2012 ACM Conference on Computer
and Communications Security, ser. CCS ’12. New York, NY,
USA: ACM, 2012, pp. 305–316. [Online]. Available: http:
//doi.acm.org/10.1145/2382196.2382230

[7] Y. Yarom, D. Genkin, and N. Heninger, CacheBleed: A
Timing Attack on OpenSSL Constant Time RSA. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2016, pp. 346–367. [Online].
Available: http://dx.doi.org/10.1007/978-3-662-53140-2 17

[8] P. C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in
Proceedings of the 19th Annual International Cryptology Conference
on Advances in Cryptology, ser. CRYPTO ’99. London, UK,
UK: Springer-Verlag, 1999, pp. 388–397. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646764.703989

[9] J.-J. Quisquater and D. Samyde, ElectroMagnetic Analysis (EMA):
Measures and Counter-measures for Smart Cards. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2001, pp. 200–210.

[10] D. Genkin, A. Shamir, and E. Tromer, RSA Key Extraction via Low-
Bandwidth Acoustic Cryptanalysis. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 444–461.

[11] D. Gullasch, E. Bangerter, and S. Krenn, “Cache Games – Bringing
Access-Based Cache Attacks on AES to Practice,” in Proceedings
of the 2011 IEEE Symposium on Security and Privacy, ser. SP ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 490–
505. [Online]. Available: http://dx.doi.org/10.1109/SP.2011.22

[12] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient Cache
Attacks on AES, and Countermeasures,” Journal of Cryptology,
vol. 23, no. 1, pp. 37–71, 2010. [Online]. Available: http:
//dx.doi.org/10.1007/s00145-009-9049-y

[13] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microar-
chitectural timing attacks and countermeasures on contemporary
hardware,” Journal of Cryptographic Engineering, pp. 1–27, 2016.

[14] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+Flush:
A Fast and Stealthy Cache Attack,” in Proceedings of the 13th
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment - Volume 9721, ser. DIMVA 2016. NY,
USA: Springer-Verlag New York, Inc., 2016, pp. 279–299.

[15] D. Gruss, R. Spreitzer, and S. Mangard, “Cache Template
Attacks: Automating Attacks on Inclusive Last-level Caches,” in
Proceedings of the 24th USENIX Conference on Security Symposium,
ser. SEC’15, Berkeley, CA, USA, 2015, pp. 897–912. [Online].
Available: http://dl.acm.org/citation.cfm?id=2831143.2831200

[16] D. A. Osvik, A. Shamir, and E. Tromer, Cache Attacks and
Countermeasures: The Case of AES. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 1–20. [Online]. Available: http:
//dx.doi.org/10.1007/11605805 1

[17] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart,
“Cross-Tenant Side-Channel Attacks in PaaS Clouds,” in
Proceedings of the 2014 ACM SIGSAC Conference on Computer and

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 28

Communications Security, ser. CCS ’14. New York, NY,
USA: ACM, 2014, pp. 990–1003. [Online]. Available: http:
//doi.acm.org/10.1145/2660267.2660356

[18] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar,
Wait a Minute! A fast, Cross-VM Attack on AES. Cham: Springer
International Publishing, 2014, pp. 299–319. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-11379-1 15

[19] D. J. Bernstein, “Cache-timing attacks on AES,” in Technical
Report, 2005.

[20] T. Kim, M. Peinado, and G. Mainar-Ruiz, “STEALTHMEM:
System-level Protection Against Cache-based Side Channel
Attacks in the Cloud,” in Proceedings of the 21st USENIX
Conference on Security Symposium, ser. Security’12. Berkeley, CA,
USA: USENIX Association, 2012, pp. 11–11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2362793.2362804

[21] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and
D. Ponomarev, “Non-monopolizable Caches: Low-complexity
Mitigation of Cache Side Channel Attacks,” ACM Trans. Archit.
Code Optim., vol. 8, no. 4, pp. 35:1–35:21, Jan. 2012. [Online].
Available: http://doi.acm.org/10.1145/2086696.2086714

[22] D. Page, “Partitioned cache architecture as a side-channel defence
mechanism,” Cryptology ePrint Archive, Report 2005/280, 2005,
https://eprint.iacr.org/2005/280.

[23] Z. Wang and R. B. Lee, “New cache designs for thwarting
software cache-based side channel attacks,” in Proceedings of
the 34th Annual International Symposium on Computer Architecture,
ser. ISCA ’07. New York, NY, USA: ACM, 2007, pp. 494–
505. [Online]. Available: http://doi.acm.org/10.1145/1250662.
1250723

[24] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee, “CATalyst: Defeating last-level cache side channel attacks in
cloud computing,” in 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA), March 2016, pp. 406–
418.

[25] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-Level
Cache Side-Channel Attacks Are Practical,” in Proceedings of
the 2015 IEEE Symposium on Security and Privacy, ser. SP ’15.
Washington, DC, USA: IEEE Computer Society, 2015, pp. 605–
622. [Online]. Available: http://dx.doi.org/10.1109/SP.2015.43

[26] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre Attacks: Exploiting Speculative Execution,” CoRR, vol.
abs/1801.01203, 2018. [Online]. Available: http://arxiv.org/abs/
1801.01203

[27] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and
M. Hamburg, “Meltdown: Reading kernel memory from user
space,” in 27th USENIX Security Symposium, USENIX Security
2018, Baltimore, MD, USA, August 15-17, 2018., 2018, pp. 973–
990. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity18/presentation/lipp

[28] D. Genkin, L. Valenta, and Y. Yarom, “May the Fourth
Be With You: A Microarchitectural Side Channel Attack
on Several Real-World Applications of Curve25519,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30
- November 03, 2017, 2017, pp. 845–858. [Online]. Available:
https://doi.org/10.1145/3133956.3134029

[29] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and
S. Mangard, “KASLR is Dead: Long Live KASLR,” in International
Symposium on Engineering Secure Software and Systems. Springer,
2017, pp. 161–176.

[30] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin,
D. Ponomarev, and N. Abu-Ghazaleh, “SafeSpec: Banishing the
Spectre of a Meltdown with Leakage-Free Speculation,” arXiv
preprint arXiv:1806.05179, 2018.

[31] G. Wang, S. Chattopadhyay, I. Gotovchits, T. Mitra, and A. Roy-
choudhury, “oo7: Low-overhead Defense against Spectre Attacks
via Program analysis,” arXiv preprint arXiv:1807.05843, 2018.

[32] K. Krüger, M. Volp, and G. Fohler, “Vulnerability analysis and
mitigation of directed timing inference based attacks on time-
triggered systems,” LIPIcs-Leibniz International Proceedings in In-
formatics, vol. 106, p. 22, 2018.

[33] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and
J. Torrellas, “InvisiSpec: Making speculative execution invisible
in the cache hierarchy (Corrigendum),” in 2018 51st Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2018, pp. 428–441.

[34] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“DAWG: A defense against cache timing attacks in speculative
execution processors,” in 2018 51st Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO). IEEE, 2018, pp.
974–987.

[35] Retpoline: A Branch Target Injection Mitigation.
[Online]. Available: https://software.intel.com/
security-software-guidance/api-app/sites/default/files/
Retpoline-A-Branch-Target-Injection-Mitigation.pdf?source=
techstories.org

[36] Site isolation. [Online]. Available: https://www.chromium.org/
Home/chromium-security/site-isolation

[37] O. Oleksenko, B. Trach, T. Reiher, M. Silberstein, and C. Fetzer,
“You shall not bypass: Employing data dependencies to prevent
bounds check bypass,” arXiv preprint arXiv:1805.08506, 2018.

[38] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microar-
chitectural timing attacks and countermeasures on contemporary
hardware,” IACR Cryptology ePrint Archive, vol. 2016, p. 613, 2016.

[39] S. Anwar, Z. Inayat, M. F. Zolkipli, J. M. Zain, A. Gani, N. B.
Anuar, M. K. Khan, and V. Chang, “Cross-VM cache-based side
channel attacks and proposed prevention mechanisms: A sur-
vey,” Journal of Network and Computer Applications, vol. 93, no.
Supplement C, pp. 259 – 279, 2017.

[40] Y. Lyu and P. Mishra, “A survey of side-channel attacks on caches
and countermeasures,” Journal of Hardware and Systems Security,
vol. 2, no. 1, pp. 33–50, 2018.

[41] R. Spreitzer, V. Moonsamy, T. Korak, and S. Mangard, “Systematic
classification of side-channel attacks: A case study for mobile
devices,” IEEE Communications Surveys Tutorials, vol. 20, no. 1,
pp. 465–488, Firstquarter 2018.

[42] E. Oswald and B. Preneel, “A survey on passive side-channel
attacks and their countermeasures for the Nessie public-key
cryptosystems,” NESSIE public reports, https://www. cosic. esat.
kuleuven. ac. be/nessie/reports, 2003.

[43] H. Mantel, A. Weber, and B. Köpf, “A systematic study of
cache side channels across AES implementations,” in International
Symposium on Engineering Secure Software and Systems. Springer,
2017, pp. 213–230.

[44] V. Costan and S. Devadas, “SGX Explained,” IACR Cryptology
ePrint Archive, vol. 2016, p. 86, 2016.

[45] D. Levinthal, “Performance analysis guide for Intel core i7 pro-
cessor and Intel Xeon 5500 processors,” Intel Performance Analysis
Guide, vol. 30, p. 18, 2009.

[46] P. Guide, “Intel R© 64 and IA-32 Architectures Software Devel-
oper’s Manual,” Volume 3B: System programming Guide, Part,
vol. 2, 2011.

[47] D. Craig, K. David, P. Leo, and T. Dean, “Prime+abort: A
timer-free high-precision l3 cache attack using intel tsx,” in 26th
USENIX Security Symposium (USENIX Security 17). Vancouver,
BC: USENIX, 2017, pp. 51–67.

[48] INTEL, “Intel 64 and IA-32 Architectures Optimization Reference
Manual,” September 2014.

[49] Y. Yarom and N. Benger, “Recovering OpenSSL ECDSA Nonces
Using the FLUSH+RELOAD Cache Side-channel Attack,” IACR
Cryptology ePrint Archive, vol. 2014, p. 140, 2014.

[50] G. Qian, Y. Yuval, L. Frank, and H. Gernot, “Contemporary
Processors Are Leaky − and There’s Nothing You Can Do About
It,” arXiv-1612.04474, pp. 29–35, 2016.

[51] M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and
B. Sunar, “Cache Attacks Enable Bulk Key Recovery on the
Cloud,” vol. 9813. Santa Barbara, CA, USA: CHES, 08 2016,
pp. 368–388.

[52] C. Maurice, N. Scouarnec, C. Neumann, O. Heen, and
A. Francillon, “Reverse Engineering Last-Level Cache Complex
Addressing Using Performance Counters,” in Proceedings of the
18th International Symposium on Research in Attacks, Intrusions, and
Defenses - Volume 9404, ser. RAID 2015. New York, NY, USA:
Springer-Verlag New York, Inc., 2015, pp. 48–65. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-26362-5 3

[53] Y. Yarom, Q. Ge, F. Liu, R. B. Lee, and G. Heiser, “Mapping the
Last-Level Cache,” in https://eprint.iacr.org, 2015.

[54] Jakub Zferer, Principles of Secure Processor Architecture Design,
ser. Synthesis Lectures on Computer Architecture. Morgan &
Claypool Publishers, 2018, vol. 9048, pp. 1–175.

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 29

[55] D. Evtyushkin and D. Ponomarev, “Covert Channels Through
Random Number Generator: Mechanisms, Capacity Estimation
and Mitigations,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS
’16. New York, NY, USA: ACM, 2016, pp. 843–857. [Online].
Available: http://doi.acm.org/10.1145/2976749.2978374

[56] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump
over ASLR: Attacking branch predictors to bypass ASLR,” in Mi-
croarchitecture (MICRO), 2016 49th Annual IEEE/ACM International
Symposium on. IEEE, 2016, pp. 1–13.

[57] C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. A.
Boano, S. Mangard, and K. Römer, “Hello from the Other Side:
SSH over Robust Cache Covert Channels in the Cloud.” CA,
US: in NDSS, San Diego, 01 2017.

[58] Rube B. Lee, Security Basics for Computer Architects, ser. Synthesis
Lectures on Computer Architecture. Morgan & Claypool Pub-
lishers, September 2013, vol. 8, pp. 1–111.

[59] O. Aciicmez and J.-P. Seifert, “Cheap Hardware Parallelism
Implies Cheap Security,” in Proceedings of the Workshop on
Fault Diagnosis and Tolerance in Cryptography, ser. FDTC ’07.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 80–91.
[Online]. Available: http://dx.doi.org/10.1109/FDTC.2007.4

[60] C. Percival, “Cache missing for fun and profit,” in Proc. of
BSDCan, 2005.

[61] B. B. Brumley and R. M. Hakala, Cache-Timing Template Attacks.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 667–684.

[62] O. Aciicmez, “Yet Another MicroArchitectural Attack:: Exploiting
I-Cache,” in Proceedings of the 2007 ACM Workshop on Computer
Security Architecture, ser. CSAW ’07. New York, NY, USA:
ACM, 2007, pp. 11–18. [Online]. Available: http://doi.acm.org/
10.1145/1314466.1314469

[63] O. Aciicmez, B. B. Brumley, and P. Grabher, “New Results on
Instruction Cache Attacks,” in Proceedings of the 12th International
Conference on Cryptographic Hardware and Embedded Systems, ser.
CHES’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 110–124.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1881511.
1881522

[64] M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and
B. Sunar, “Seriously, get off my cloud! Cross-VM RSA Key
Recovery in a Public Cloud,” Cryptology ePrint Archive, Report
2015/898, 2015, http://eprint.iacr.org/2015/898.

[65] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$A: A Shared Cache
Attack That Works Across Cores and Defies VM Sandboxing
– and Its Application to AES,” in Proceedings of the 2015 IEEE
Symposium on Security and Privacy, ser. SP ’15. Washington,
DC, USA: IEEE Computer Society, 2015, pp. 591–604. [Online].
Available: http://dx.doi.org/10.1109/SP.2015.42

[66] J. van de Pol, N. Smart, and Y. Yarom, Just a Little Bit More,
ser. Lecture Notes in Computer Science. Springer International
Publishing, 4 2015, vol. 9048, pp. 3–21.

[67] O. Acmez, S. Gueron, and J.-P. Seifert, “New Branch Prediction
Vulnerabilities in OpenSSL and Necessary Software Countermea-
sures,” In 11th IMA International Conference on Cryptography and
Coding, pp. 185–203, 12 2007.

[68] O. Aciicmez, C. K. Koc, and J.-P. Seifert, “Predicting Secret Keys
Via Branch Prediction,” Topics in Cryptology – CT-RSA 2007: The
Cryptographers, Track at the RSA Conference 2007, San Francisco, CA,
USA, February 5-9, 2007. Proceedings, pp. 225–242, 2007.

[69] P. Pessl, D. Gruss, C. Maurice, and S. Mangard, “Reverse engi-
neering DRAM addressing and exploitation,” Published in ArXiv,
2015.

[70] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in
40th IEEE Symposium on Security and Privacy (S&P’19), 2019.

[71] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and
M. Hamburg, “Meltdown: Reading Kernel Memory from User
Space,” in 27th USENIX Security Symposium (USENIX Security
18), 2018.

[72] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom,
and R. Strackx, “FORESHADOW: Extracting the keys
to the intel SGX kingdom with transient out-of-order
execution,” in 27th USENIX Security Symposium, USENIX Security
2018, Baltimore, MD, USA, August 15-17, 2018., 2018, pp. 991–

1008. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity18/presentation/bulck

[73] C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. von Berg,
P. Ortner, F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic
evaluation of transient execution attacks and defenses,” arXiv
preprint 1811.05441, 2019.

[74] C. Pereida Garcı́a, B. B. Brumley, and Y. Yarom, “Make
Sure DSA Signing Exponentiations Really Are Constant-
Time,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’16. New York,
NY, USA: ACM, 2016, pp. 1639–1650. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978420

[75] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard,
“Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel
ASLR,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’16. NY,
USA: ACM, 2016, pp. 368–379. [Online]. Available: http:
//doi.acm.org/10.1145/2976749.2978356

[76] M. Schaefer, B. Gold, R. Linde, and J. Scheid, “Program
Confinement in KVM/370,” in Proceedings of the 1977 Annual
Conference, ser. ACM ’77. New York, NY, USA: ACM, 1977,
pp. 404–410. [Online]. Available: http://doi.acm.org/10.1145/
800179.1124633

[77] W.-M. Hu, “Reducing Timing Channels with Fuzzy Time,” J.
Comput. Secur., vol. 1, no. 3-4, pp. 233–254, May 1992. [Online].
Available: http://dl.acm.org/citation.cfm?id=2699806.2699810

[78] Y. Tsunoo, E. Tsujihara, K. Minematsu, and H. Miyauchi, “Crypt-
analysis of Block Ciphers Implemented on Computers with
Cache,” 01 2002.

[79] J. C. Wray, “An Analysis of Covert Timing Channels,” J. Comput.
Secur., vol. 1, no. 3-4, pp. 219–232, May 1992. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2699806.2699809

[80] D. Page, “Theoretical Use of Cache Memory as
a Cryptanalytic Side-Channel,” Technical Report, available in
IACR Cryptology ePrint Archives, 2002. [Online]. Available:
https://eprint.iacr.org/2002/169.pdf

[81] O. Aciicmez, W. Schindler, and C. K. Koc, “Cache Based
Remote Timing Attack on the AES,” in Proceedings of the 7th
Cryptographers’ Track at the RSA Conference on Topics in Cryptology,
ser. CT-RSA’07. Berlin, Heidelberg: Springer-Verlag, 2006,
pp. 271–286. [Online]. Available: http://dx.doi.org/10.1007/
11967668 18

[82] T. Tsunoo, Yukiyasuand Saito, T. Suzaki, M. Shigeri, and
H. Miyauchi, Cryptanalysis of DES Implemented on Computers
with Cache. Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, pp. 62–76. [Online]. Available: https://doi.org/10.1007/
978-3-540-45238-6 6

[83] J. Bonneau and I. Mironov, “Cache-collision Timing Attacks
Against AES,” in Proceedings of the 8th International Conference
on Cryptographic Hardware and Embedded Systems, ser. CHES’06.
Berlin, Heidelberg: Springer-Verlag, 2006, pp. 201–215. [Online].
Available: http://dx.doi.org/10.1007/11894063 16

[84] O. Aciicmez and C. K. Koc, “Trace-driven Cache Attacks on AES
(Short Paper),” in Proceedings of the 8th International Conference on
Information and Communications Security, ser. ICICS’06. Berlin,
Heidelberg: Springer-Verlag, 2006, pp. 112–121. [Online].
Available: http://dx.doi.org/10.1007/11935308 9

[85] J.-F. Gallais, I. Kizhvatov, and M. Tunstall, “Improved
Trace-driven Cache-collision Attacks Against Embedded
AES Implementations,” in Proceedings of the 11th International
Conference on Information Security Applications, ser. WISA’10.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 243–257. [Online].
Available: http://dl.acm.org/citation.cfm?id=1949945.1949967

[86] M. Neve and J.-P. Seifert, Advances on Access-Driven Cache Attacks
on AES. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 147–162. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-74462-7 11

[87] O. Aciicmez and W. Schindler, “A Vulnerability in RSA
Implementations due to Instruction Cache Analysis and
its Demonstration on OpenSSL,” in Proceedings of the 2008 The
Cryptopgraphers’ Track at the RSA Conference on Topics in Cryptology,
ser. CT-RSA’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp.
256–273. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1791688.1791711

[88] B. C. Vattikonda, S. Das, and H. Shacham, “Eliminating Fine
Grained Timers in Xen,” in Proceedings of the 3rd ACM Workshop
on Cloud Computing Security Workshop, ser. CCSW ’11. New

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 30

York, NY, USA: ACM, 2011, pp. 41–46. [Online]. Available:
http://doi.acm.org/10.1145/2046660.2046671

[89] R. Hund, C. Willems, and T. Holz, “Practical timing side channel
attacks against kernel space ASLR,” in Security and Privacy (SP),
2013 IEEE Symposium on. IEEE, 2013, pp. 191–205.

[90] T. Allan, B. B. Brumley, K. Falkner, J. van de Pol, and
Y. Yarom, “Amplifying Side Channels Through Performance
Degradation,” in Proceedings of the 32Nd Annual Conference on
Computer Security Applications, ser. ACSAC ’16. New York,
NY, USA: ACM, 2016, pp. 422–435. [Online]. Available:
http://doi.acm.org/10.1145/2991079.2991084

[91] N. Benger, J. Pol, N. P. Smart, and Y. Yarom, “”Ooh Aah...
Just a Little Bit”: A Small Amount of Side Channel Can Go
a Long Way,” in Proceedings of the 16th International Workshop
on Cryptographic Hardware and Embedded Systems — CHES 2014 -
Volume 8731. New York, NY, USA: Springer-Verlag New York,
Inc., 2014, pp. 75–92. [Online]. Available: http://dx.doi.org/10.
1007/978-3-662-44709-3 5

[92] L. Moritz, G. Daniel, S. Raphael, M. Clementine, and M. Stefan,
“ARMageddon: Cache Attacks on Mobile Devices,” in Proceedings
of the 25th USENIX Security Symposium, Austin, TX, 2016.

[93] A. Rényi et al., “On Measures of Entropy and Information,”
in Proceedings of the Fourth Berkeley Symposium on Mathematical
Statistics and Probability, Volume 1: Contributions to the Theory of
Statistics. The Regents of the University of California, 1961.

[94] D. J. Bernstein, J. Breitner, D. Genkin, L. Groot Bruinderink,
N. Heninger, T. Lange, C. van Vredendaal, and Y. Yarom, “Slid-
ing Right into Disaster: Left-to-Right Sliding Windows Leak,”
in Cryptographic Hardware and Embedded Systems – CHES 2017,
W. Fischer and N. Homma, Eds. Cham: Springer International
Publishing, 2017, pp. 555–576.

[95] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for
Obtaining Digital Signatures and Public-key Cryptosystems,”
Commun. ACM, vol. 21, no. 2, pp. 120–126, Feb. 1978. [Online].
Available: http://doi.acm.org/10.1145/359340.359342

[96] N. Heninger and H. Shacham, “Reconstructing RSA
Private Keys from Random Key Bits,” in Proceedings of
the 29th Annual International Cryptology Conference on Advances
in Cryptology, ser. CRYPTO ’09. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 1–17. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-03356-8 1

[97] D. M. Gordon, “A Survey of Fast Exponentiation Methods,”
J. Algorithms, vol. 27, no. 1, pp. 129–146, Apr. 1998. [Online].
Available: http://dx.doi.org/10.1006/jagm.1997.0913

[98] E. Brickell, G. Graunke, M. Neve, and J.-P. Seifert, “Software
mitigations to hedge AES against cache-based software side
channel vulnerabilities,” vol. 2006, p. 52, 01 2006.

[99] E. Brickell, G. Graunke, and J.-P. Seifert, “Mitigating
Cache/Timing based Side-Channels in AES and RSA Software
Implementations,” in RSA Conference 2006 session DEV-203, 2006.

[100] D. J. Bernstein and P. Schwabe, “A Word of Warning,” in Con-
ference on Cryptographic Hardware and Embedded Systems, August
18–22, 2013, Santa Barbara, USA, CHES’13 (Rump Session), 2013.

[101] D. B. Alpert, M. R. Choudhury, and J. D. Mills, “Interleaved
Cache for Multiple Accesses per Clock Cycle in a Microproces-
sor,” Sep. 24 1996, uS Patent ID: 5,559,986.

[102] A. Fog, “The microarchitecture of Intel, AMD and VIA CPUs:
An optimization guide for assembly programmers and compiler
makers,” Copenhagen University College of Engineering, pp. 02–29,
2012.

[103] D. Cock, Q. Ge, T. Murray, and G. Heiser, “The Last
Mile: An Empirical Study of Timing Channels on seL4,”
in Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’14. New York, NY,
USA: ACM, 2014, pp. 570–581. [Online]. Available: http:
//doi.acm.org/10.1145/2660267.2660294

[104] J. Kong, O. Aciicmez, J.-P. Seifert, and H. Zhou, “Deconstructing
New Cache Designs for Thwarting Software Cache-based Side
Channel Attacks,” in Proceedings of the 2Nd ACM Workshop on
Computer Security Architectures, ser. CSAW ’08. New York,
NY, USA: ACM, 2008, pp. 25–34. [Online]. Available: http:
//doi.acm.org/10.1145/1456508.1456514

[105] J. Kong, O. Aciicmez, J. P. Seifert, and H. Zhou, “Hardware-
Software Integrated Approaches to Defend Against Software
Cache-based Side Channel Attacks,” in 2009 IEEE 15th Interna-
tional Symposium on High Performance Computer Architecture, Feb
2009, pp. 393–404.

[106] Z. Wang and R. B. Lee, “Covert and Side Channels Due to Proces-
sor Architecture,” in 22Nd Annual Computer Security Applications
Conference, ser. ACSAC’06. USA: IEEE, 2006, pp. 473–482.

[107] T. Müller, A. Dewald, and F. C. Freiling, “AESSE: A Cold-boot
Resistant Implementation of AES,” in Proceedings of the Third
European Workshop on System Security, ser. EUROSEC ’10. New
York, NY, USA: ACM, 2010, pp. 42–47. [Online]. Available:
http://doi.acm.org/10.1145/1752046.1752053

[108] B. Coppens, I. Verbauwhede, K. D. Bosschere, and B. D. Sutter,
“Practical Mitigations for Timing-Based Side-Channel Attacks on
Modern x86 Processors,” in 2009 30th IEEE Symposium on Security
and Privacy, May 2009, pp. 45–60.

[109] A. Marshall, M. Howard, G. Bugher, B. Harden, C. Kaufman,
M. Rues, and V. Bertocci, “Security Best Practices For Developing
Windows Azure Applications,” Microsoft Corp, p. 1, 2010.

[110] F. Liu, H. Wu, K. Mai, and R. B. Lee, “Newcache: Secure Cache
Architecture Thwarting Cache Side-Channel Attacks,” IEEE Mi-
cro, vol. 36, no. 5, pp. 8–16, 2016.

[111] Y. Tan, J. Wei, and W. Guo, “The Micro-architectural Support
Countermeasures against the Branch Prediction Analysis At-
tack,” in TrustCom, 2014 IEEE 13th International Conference on.
IEEE, 2014, pp. 276–283.

[112] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner,
and H. Shacham, “On Subnormal Floating Point and Abnormal
Timing,” in Proceedings of the 2015 IEEE Symposium on Security
and Privacy, ser. SP ’15. Washington, DC, USA: IEEE
Computer Society, 2015, pp. 623–639. [Online]. Available:
http://dx.doi.org/10.1109/SP.2015.44

[113] A. Rane, C. Lin, and M. Tiwari, “Secure, Precise,
and Fast Floating-Point Operations on x86 Proces-
sors,” in 25th USENIX Security Symposium (USENIX Security
16). Austin, TX: USENIX Association, 2016, pp. 71–
86. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/rane

[114] V. Varadarajan, T. Ristenpart, and M. Swift, “Scheduler-
based Defenses against Cross-VM Side-channels,” in
23rd USENIX Security Symposium (USENIX Security 14). San
Diego, CA: USENIX Association, 2014, pp. 687–
702. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/varadarajan

[115] Y. Zhang and M. K. Reiter, “DüPpel: Retrofitting Commodity
Operating Systems to Mitigate Cache Side Channels in the
Cloud,” in Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security, ser. CCS ’13. New
York, NY, USA: ACM, 2013, pp. 827–838. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516741

[116] M. Godfrey and M. Zulkernine, “A Server-Side Solution
to Cache-Based Side-Channel Attacks in the Cloud,” in
Proceedings of the 2013 IEEE Sixth International Conference on Cloud
Computing, ser. CLOUD ’13. Washington, DC, USA: IEEE
Computer Society, 2013, pp. 163–170. [Online]. Available:
http://dx.doi.org/10.1109/CLOUD.2013.21

[117] Z. Wang and R. B. Lee, “New Cache Designs for Thwarting
Software Cache-based Side Channel Attacks,” in Proceedings of
the 34th Annual International Symposium on Computer Architecture,
ser. ISCA ’07, NY, USA, 2007, pp. 494–505. [Online]. Available:
http://doi.acm.org/10.1145/1250662.1250723

[118] P. Colp, J. Zhang, J. Gleeson, S. Suneja, E. de Lara, H. Raj,
S. Saroiu, and A. Wolman, “Protecting Data on Smartphones and
Tablets from Memory Attacks,” in Proceedings of the Twentieth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’15. New York,
NY, USA: ACM, 2015, pp. 177–189. [Online]. Available:
http://doi.acm.org/10.1145/2694344.2694380

[119] D. Stefan, P. Buiras, E. Z. Yang, A. Levy, D. Terei, A. Russo,
and D. Mazières, “Eliminating Cache-Based Timing Attacks with
Instruction-Based Scheduling,” in European Symposium on Re-
search in Computer Security. Springer, 2013, pp. 718–735.

[120] M. . Godfrey and M. Zulkernine, “Preventing Cache-Based Side-
Channel Attacks in a Cloud Environment,” IEEE Transactions on
Cloud Computing, vol. 2, no. 4, pp. 395–408, Oct 2014.

[121] J. Shi, X. Song, H. Chen, and B. Zang, “Limiting Cache-based
Side-channel in Multi-tenant Cloud Using Dynamic Page
Coloring,” in Proceedings of the 2011 IEEE/IFIP 41st International
Conference on Dependable Systems and Networks Workshops, ser.
DSNW ’11. Washington, DC, USA: IEEE Computer Society,

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 31

2011, pp. 194–199. [Online]. Available: http://dx.doi.org/10.
1109/DSNW.2011.5958812

[122] Z. Zhou, M. K. Reiter, and Y. Zhang, “A Software
Approach to Defeating Side Channels in Last-Level Caches,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’16. New York, NY,
USA: ACM, 2016, pp. 871–882. [Online]. Available: http:
//doi.acm.org/10.1145/2976749.2978324

[123] B. N. Bershad, D. Lee, T. H. Romer, and J. B. Chen, “Avoiding
Conflict Misses Dynamically in Large Direct-mapped Caches,”
in Proceedings of the Sixth International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS VI. New York, NY, USA: ACM, 1994, pp. 158–170.
[Online]. Available: http://doi.acm.org/10.1145/195473.195527

[124] D. J. Bernstein, T. Lange, and P. Schwabe, “The Security Impact
of a New Cryptographic Library,” in International Conference on
Cryptology and Information Security in Latin America. Springer,
2012, pp. 159–176.

[125] F. Liu, L. Ren, and H. Bai, “Mitigating Cross-VM Side Channel
Attack on Multiple Tenants Cloud Platform,” Journal of Comput-
ers, vol. 9, 04 2014.

[126] F. Biondi, M. Chadli, T. Given-Wilson, and A. Legay, “Information
Leakage as a Scheduling Resource,” in Critical Systems: Formal
Methods and Automated Verification. Springer, 2017, pp. 83–99.

[127] T. Zhang, Y. Zhang, and R. B. Lee, “CloudRadar: A Real-Time
Side-Channel Attack Detection System in Clouds,” in Int’l Symp
on Research in Attacks, Intrusions, and Defenses, 2016, pp. 118–140.

[128] S.-J. Moon, V. Sekar, and M. K. Reiter, “Nomad:
Mitigating Arbitrary Cloud Side Channels via Provider-
Assisted Migration,” in Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’15.
New York, NY, USA: ACM, 2015, pp. 1595–1606. [Online].
Available: http://doi.acm.org/10.1145/2810103.2813706

[129] R. Zhang, X. Su, J. Wang, C. Wang, W. Liu, and R. W. H. Lau, “On
Mitigating the Risk of Cross-VM Covert Channels in a Public
Cloud,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 8, pp. 2327–2339, Aug 2015.

[130] L. Liu, A. Wang, W. Zang, M. Yu, M. Xiao, and S. Chen, “Shuf-
fler: Mitigate Cross-VM Side-Channel Attacks via Hypervisor
Scheduling,” in International Conference on Security and Privacy in
Communication Systems. Springer, 2018, pp. 491–511.

[131] S. Mohan, M. K. Yoon, R. Pellizzoni, and R. Bobba, “Real-
Time Systems Security Through Scheduler Constraints,” in 26th
Euromicro 26th Conference on Real-Time Systems, ECRTS’14. IEEE,
2014, pp. 129–140.

[132] R. Pellizzoni, N. Paryab, M.-K. Yoon, S. Bak, S. Mohan, and
R. B. Bobba, “A Generalized Model for Preventing Information
Leakage in Hard Real-Time Systems,” in RTAS’15, IEEE, 2015, pp.
271–282.

[133] G. Doychev, D. Feld, B. Kopf, L. Mauborgne, and J. Reineke,
“CacheAudit: A Tool for the Static Analysis of Cache Side Chan-
nels,” in Presented as part of the 22nd USENIX Security Symposium
(USENIX Security 13). Washington, D.C.: USENIX, 2013, pp. 431–
446. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity13/technical-sessions/paper/doychev

[134] B. R. Silva, D. Aranha, and F. M. Pereira, “Uma técnica de análise
estática para detecç ao de canais laterais baseados em tempo,”
Technical Report, 2015.

[135] B. Köpf, L. Mauborgne, and M. Ochoa, “Automatic
Quantification of Cache Side-Channels,” in Proceedings of the 24th
International Conference on Computer Aided Verification, ser. CAV’12.
Berlin, Heidelberg: Springer-Verlag, 2012, pp. 564–580. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-31424-7 40

[136] A. Langley. Valgrind, 2010. [Online]. Available: https://github.
com/agl/ctgrind

[137] S. Carré, A. Facon, S. Guilley, S. Takarabt, A. Schaub, and
Y. Souissi, “Cache-Timing Attack Detection and Prevention,” in
International Workshop on Constructive Side-Channel Analysis and
Secure Design. Springer, 2019, pp. 13–21.

[138] M. Mushtaq, A. Akram, M. K. Bhatti, M. Chaudhry, V. Lapotre,
and G. Gogniat, “NIGHTs-WATCH: A Cache-Based Side-
Channel Intrusion Detector using Hardware Performance Coun-
ters,” in Proceedings of the 7th International Workshop on Hardware
and Architectural Support for Security and Privacy, 2018.

[139] M. Sabbagh, Y. Fei, T. Wahl, and A. A. Ding, “SCADET: a side-
channel attack detection tool for tracking Prime-Probe,” in Pro-

ceedings of the International Conference on Computer-Aided Design.
ACM, 2018, p. 107.

[140] M. Payer, “HexPADS: a platform to detect “stealth” attacks,”
in International Symposium on Engineering Secure Software and
Systems. Springer, 2016, pp. 138–154.

[141] A. Raj and J. Dharanipragada, “Keep the PokerFace on! Thwart-
ing cache side channel attacks by memory bus monitoring and
cache obfuscation,” Journal of Cloud Computing, vol. 6, no. 1, p. 28,
2017.

[142] S. Briongos, G. Irazoqui, P. Malagón, and T. Eisen-
barth, “CacheShield: Detecting Cache Attacks through Self-
Observation,” in Proceedings of the Eighth ACM Conference on Data
and Application Security and Privacy. ACM, 2018, pp. 224–235.

[143] Y. Kulah, B. Dincer, C. Yilmaz, and E. Savas, “SpyDetector:
An approach for detecting side-channel attacks at runtime,”
International Journal of Information Security, Jun 2018. [Online].
Available: https://doi.org/10.1007/s10207-018-0411-7

[144] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman,
S. Sethumadhavan, and S. J. Stolfo, “On the feasibility of online
malware detection with performance counters,” in ISCA, 2013.

[145] Z. Allaf, M. Adda, and A. Gegov, “A Comparison Study on
Flush+Reload and Prime+Probe Attacks on AES Using Machine
Learning Approaches,” UK Workshop on Computational Intelli-
gence, pp. 203—-213, 2017.

[146] M. Mushtaq, A. Akram, M. Bhatti, N. B. R. Rao, V. Lapotre, and
G. Gogniat, “Run-time Detection of Prime+Probe Side-Channel
Attack on AES Encryption Algorithm,” in Global Information
Infrastructure and Networking Symposium (GIIS), 2018.

[147] M.-M. Bazm, T. Sautereau, M. Lacoste, M. Sudholt, and J.-M.
Menaud, “Cache-Based Side-Channel Attacks Detection through
Intel Cache Monitoring Technology and Hardware Performance
Counters,” in Fog and Mobile Edge Computing (FMEC), 2018 Third
International Conference on. IEEE, 2018, pp. 7–12.

[148] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection of
cache-based side-channel attacks using hardware performance
counters,” Appl. Soft Comput., vol. 49, no. C, pp. 1162–1174, Dec.
2016. [Online]. Available: https://doi.org/10.1016/j.asoc.2016.
09.014

[149] M. Alam, S. Bhattacharya, D. Mukhopadhyay, and S. Bhat-
tacharya, “Performance Counters to Rescue: A Machine Learn-
ing based safeguard against Micro-architectural Side-Channel-
Attacks,” 2017, https://eprint.iacr.org/2017/564.

[150] A. Facon, S. Guilley, M. Lec’Hvien, A. Schaub, and Y. Souissi,
“Detecting cache-timing vulnerabilities in post-quantum cryp-
tography algorithms,” in 2018 IEEE 3rd International Verification
and Security Workshop (IVSW). IEEE, 2018, pp. 7–12.

[151] M. Mushtaq, A. Akram, M. K. Bhatti, M. Chaudhry, M. Yousaf,
U. Farooq, V. Lapotre, and G. Gogniat, “Machine Learning
For Security: The Case of Side-Channel Attack Detection at
Run-time,” in ICECS-2018, Bordeaux, France, Dec. 2018. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01876792

[152] M. Mushtaq, A. Akram, M. K. Bhatti, U. Ali, V. Lapotre, and
G. Gogniat, “Sherlock Holmes of Cache Side-Channel Attacks
in Intel’s x86 Architecture,” in IEEE-Communications and Network
Security, Washington DC, United States, Jun. 2019. [Online].
Available: https://hal.archives-ouvertes.fr/hal-02151838

[153] R. E. Kessler and M. D. Hill, “Page Placement Algorithms
for Large Real-indexed Caches,” ACM Trans. Comput. Syst.,
vol. 10, no. 4, pp. 338–359, Nov. 1992. [Online]. Available:
http://doi.acm.org/10.1145/138873.138876

[154] J. Liedtke, H. Hartig, and M. Hohmuth, “OS-Controlled Cache
Predictability for Real-Time Systems,” in Proceedings Third IEEE
RTAS’97, Jun 1997, pp. 213–224.

[155] W.-M. Hu, “Lattice Scheduling and Covert Channels,” in
Proceedings of the 1992 IEEE Symposium on Security and Privacy,
ser. SP ’92. Washington, DC, USA: IEEE Computer Society,
1992. [Online]. Available: http://dl.acm.org/citation.cfm?id=
882488.884165

[156] M. A. Mukhtar, M. Mushtaq, M. K. Bhatti, V. Lapotre, and
G. Gogniat, “Flush+prefetch: A countermeasure against access-
driven cache-based side-channel attacks,” Journal of Systems
Architecture, p. 101698, 2019. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1383762119305053

[157] Z. Wu, Z. Xu, and H. Wang, “Whispers in the Hyper-Space:
High-Bandwidth and Reliable Covert Channel Attacks Inside
the Cloud,” IEEE/ACM Transactions on Networking (TON), vol. 23,
no. 2, pp. 603–614, 2015.

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

INFORMATION SYSTEMS, VOL. , NO. , MONTH, 2019 32

[158] N. J. Al Fardan and K. G. Paterson, “Lucky Thirteen: Breaking
the TLS and DTLS Record Protocols,” in 2013 IEEE Symposium on
Security and Privacy (SP). IEEE, 2013, pp. 526–540.

[159] Z. Allaf, M. Adda, and A. Gegov, “ConfMVM: A Hardware-
Assisted Model to Confine Malicious VMs,” in UKSim-AMSS 20th
International Conference on Modelling & Simulation, 2018.

[160] S. h. Peng, Q. f. Zhou, and J. l. Zhao, “Detection of Cache-based
Side Channel Attack Based on Performance Counters,” DEStech
Transactions on Computer Science and Engineering, 2017.

[161] S. Briongos, P. Malagón, J. L. Risco-Martı́n, and J. M. Moya,
“Modeling side-channel cache attacks on AES,” in Proceedings of
the Summer Computer Simulation Conference. Society for Com-
puter Simulation International, 2016, p. 37.

[162] M. Chouhan and H. Hasbullah, “Adaptive detection technique
for Cache-based Side Channel Attack using Bloom Filter for
secure cloud,” in 3rd International Conference on Computer and
Information Sciences (ICCOINS), 2016, pp. 293–297.

[163] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detecting
Privileged Side-Channel Attacks in Shielded Execution with Déjá
Vu,” in Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security. ACM, 2017, pp. 7–18.

[164] Y. Oren, V. Kemerlis, S. Sethumadhavan, and A. Keromytis, “The
spy in the sandbox – practical cache attacks in javascript,” pp.
1406–1418, 2015.

[165] Intel, “Intel’s SGX Architecture.” 2018. [Online]. Available:
https://software.intel.com/en-us/sgx

[166] “Intel’s Hardware Accelerator Research Program,”
2018. [Online]. Available: https://software.intel.com/en-us/
hardware-accelerator-research-program/

[167] ARM, 2018. [Online]. Available: https://www.arm.com/
products/security-on-arm/trustzone

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Declaration	of	interests	
	
☒ The	authors	declare	that	they	have	no	known	competing	financial	interests	or	personal	
relationships	that	could	have	appeared	to	influence	the	work	reported	in	this	paper.	
	
�The	authors	declare	the	following	financial	interests/personal	relationships	which	may	be	
considered	as	potential	competing	interests:		
	

	
	

	

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

