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Abstract—Aliasing signals generate when two or more abrasive
particles pass through an inductive debris detection sensor
simultaneously, which will lead to an accumulative error for
further diagnosis and prognosis of machinery equipment. The
degenerate unmixing estimation technique (DUET) is an effective
method for dividing aliasing signals into original sources and
getting a more accurate number of the superimposed wear debris.
By using the two-dimensional weighted histogram, two key
parameters are estimated, which directly influences the following
accuracy of source separation. To promote the precision of the
parameter delay, neural networks methods including feedforward,
cascade-forward, auto encoder (AE), sparse auto encoder (SAE),
convolutional neural networks (CNN) are attempted and
compared by using the simulative data. Different data structures
are used for the testing and the result shows that the delays give
the lowest mean square error (MSE) with the two-layer CNN.

Keywords—aliasing  signal separation, deep learning,
convolutional neural networks, degenerate unmixing estimation
technique

L INTRODUCTION

Wear and tear is one of the typical failures for mechanical
components [1]. Usually, the wear status of a friction pair is
difficult to be detected directly [2]. Debris detection methods, as
indirect methods, provide online solutions to obtain the wear
status of the mechanical components. These kind of methods
have been applied on the diagnosis and prognosis of many
mechanical components such as engines [3], rolling bearings [4]
and many other machines [5, 6]. By using the debris detection
methods, the characteristics of the direct wear productions,
abrasive debris, can be obtained. The characteristics are more
convincing than the vibration signals in describing the wear

status and the failure process can also be presented quantitatively.

In a variety of debris detection methods, the inductive sensor
is easier to be installed than those based on optics, x-ray and
ultrasonic. Especially, it can distinguish between ferrous and
non-ferrous debris compared with the methods based on
capacitance and resistance. Many research works have been
done on promoting the performance of the inductive debris
detection methods, among which are a high throughput inductive
pulse sensor by Du, et al [7], a radial inductive debris detection
sensor by Hong, et al [8-10], a high sensitivity wear debris sensor
by Zhu, et al [11] and other sensors in different structures [12].
These sensors have shown different performances on precision
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or sensitivity, while they share the problem of signal aliasing
when two or more abrasive debris pass through an inductive
debris detection sensor simultaneously and the problem is more
severe when the methods are applied to high-flow-rate
components like pumps.

The aliasing problem has not been paid much attentions by
most researchers. On the one hand, most of the methods are
aiming at the detection for lubricating oil under low flow rate
which leads to a small probability of aliasing. On the other hand,
some sensors are not practically applied and the performances
are only proved by the simulations. In fact, when two signals are
superimposed, the amplitude of the induced voltage is added and
two wear debris may be recognized as one by the impulse
counter method. These will cause an accumulative error and the
wear status may be wrongly analyzed. Taking the aliasing into
consideration, the method will have a wider application area and
the precision of the method will also be promoted.

To solve the aliasing problem, a source separation method
called degenerate unmixing estimation technique (DUET) [13,
14] for speech signal separation can be used [15]. The original
assumption of the method is the anechoic environment which is
invalid in the real acoustic environment. In other words, the
DUET method is much easier to achieve for the aliasing signals
separation than its original purpose: the speech signal separation.
In real environment, the voice will be reflected by the wall and
arrive at the sensors (normally the microphones) several times,
which will cause an error. For debris sensors, one wear particle
will only pass through the sensor once, which is the ideal
situation of the method. In fact, there are also other methods for
source separation like independent component analysis (ICA)
[16], but the method cannot be applied when the sources are
more than the sensors, which is commonly seen for the aliasing
problem.

However, to achieve the application, the detection should be
designed to meet the assumption. A serial structure has been
proposed and the tested signals have been proved to agree with
the assumption. By the DUET method, the separated signals are
proved to be the solution of the aliasing signals, while they are
not the only solution. The key parameter for the separation is
obtained by a two-dimensional weighted histogram method,
which cannot provide an accurate result of the parameters. The
two key parameters, the attenuation and the delay, are influenced
by at least three kinds of errors. The first one is caused by the
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transformation: the method wuses the short-time Fourier
transform (STFT) to get the time-frequency domain
characteristics of the aliasing signals. The two-dimensional
weighted histogram clusters the key parameters by the weights,
which is only to get the principal component of the transformed
signals and the other components will be ignored. When
conducting an inverse-transformation, there will be a
transformation error. The second kind of error is caused by the
clustering. If two delays or attenuations are very closed, they will
be recognized as one by the current cluster method. There is
another aliasing error which is caused by the noise when
handling the aliasing problem. This error exists and shared by all
the source separation methods. Several methods have been
studied to promote the signal-to-noise ratio (SNR) so that the
parameter can be obtained accurately [17].

Neural networks have been studied a lot as machine learning
methods and widely used for the speech source separation [18-
23]. In this paper, to obtain more accurate parameters for the
source separation, several artificial neural networks are tried.
Networks including the feedforward network, cascade forward
network, auto encoder, sparse auto encoder and convolutional
neural network are attempted. Networks with the same type but
with different parameters are also tried, like the two-layer
convolutional neural networks. In fact, in the aliasing signal
separation, the attenuation is a constant and the most important
is to get an accurate parameter delay. Both the network for the
two parameters and only for the delay are tested. The results are
listed in tables.

The rest of the paper is organized as follows. In section 2, the
DUET-based aliasing separation is briefly described. In section
3, the networks used for delay estimation are proposed and
structure are described. Section 4 shows the simulation results of
different networks and the results are discussed. In Section 5,
some conclusions and remarks are drawn

II.  DUET-BASED ALIASING SEPARATION

The DUET method tries to separate several sources from two
aliasing signals. The aliasing phenomenon can be described by
Figure 1. When two or more wear debris go through an inductive
sensor, the induced voltage of the debris will be superimposed.
The actual wave shown to us is only the after-superimposed
curve, which is the so-called aliasing signal.

o 0.002 0004 0.008 0008 0012 o014 0018 o018 002

Figure 1 The aliasing phenomenon

As is shown in Figure 1, the aliasing is the superimposition
of the two sources in time domain. Solving this problem is
something like solving the linear equation in two unknowns like

x+y=a, where a is a constant and x, y are unknowns. By

the only one equation, we can get infinite solutions. If we want
to get the only one solution, we need at least two equations and
the equations cannot describe the same line in space. In other
words, if the other equation is n(x+ y)=na , where n is a

constant, we cannot get the only solution. Hence, we also need
two aliasing signals: y,(t) and y,(¢#) in DUET. The signals
should meet

y(1)=25(1) (1

be (t)ZZais[(l—é'[) (2

where s,(¢) isthe i, sourceand the delays o, should not be the
same or the attenuations g, should not be the same so that the
aliasing can be separated.

Obviously, to separate the sources in time domain is very
difficult. The core idea to separate the sources is to transform the
signals into the time-frequency domain, which is also the key
technique of the other source separation methods. This is the
same like to watch the signal in another perspective, which is
shown in Figure 2. The aliasing signals shows separated
characteristics in the time-frequency domain. For a finite-length
and discrete signal, the STFT is the proper transform function.

§,(r,0)=F"[5,](r.0) = ﬁj:W(t —7)s, (¢)e 7 dz. (3)

Time-frequency
domain

Eo

+ Perspective 2

w

Time domain
’ Perspective 1

Figure 2 Transformed signals
In the STFT, if two of the aliasing sources satisfy
§,(1,0)5,(r,0)=0 V1,0, Vi# s 4)
then, the two sources can be separated by the mask function

M, (7,0) :={

1 §(r,0)#0

0 otherwise.

®)

and the i, source is
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$5.(r,0) =M, (1,0}, (7,0), V7,0 6)

The key parameters attenuation and delay can be calculated
by

.);2 (Taa))
w

1(7.0)
S(T,a))—[ly[MJ ®)

@ b (r,0)

(7

=

and the commonly used schematic diagram of a two-
dimensional weighted histogram is shown in Figure 3. The peaks
are the estimation of the attenuations and delays. In fact, this
estimation does not always get a very accurate result because

there are transformation errors, noise errors and clustering errors.

To promote the accuracy, in the next section, different kinds of
neural networks are compared and the results are shown in
section 4.

weight

0

atterniation - b dlay
Figure 3 schematic diagram of a two-dimensional weighted histogram

III.  NEURAL NETWORKS METHOD FOR DELAY ESTIMATION

Neural network is a machine learning method based on large
dataset. The first thing is to obtain the dataset for training. In fact,
the data we got from the experiment are far away from the
requirement and the experimental data cannot be separated
perfectly for the training. Hence, the simulated data are used here
for the training.

The simulated data are based on the sine wave. Each of the

particles is described as a sine section with period from 7 to

V4 . . . .
5 The sine sections with random amplitude and phase are

superimposed to be the first aliasing signal. Modify the
amplitude and phase of each sine sections and add them together
to get the second aliasing signal. The two signals can be obtained
and their delay characteristics can also be calculated during the
process, which composed the dataset for training.

As is shown in Figure 4, the framework for the parameter
estimation is displayed. The points of aliasing signals are the
inputs and the outputs are the parameters.

N Neural networks Output

—_—1 Input
O Delayl

Signall point2 .
------ O Delay2

OO

SignalN point1 Signall pointl
[_SignalN point2__|

SignalN pointM Signall pointM

Figure 4 Framework for the parameter estimation

O Delay3

In fact, under the supervised learning, the number of the
output should be confirmed firstly. In our framework, the output
is relied on the number of sources which cannot be known.
Fortunately, the DUET method provides a relative accurate
number of the sources. So for each number of sources, a network
is established and used only for the specified. For the debris
sensors, because the attenuation is usually a constant, the
estimation of the attenuation can be conducted by other method.
The outputs of the proposed networks are only the delays.

The networks are actually the functions of the inputs and
outputs. For the debris sensors, the delays are the characteristics
of the two aliasing signals. The shape of inputs may also affect
the performance of the networks. For different networks,
different input shape is also tested in the next section.

IV. SIMULATION AND RESULTS

A. Feedforward networks

The simulation is conducted by using the Matlab neural
network toolbox. One-layer and two-layer feedforward networks
are tested and the structure is shown in Figure 5. Different
number of hidden nodes are tested and the results are shown in
TABLE L

Input

8
5 8
Hidden 1 Hidden 2 Output
Input Output
1000 3
5 5 3

Figure 5 Feedforward networks structure

Best Validation Parformance is 1.504 at epoch 4

L L L i | L L | I
0y 1 z 3 T B ® T O B 0
10 Epochs

Figure 6 Mean square error
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Instances

Efrors = Targets - Outputs.

Figure 7 Error distribution

The inputs of the networks are the joint matrix of the two
signals. Each signal has a length of 500 points data and the joint
result is 1000 for the number of inputs. The outputs are three
delays because we use three sources to generate the aliasing
signals and the networks are only used to estimate the delays of
three-source aliasing situation. Gradient descent is used for the
training.

1000 groups of samples are used for training and 300 groups
of samples are used for testing. Another 300 groups of samples
with a noise of normal distribution whose mean value is zero and
square error is 0.1 are also used for the test and the mean square
error (MSE) are calculated for evaluation the performance of the
networks. For each network structure, we can get the MSE of
each training step which is shown in Figure 6 and the error
distribution which is shown in Figure 7. The structure [5] means
the feedforward network has one layer and the hidden nodes
number is 5. The structure [5 5] means the feedforward network
has two layers and the hidden nodes number of the first layer is
5, the number of the second layer is 5.

TABLE I SIMULATION RESULTS OF FEEDFORWARD NETWORKS

Network structure | MSE | MSE of data with noise
[5] 0.1819 0.2321
[8] 0.1931 0.2393
[10] 0.1816 0.2306
[12] 0.1827 0.2911
[15] 0.1564 0.2822

[55] 0.2016 0.2240
[85] 0.1782 0.2412
[10 5] 0.1925 0.2287
[510] 0.2038 0.2727
[88] 0.1929 0.2553

Because the initial weight of the networks are random, the
results shown in TABLE I is the mean value of 10 times training.
From the results we can easily see that the different structure of
a feedforward network has little influence on the estimation.
Generally, the MSE of the data with noise is higher than the MSE
of the clear data.

B. Cascade-forward networks

The setting of the inputs and outputs are the same as the
feedforward networks’. The structure of the network is shown in
Figure 8. Both cascade-forward networks with one layer and two
layers are tested. The results are listed in TABLE II.

Output Layer

Figure 8 Cascadeforward networks structure

TABLE II SIMULATION RESULTS OF CASCADEFORWARD NETWORKS

Network structure | MSE | MSE of data with noise
[5] 0.1394 0.2803
[8] 0.2036 0.2393
[10] 0.1795 0.2101
[55] 0.2084 0.1976
[88] 0.1953 0.2480

The cascade-forward networks show a similar result with the
feedforward networks. However, the time cost of the training is
about 10 times than that of the feedforward networks. Different
structures show an analogous MSE for both the clear data and
the data with noise.

C. Auto-encoder

By using the traditional training method, the scale of the
networks cannot be very large. The feedforward and cascade-
forward networks proposed above consist of about one or two
layers and totally under 20 nodes. However, the cost of the time
for the training is very large. The auto-encoder changes the
training method and reduces the cost largely. The scale of the
network by auto-encoder can be thousands of nodes and the cost
of time is approximately equals to train a 20 nodes two-layer
feedforward network, which makes it an important branch in
deep learning. The structure of the auto-encoder is shown in
Figure 9.

Figure 9 Auto-encoder structure

223



Because of the deep learning toolbox of the Matlab has
stopped updated, the method is also tested by tensor-flow. The
results of different node numbers are shown in TABLE III.

TABLE III SIMULATION RESULTS OF AUTO-ENCODER NETWORKS

Network structure | MSE | MSE of data with noise

[50 50] 0.1332 0.1295

[100 50] 0.1177 0.1221

[100 100] 0.1269 0.1227
[200 100] 0.1257 0.1265

[50 50 50] 0.1326 0.1220
[100 100 50] 0.1224 0.1260
[100 100 100] 0.1337 0.1365

The result of auto encoder is obviously better than the
feedforward and cascade-forward networks. Less than 20 nodes
may not fit the relation well. We can also see that the result is
not better and better with the increasing of the number of the
nodes. The best result is shown at [100 50]. The increasing of
nodes does not promote the accuracy but only increases the cost
of time. Deep network actually shows a better result.

D. Sparse auto-encoder

The sparse auto encoder is a modified auto encoder method
with sparse constraint. This kind of method makes most nodes
inactive compared with the auto-encoder. The structure of the
sparse auto encoder is the same as the auto encoder shown in
Figure 9.

The sparsity regularization of the tested networks is set as 4
and the sparsity proportion is set as 0.05. Purelin is chosen as the
decoder transfer function. The testing result is shown in TABLE
IV.

TABLE IV SIMULATION RESULTS OF SPARSE AUTO-ENCODER NETWORKS

Network structure | MSE | MSE of data with noise
[50 50] 0.0412 0.3673
[100 50] 0.0372 0.3691
[100 100] 0.0373 0.3585
[200 100] 0.0375 0.3538

Different from the auto encoder, result of the sparse auto
encoder shows that it has a higher accuracy in the test of clear
data but a lower accuracy in that of data with noise instead of a
more accurate result.

E. Convolutional neural networks

The CNN simulation is under the tensor-flow environment.
Generally, the structure of CNN is shown in Figure 10. The input
signals are reshaped to a matrix of 2 rows and 500 columns.
Convolutional core with different numbers and shapes are tested.
Then, the max pooling layer is used. After the full connection
layer, three outputs are obtained.

Convolutional core

30

Feature map Masx pooling Ful

S00 3500-6000 00000000 oo 4 0]
30 00000000 oo S
00000660
0000-TTTT——~ foel . 00000000 o o O
—_—
Input sigaals 00000000 0o o
o
° O

Figure 10 CNN structure

The two-layer CNN is after the first max pooling layer, there
are another convolutional layer and max pooling layer. The
number of nodes for the full connection layer is 256 in one-layer
CNN and 1024 in two-layer CNN. Different structure of the
CNNss are tested and the results are listed in TABLE V.

TABLE V SIMULATION RESULTS OF CONVOLUTIONAL NEURAL NETWORKS

Network structure MSE | MSE of data with noise

10conv20*2 pool2*2 | 0.1297 0.1183

20conv20*2 pool2*2 | 0.1150 0.1169

30conv20*2 pool2*2 | 0.1251 0.1226

10conv30*2 pool2*2 | 0.1181 0.1136

20conv30*2 pool2*2 | 0.1177 0.1190

30conv30*2 pool2*2 | 0.1216 0.1159
* *

IR v oowe
* *

Toeany15°1 poolze1 | 00854 00852
* *

Toeomu 151 pooze1 | 0081 00859
* *

oo 1w one
* *

Joeomu 101 oozt | 055! 00827
* *

Soeonv10°1 poolze1 | 0562 00865

The one-layer CNN shows a similar result with the auto
encoder networks and the two-layer CNN shows a better result.
Different parameters on the number of convolutional cores and
shapes of convolutional cores are simulated. The result does not
show a wide difference between networks with different
parameters. The two-layer CNN shows the best performance in
all the neural networks tested in this paper.

V.  CONCLUSIONS

In this paper, neural networks including feedforward
networks, cascade-forward networks, auto encoder, sparse auto
encoder and convolutional neural networks are used for the
estimation of delay for the aliasing source separation. Simulated
data are used to do the estimation and the result shows that
different networks show different performances. The difference
of a special network with different structure like multi-layer or
different number of nodes does not have an impact on the result.
The two-layer CNN shows the best result that both the MSE for
the testing group of clear data and the MSE for the testing group
of data with noise are the lowest in all the networks used for
testing. Especially, the sparse auto-encoder has shown the best
result for the clear data but the worst result for the data with noise.
In fact, in the real application, the data with noise are more often
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to be seen that under this circumstance, the two-layer CNN
shows a robust characteristic.
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