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Abstract – A resonator assembly consisting of a two-dimensional periodic array (mass-screws) mounted
to a thin homogenous plate was used to investigate the vibration characteristics of locally resonant (LR)
phononic plates. The numeric simulations employed the finite element method to calculate the band struc-
tures of the proposed periodic plates and to analyze the effect of geometry parameters on the evolution
of the flexural band gap behavior. To experimentally validate the predictions for these theoretical exam-
inations, two measurements with the LR phononic plates were obtained with respective lattice constants
a = 40 and 50 mm. The tested plate was clamped on one side to a shaking table to generate a plane
wave, propagating in the Ox-direction. Obtained experimental measurements of the wave attenuation in
this direction are in good agreement with the theoretical frequency of both complete and directional band
gaps.
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1 Introduction

Phononic crystals are periodic materials with identi-
cal unit cells that are able to act as mechanical filters of
wave propagation. The periodic effect causes an attenu-
ated wave propagation in a given frequency range [1, 2],
called a band gap. There are two main methods to gener-
ate band gaps. The first approach is based on the Bragg
scattering mechanism, whose wavelengths are on the scale
of the structure’s periodicity. The second approach is the
LR mechanism, which utilizes the resonant modes of the
microstructures in each unit cell. The LR mechanism was
first introduced by Liu et al. [3], who proposed a LR
phononic crystal composed of a periodic array of coated
lead balls immersed in an epoxy matrix. Their study
found LR band gaps that were two orders of magnitude
lower than the Bragg gaps. Xiao et al. [4] proposed a LR
phononic plate composed of a two-dimensional periodic
array of spring-mass resonators mounted to a thin homo-
geneous plate. This structure represents a numeric model
for understanding the basic wave propagation physics
of LR phononic plates. Oudich et al. [5] demonstrated
numerically and experimentally the existence of a low-
frequency LR band gap created by the local low-frequency
resonance of soft rubber pillars coupled with the plate’s
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modes. A similar idea was considered by Yu et al. [6], who
studied a rubber matrix plate with periodic steel stubs.
Recently, Li et al. [7] showed that introducing a com-
posite plate-type acoustic metamaterial, constituted of
one-side cylindrical stubs deposited on a two-dimensional
binary locally resonant phononic plate, causes the local
resonance band gaps to shift to a lower frequency. This
method makes it possible to obtain a relative bandwidth
that is significantly enlarged (by a factor of three) com-
pared with one-sided LR stubbed plates. Hu et al. [8]
studied a similar LR phononic structure made by deposit-
ing the heavy cylinder LR stubs squarely onto both sides
of a thin elastic composite plate. Nouh et al. [9] examined
an LR plate system consisting of a base structure com-
posed of cavities filled by a viscoelastic membrane that
supported a small mass constituting the source of local
resonance.

The present paper proposes a two-dimensional (2D)
LR phononic plate composed of a thin homogeneous plate
with an attached periodic array of resonators (mass-
screws). This periodic structure allowed us to easily
modify various geometric experimental parameters. The
present study focused on the resonant frequency of the
resonator and periodicity variations, and its impact on
the flexural wave band gap behavior of the proposed pe-
riodic structure. A finite element method (FEM) was used

Article published by EDP Sciences

https://doi.org/10.1051/meca/2016062
http://www.mechanics-industry.org
http://www.edpsciences.org


S. Zouari et al.: Mechanics & Industry 18, 304 (2017)

   )b( )a(

Fig. 1. (a) Configuration of the locally resonant phononic plate with periodically attached resonators (mass-screws). (b) Periodic
boundary conditions for a square unit cell.

 )b( )a(

Fig. 2. (a) Cross section of a square unit cell. (b) First Bril-
louin zone of a square unit cell showing the irreducible region
of the Brillouin zone (gray area).

to investigate wave propagation in these LR plates. Band
structures were calculated to predict band gaps charac-
teristics. To experimentally validate our theoretical pre-
dictions, we used different lattice constants to measure
the unidirectional excitation response of the LR phononic
plates.

2 Model and method

The studied LR phononic plate consisted of a peri-
odic array of resonators (mass-screws) mounted to a thin
homogeneous plate (Fig. 1a). Given the structure’s peri-
odicity, only one-unit cell was considered in the calcula-
tion. To obtain the band structure of the infinite periodic
plate, the dispersion relation between the frequency and
the wave number of a unit cell must be determined by
varying the wave vector in the first irreducible Brillouin
zone (Fig. 2). Bloch–Floquet periodic boundary condi-
tions were used for the edges of the unit cell (Fig. 1b):

Udestination = Usourcee
−iKF a, (1)

where Ui is the displacement vector, a is the width of
the unit cell, and the real number KF corresponds to the
wave vector.

Using the Comsol 5.0 software suite with a finite el-
ement method, we calculated a series of dispersion re-
lations to investigate the propagation characteristics of
elastic waves in the proposed LR plate. Free tetrahedral

elements quadratic interpolation functions were used to
mesh the mass, screw, and bolts. The plate surface was
meshed with the free triangular elements. By distributing
of three elements, swept meshing was applied in the di-
rection of the thickness of the plate. The efficiency of the
finite element method for obtaining phononic crystal dis-
persion curves has been proven in previous studies [7,10].
The governing field equations for elastic wave propagation
in solids are given by

ρ
∂2Ui

∂t2
=

3∑
j=1

∂

∂xj

(
3∑

l=1

3∑
k=1

Cijkl
∂Uk

∂xl

)
, (i = 1, 2, 3) (2)

where ρ is the mass density, Ui (t, x, y) = Ui(x, y)eiωt

is the displacement,t is the time, Cijkl is the elastic con-
stant, and xj(j = 1, 2, 3) represents the coordinate vari-
ables x, y, and z, respectively. By using these equations
with the Bloch–Floquet periodic boundary conditions, we
can calculate the dispersion relations for the proposed
structures.

Three examples of LR plate systems were analyzed
using the same plate, lattice constant, and added mass.
The geometrical parameters were chosen as follows: a lat-
tice constant of a = 40 mm, a plate thickness of e = 1
mm, and a width of a1 = 15 mm and a thickness of
e1 = 3 mm for the square steel filler The square fillers
were made of steel (Young’s modulus E = 205 GPa, den-
sity ρ = 7850 kg.m−3, Poisson’s ratio ν = 0.28). The
thin host plate was made of aluminum (E = 70 GPa,
ρ = 2700 kg.m−3, ν = 0.33). The screw was made of ny-
lon (E = 2 GPa, ρ = 1150 kg.m−3, ν = 0.4). As shown
schematically in Figure 3, the square filler was threaded
between two hex nuts and mounted either to the top
(Fig. 3a) or the middle (Fig. 3b) of an M3 × 40 screw
or to the top of an M3 × 25 screw (Fig. 3c).

The LR plate was composed of repetitive unit cells.
This periodic nature of the plate caused it to act as a me-
chanical filter for wave propagation. Figures 4a–4c shows
the calculated dispersion relations of the proposed LR
plates with the three unit cells (described in Figs. 3a–3c).
The vertical axis represents the frequency [Hz], and the
horizontal axis is the reduced wave vector taken along the
first irreducible Brillouin zone MOXM (Fig. 2b). Accord-
ing to Bloch’s theorem, these measurements are sufficient
to determine the complete and directional frequency band
gaps, provided the group velocity of the points vg = ∇kω

304-page 2



S. Zouari et al.: Mechanics & Industry 18, 304 (2017)

(a)   )c( )b(

Fig. 3. Three resonator (mass-screw) configurations: (a) M3 × 40 screw with top-mounted mass, (b) M3 × 40 screw with
center-mounted mass, and (c) M3 × 25 screw with top-mounted mass.

(a)  )c( )b(

Fig. 4. Band structures of the three LR configurations: (a) M3 × 40 screw with top-mounted mass, (b) M3 × 40 screw with
center-mounted mass, and (c) M3 × 25 screw with top-mounted mass.

does not have an infinite magnitude [11]. Although we
focused exclusively on the flexural band gap, the band
structures also showed high group velocity modes (black
points in Fig. 4), which correspond to the compression
or shear mode of the plate. The horizontal curves corre-
spond to the resonant modes, for which energy was local-
ized mainly in the resonators (mass-screws): plate defor-
mation was negligible compared with the deformation of
the resonators. The frequencies of the horizontal curves
were close to the resonance frequencies of the uncoupled
resonators clamped to the base.

The band structures show the existence of complete
and directional frequency band gaps for the three config-
urations (highlighted by the gray areas in Fig. 4). The
complete band gaps had similar frequency widths. Thus,
varying the resonator’s stiffness (represented by changing
the positions of the mass on the screws) had a negligi-
ble influence on the frequency width of the band gap.
To better understand the evolution of the band gap, Fig-
ure 5 shows the bare aluminum plate band structure (dot-
ted green lines) and the frequency resonances of the lo-
cal resonator (horizontal dashed red line). The Figure 5
shows that the horizontal line of the local resonator dis-
appears near a frequency of 1900 Hz: a strong coupling
with the plates gives the complete band gap of between
1000 and 1650 Hz. Moreover, the upper complete band
gap edge is determined by the Bragg conditions in the

Fig. 5. Band structures of: the LR aluminum plate with a pe-
riodic resonator M3 × 25 screw with top-mounted mass (blue
line), M3 × 25 screw with top-mounted mass (dashed red line),
and bare aluminum plate (dotted green line).

Ox -direction (a = λp

2 , where λp represents the flexural
wavelength of the thin plate), which gives the Bragg fre-

quency fB = 1
2π

(
π
a

)2√ D
ρh [4]. Thus, the Bragg and res-
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Fig. 6. Band structures of bare aluminum plate (dotted green line) and band structures of the LR assembly consisting of a
thin aluminum plate and an M3 × 25 screw with a top-mounted mass (blue line): (a) a = 35 mm, (b) a = 40 mm, and (c)
a = 50 mm.

onance band gaps are joined in the band structures to
create a complete band gap with a great width.

To illustrate the mechanism responsible for the band
gap position in the LR plate, we investigated the effect
of the lattice constant on the band gap. Figures 6a–6c
shows the band structures of the LR plate consisting of
an aluminum plate with a periodic mass mounted to the
top of the M3 × 25 screw for lattice constants of a = 35
mm, 40 mm, and 50 mm. The greater the lattice constant
a, the lower the upper edge of the band gap and the thin-
ner the complete band gap. The position of the complete
band gap changed because its upper gap edge was always
located at the Bragg frequency. Thus, for such a Bragg
band gap, the position of the first directional band gap in
the Ox -direction is in accordance with the complete band
gaps (Fig. 6). However, in the same direction, the position
of the second directional band gap can be changed signif-
icantly by tuning the resonant frequency of the resonator
(as shown in Fig. 4), suggesting that it behaves similar to
a resonance band gap.

3 Experimental results

To validate the two numerical approaches presented
in Section 2, the experimental analysis was based on
the resonator configuration described in Figure 3c. The
LR phononic plates consisted of a 600 mm long (x-
direction), 500 mm wide (y-direction), and 1 mm thick (z-
direction) aluminum base plate. The plate was attached to
a square array of 11× 6 mass-screw resonators (as shown
in Fig. 10a). The resonator array had a lattice constant
of a = 40 mm. The behavior of the LR plate assembly
was compared with that of a bare aluminum reference
plate of identical length. To generate a plane wave prop-
agating in the x-direction, the plates were each clamped
on one side to a shaking table (Ling Dynamic Systems:
LDS V850-440-SPA32K) whose displacement was in the
Z−direction (Fig. 7). The other sides of the plates were
left free. The imposed displacement along the clamped
side of the plate consisted of white noise with a frequency

range of between 20 and 2000 Hz and an amplitude of
0.011 mm RMS. This excitation is equivalent to an iner-
tial uniform surface load of the structure. Two accelerom-
eters (PCB M352C66) were used to measure the excita-
tion acceleration: one accelerometer was placed on the
shaking table; the other was located on the rigid beam
clamping the plate (Fig. 7). The out-of-plane response
was measured with a Scanning Laser Doppler Vibrome-
ter (SLDV, Polytec PSV-400); the measuring laser beam
swept over the surface without resonators. The measure-
ments were taken by scanning 11×13 points over a 0.04 m
× 0.04 m (Fig. 10b). For each position 20 averages were
used to record the fast Fourier transform (FFT). A resolu-
tion of 625 MHz with 0% overlap and a Hamming window
function was used to determine the frequency response.

The curves shown in Figure 8 contrast the excita-
tions measured on the shaking table with those measured
near the clamp of the plate. Possibly due to local reso-
nance, measurements taken near the clamp varied with
frequency, which suggests that the clamping was flawed.
The acceleration of the table (input1) is used in the fol-
lowing.

Through an FFT, the SLDV achieved the fre-
quency response function (FRF) of each scan point
(H1(f) :accerationVib/accelerationRef). The following
equation calculates the average of H1for each line of the
measured scanning points in the Ox -direction:

Hline(j) =
1
n

n∑
i=1

magnitude(H1(ij)); j = {1, 2, 3, 4, 5}
(3)

Figures 9 and 10 show measured averaged frequency re-
sponse Hline(j) , represented by curves, according to fre-
quency for the first five detection lines of the LR plate
(Fig. 9) and of the reference plate (Fig. 10). Figure 9
shows a significant decrease in Hline(j) for values of j = 1
to 5 between 1000 and 1650 Hz (gray area). The vibra-
tion attenuation increased as a function of the position of
the measured line over the excited side. This decrease in
vibration is absent in Figure 10, which corresponds to the
bare plate case. We thereby experimentally demonstrated
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Fig. 7. (a) Experimental prototype of the LR plate with 11 × 6 resonators (a = 40 mm). (b) Schematic of scanning area and
detection lines.

Fig. 8. Measured excitation acceleration of the shaking table (input1) and of the rigid beam (input2).

Fig. 9. Measured averaged frequency response H(line(j)) for the LR plate with periodic resonators (a = 40 mm).
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Fig. 10. Measured averaged frequency response H(line(j)) for the bare aluminum plate.

(a)  (b) 

 

    

Fig. 11. Measured vibration shape at frequencies of (a) f = 146 Hz and (b) f = 1252 Hz.

the existence of a band gap in a frequency range of 1000
to 1650 Hz. This finding is coherent with the theoreti-
cal complete band gap (Fig. 5). A Bragg band gap re-
mains, however, difficult to detect. As demonstrated the-
oretically by Xiao. [4], the attenuation performance of the
Bragg band gap is less substantial than that of other band
gaps. Also, the band structure (Fig. 4c) shows a horizontal
curve at f = 888 Hz that cuts through the first directional
band gap and attenuates its effect. The maximum drive
frequency of the shaking table was 2200 Hz; therefore, the
resonance band gap in the Ox -direction [2300 to 3400 Hz]
cannot be excited.

The displacement fields of the LR plate were plotted
for a frequency range outside of the band gap (Fig. 11a)
and for a frequency range within the band gap (Fig. 11b).
The efficiency of the LR plate is illustrated in Figure 11b:
the lower area (treated with LR systems) shows negligible
movement compared with the upper area (without LR
systems).

To determine the partial band gaps, a second LR
plate configuration was tested with a lattice constant of

a = 50 mm, corresponding to the case illustrated in
Figure 6c. This LR plate was made from the same alu-
minum base plate as the LR plate used in the first con-
figuration, with a square array of 9 × 8 mass-screw res-
onators (as shown in Fig. 12a). Figure 14 shows the band
structure of this configuration: a complete band gap (G1

[842 to 1056 Hz]) and two partial band gaps (g1 [556 to
858 Hz] and g3 [1714 to 2415 Hz]) are visible in the Ox -
direction. For this case, g3 wasa resonance gap, and g1

was a Bragg gap. Experimentally the unidirectional ex-
citation was more likely to produce plane waves propa-
gating in the Ox -direction. In Figure 14, the curves of
the averaged H values are shown according to frequency
for the first six lines of the LR plate depicted in Fig-
ure 12b. Compared with the theoretical frequency gaps
(Fig. 13), Hline(j) decreased significantly in the frequency
range of the complete band gap G1 and the resonance
band gap g3. Additionally, wave attenuation was low in
the frequency range of the Bragg band gap g1 (Fig. 14).
Nevertheless, this band gap remains difficult to detect,
possibly because damping was not taken into account in
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 )b( )a( 
Fig. 12. (a) Experimental prototype of the LR plate with 9× 8 resonators (a = 50 mm). (b) Schematic of scanning area and
detection lines.

Fig. 13. Band structures of the LR aluminum plate with peri-
odic resonators (M3 × 25 screw with top-mounted mass) with
a lattice constant of a = 50 mm.

the numerical models (although it was, of course, present
in the experiment). According to Peng [12] and Claeys [2],
the addition of damping widens the attenuation region
but decreases the peak attenuation until the band gap
effect is destroyed.

Contrary to the band gap predicted based on an anal-
ysis of a unit cell with periodic Bloch–Floquet boundary
conditions, experimental band gaps could be affected by
boundary reflections. Two types of reflection exist:

– Boundaries in the lateral direction: Edge effects only
play a role if waves propagate in a direction other than
x. In fact, the unidirectional excitation mode mini-

mizes the amplitude of these inclined waves. Thus,
finiteness of the plate in the y-direction should not in-
fluence the results. Nevertheless, using punctual exci-
tation results in higher edge-side disturbances, which
render the detection of a directional band gap more
difficult.

– Boundaries in the x-direction: The uniform accelera-
tion field in the untreated area normally extends in
all directions and, given the free boundary conditions
at the edge of normal x, offers acceptable solutions.
Thus, the wave propagates mostly in the x-direction.

3.1 Conclusion

The flexural wave propagation and vibration attenu-
ation characteristics of a LR plate were investigated the-
oretically and experimentally with a 2D periodic array of
attached resonators (mass-screws). The band gap behav-
ior was characterized theoretically by plotting the band
structures of various resonator configurations; a mass was
mounted to either the top or middle of a nylon screw to
vary the resonator stiffness. In addition, the effect of the
lattice constant on the band gap was investigated. The
larger the lattice constant a, the lower the upper edge
of the band gap and the thinner the band gap. Further-
more, combining the resonance gap with the Bragg gap
increased the width of the complete band gap. Finally, dif-
ferent lattice constants (a = 40 and 50 mm) were used
to obtain two experimental measurements for an LR plate
consisting of a periodic array of resonators (mass-screws)
attached to a thin homogeneous plate. The theoretical
predictions for the position and width of the complete
band gap and of the directional band gap are in agreement
with the experimental measurements. Compared with a
Bragg gap, a much higher attenuation performance was
observed for the resonance gap. The Bragg gap was diffi-
cult to detect experimentally.
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Fig. 14. Measured averaged frequency response H(line(j)) for the LR plate with periodic resonators (a = 50 mm).
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