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ABSTRACT
Assembled bladed disks have many contact interfa

(blade-disk joint, blade shrouds, friction dampers...). Becaus
relative displacements at these interfaces, fretting-wear occ
which affects negatively the lifetime of the structure. Metho
exist to predict fretting-wear in quasi-static analysis. Howe
they don’t predict all the phenomena observed in blade atta
ments on real industrial plants. This paper studies the assump
of a responsibility of dynamics for fretting-wear damage.

A numerical treatment of fretting-wear under vibratory loa
ing is proposed. The method is based on the Dynamical
grangian Frequency Time method. It models unilateral con
through Coulomb’s friction law. The basic idea is to separ
time in two scales, slow scale for tribological phenomena and
scale for dynamics. For a chosen number of periods of vibrat
a steady state is assumed and the variables are decompos
Fourier series. An Alternating Frequency Time procedure is p
formed to calculate the non-linear forces. Then, a Hybrid Po
ell’s algorithm is used as solver. A quasi-analytical expressio
the Jacobian matrix decreases the duration of calculations.
expression is also used to predict new relative displaceme
the interfaces due to the increase of wear depth. This metho
similar to a prediction-correction method, with wear depth as
term of continuation.

Numerical investigations on a bladed-disk with friction co
s all correspondence to this author.
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tact interfaces illustrate the performances of this method an
show the coupling between dynamical and tribological pheno
mena.

NOMENCLATURE
˜ Multiharmonic vectors.
T , N Tangential and normal directions.

pN, p
′

n Normal pressures.
pT , p

′

T Tangential shears.
u,v Displacements.
g Initial gap.
w,WWW Wear depth, nodal wear depth vector.

r Relative value.
UUU Time-domain nodal displacement vector.
M , C, K Mass, viscous damping and stiffness matrices.
Zr Reduced dynamic stiffness.
Fc Nodal contact force.
λλλ, λ̃λλ Lagrangian multiplier in time and frequency domains.

INTRODUCTION
One of the most important sources of nonlinearities in as

sembled bladed disks is the frictional contact at the interface
These nonlinearities have often a positive aspect because th
introduce damping in the vibratory response. But relative dis
asme/terms-of-use
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placements at the interface also have a damaging effect, sie
fretting-wear appears and can induce cracking.

Fretting-wear studies in blade roots are usually performe
on the assumption of quasi-static loading. Thus, in the case
plane engines, only the take off or landing configurations are c
culated [1] or tested [2]. Nevertheless, some industrial dama
surveys lead one to think that wear also occurs at cruising ra
in spite of the fact that only micro-slidings due to vibrations ar
observed in such conditions. Wear could be explained by a co
pling between vibrations and wear, and by the fact that frettin
cycles are repeated during a much longer time than the duratio
of take off and landing stages.

Methods exist to study the vibratory response of blade
disks in the presence of frictional contact [3, 4]. But studies o
fretting-wear under dynamical loading - including inertial effect
- are seldom [5, 6]. Recently a new method [7] was proposed
couple the calculations of the vibratory response and of the we
kinetics based on the Dynamical Lagrangian Frequency Tim
method (DLFT) [4] and on a multiscale approach (these dev
lopments were also used [8] to calculate a kind of ”modal wea
in synergy with the Nonlinear Normal Modes concept [9]). Th
present paper presents improvements to the method introdu
in [7].

To model the coupling between fretting-wear and vibration
the continuous formulation of the problem is discretized throug
the finite elements method. The main assumption is that a p
riodic steady state is reached and that wear will modify th
state only a little. Thus, it is possible to use methods bas
on Multi Harmonic Balance and Alternate Frequency Time pro
cedures [10]. A multiscale formalism is introduced to distin
guish between the ”fast” phenomena caused by vibrations a
the ”slow” phenomena due to wear.

Iterative numerical techniques are necessary because a n
linear system must be solved, at each step of the slow sca
The first improvement to the DLFT-with-wear method [7] is the
choice to proceed by ”wear steps” instead of ”long time steps
as previously. This way, the number of non-linear systems
solve is better controlled.

Here the strategy is based on a Hybrid Powell’s solver. Th
algorithm requires to evaluate a Jacobian matrix. This step
very time consuming if the usual finite difference method is em
ployed. An analytical estimation of the Jacobian is more effi
cient [10, 11]. The second improvement to the method is th
implementation of a quasi-analytical Jacobian inspired by lite
ature’s analytical Jacobians. It is obtained by derivation of th
non-linear forces expressed in the time domain according to t
contact state. The dependancy of the Jacobian on wear is ta
into account in the same manner. The two Jacobian matrices
sulting from this operation allow one to predict an updated wo
geometry in a very time-saving way.

The third improvement to the DLFT-with-wear method is
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the proposal of a specific error estimator to control the numb
of required harmonics.

There is nothing new about wear quantification. Wea
is a complex phenomenon because many causes can cha
wear debris creation: hardness, plasticity, grain structur
temperature. . . Here the Archard’s model [12] is used on th
local scale in the interface. It is assumed that the frictio
coefficient is unaffected by the evolution of wear. A mode
based on the dissipated energy [13] could have been used as w

The improved DLFT-with-wear method is applied here to
the industrial case of a bladed disk with dovetail joints. Its vi
bratory response and wear kinetics are calculated. The resu
provide a numerical evidence that worrying about the couplin
between fretting-wear and dynamics is of particular relevance
designers.

THE REFERENCE PROBLEM

Continuous formulation

y

z

x

n2
c

n1
c

Γ1
t

Γ1
u

Γ2
t

Γ2
u Γc

T2

T1

Ω2

Ω1

Figure 1: Description of the problem with two solids

The formalism is the one described by Strömberg [14]. Th
constitutive equations are built for two elastic bodies with a fric
tional contact interface in situation of fretting-wear. Each soli
l occupies a domainΩl with smooth boundaries∂Ωl as drawn
in Fig. 1. Each boundary∂Ωl is divided into three disjoint parts
Γl

t , Γl
u andΓc (common to both solids). Traction forcesT l are

imposed onΓl
t , displacements onΓl

u and frictional contact with
fretting-wear conditions onΓc.

The constitutive law for the interface is given by Signorini’s
unilateral contact conditions and Coulomb’s law of friction
asme/terms-of-use
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with µ the frictional coefficient. Wear is characterised by los
of matter. Archard’s law is used. It is supposed to be tru
for an elementary volume. Then, a local relation is derive
between normal pressure, tangential velocity and wear rate.
internal state variablew, the wear gap, is introduced so that th
interface law is derived from a generalized standard mater

formulation. The friction coefficientKw is such thatKw =
Ka

3H
,

where Ka is the wear rate coefficient of Archard’s law and
H is material’s hardness in the contact zone.Kw is deduced
from experiments. For example, McColl [15] determines a
averaged wear coefficient from the measured wear profile fo
cylinder-flat contact (this averaged coefficient is then introduc
in a discretized Archard’s law to simulate the evolution of wea
in a finite element ”wear box” approach). HereKw stems from
a flat punch contact configuration. Experiments have shown t
the coefficient of friction changes with wear evolution. Indee
it actually depends on the chimical composition of the conta
area. Dicket al. [16] have proposed a model to take this into
account. Here, material damage is neglected andKw is supposed
not to evolve as wear increases.

Variationally, the problem is defined by three integral equ
tions and one constitutive law (1-4). These equations ste
from the principle of virtual work, the weak formulation of Sig-
norini’s unilateral contact conditions, the complementary law
Coulomb and the local formulation of Archard’s law. More de
tailed explanations can be found in [14].

For each momentt of the studied time interval[0,T], are
sought the displacement fieldu for each pointx of both solids
(with uN anduT its normal and tangential components) and th
contact pressure fieldp (with pN andpT its normal and tangential
components).W designates the dual ofw i.e. the driving force
for wear. It has the same physical meaning aspN. v, p

′
andW

′

designate the test-fields associated respectively withu, p andW .

∫

Ωl
ρüividV+

∫

Ωl
Ei jkl

∂uk

∂xl

∂vi

∂x j
dV

+

∫

Γc

pivi dA−

∫

Γl
t

tivi dA= 0 ∀v ∈ V ,

(1)

∫

Γc

(uN −w−g)(p′N− pN)dA≤ 0 ∀p′N ∈ KN, (2)
∫

Γc

(u̇Tα (p′Tα − pTα)+

ẇ
(
W ′−W

))
dA≤ 0 ∀(p′T ,W ′) ∈ F (pN)

(3)
3
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V =
{

v |v(x) = 0,x ∈ Γl
u

}

,

KN = {pN | pN(x) ≥ 0,x ∈ Γc} ,

F (pN) =
{
(pT ,W ) | (pT(x),W (x)) ∈ F(pN),x ∈ Γc

}
.

F(pN) is a closed convex set describing the friction and wea
limit criterion. It is such that

F(pN) =
{
‖pT‖−µ|pN|+Kw pN W −Kw p2

N ≤ 0
}

.

In (2), g is the initial gap between both solids. In (3), the com
ponents of each vector are expressed in an orthonormal basisnα,
perpendicular tonc. ẇ is obtained through the following equa-
tion:

ẇ = Kw |pN|‖u̇T‖ (4)

Finite element discretization
A FEM discretization of (1) is performed. In practice, this

strategy can be coupled together with a component mode synt
sis to reduce the size of the problem. Capital letters designate
FEM counterpart of the variables named by small letters befor
they are vectors of nodal quantities. When both structures are
contact, the equations of motion for each structure are:

MÜUU
l
+CU̇UU

l
+KUUU l +FFF l

ccc(UUU
l
,U̇UU

l
,WWWl ) = FFF l

ex, (5)

whereM , C andK respectively designate the mass, damping an
stiffness matrices. For the sake of simplicity, exponentl will be
dropped afterwards.

FFFex is the vector of external forces it provides here a period
excitation. FFFccc represents the non-linear contact forces due
friction and impact; they also depend on the wear and on th
materials in contact.

Wear is calculated at each interface node by:

ẆM =
Kw

αM

∣
∣PM

N

∣
∣

∥
∥
∥U̇UU

M
T

∥
∥
∥ . (6)

αM is the weighting factor for nodeM. The weighting factors
depend on the quadrature rule used to calculate the integrals
each elementary contact area. ExponentM in PM

N andU̇UU
M
T desig-

nate the nodal quantities.
The constraints introduced by Eqs. (2) and (3) become:

t(UUUN −WWW−GGG)
(
PPP′

N −PPPN
)
≤ 0 ∀PPP′

N ∈ K h
N , (7)

t
U̇UUT
(
PPP′

T −PPPT
)
≤ 0 ∀PPP′

T ∈ F h(PPPN), (8)
asme/terms-of-use
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where K h
N =

{
PM

N |PM
N ≥ 0

}
is the approximation ofKN and

F h(PPPN) =
{

PPPM
T |
∥
∥PPPM

T

∥
∥−µ|PPPM

N | ≤ 0
}

is the approximation of
F (pN) with W M = PPPM

N .

BASIC ASPECTS OF THE DLFT-WITH-WEAR METHOD

A Harmonic Balance Method with two time scales
The main idea is to split time into two different scales: a fa

one associated with vibratory phenomena and a slow one asso
ted with wear. Indeed, at the scale of a few cycles wear appe
as an almost constant interface gap. It is then assumed that w
doesn’t change the aspect of the periodic response during a s
lapse of time. On this period it is then possible to describe d
placements and contact forces with Fourier series. On a lon
duration, Fourier coefficients will evolve as functions of a tim
variable linked with the fretting-wear. It is important to men
tion that, here, the depth of wear is very small compared w
the characteristic dimensions of the structures in contact. Tha
why the modifications of the mass and stiffness matrices due
wear are neglected.

This procedure belongs to the family of multiscale method
described by Meirovitch [17] for a single harmonic balance. Th
Fourier series ofUUU can be expressed as:

UUU(τ,η) = ŨUU0(η)+
Nh

∑
j=1

(
ŨUUn,c(η)cos( jτ)+ŨUUn,s(η)sin( jτ)

)
,

(9)
whereτ is the variable of the fast time scale andη the one of the
slow time scale. In the frequency domain, after condensation
the interface nodes, the equation of motion becomes:

ZrŨUU rrr(η)+ λ̃λλ(η) = F̃FF rrr , (10)

or

f (ŨUU rrr) = ZrŨUU rrr(η)+ λ̃λλ(η)− F̃FF rrr = 0, (11)

whereŨUU rrr , F̃FF rrr andZr designate respectively the reduced mult
harmonic relative displacement vector, reduced stiffness ma
and reduced external excitation.λ̃λλ is the vector of the Lagrange
multipliers which represent the contact forces in the frequen
domain.

Algorithmically, the solution over the time interval[0,T] is
originally calculated through a step-by-step procedure involvi
an incrementation of the slow time variable: for each step, Eq.
is solved through a Newton-like solver; this process constitu
the external loop of the method.
4
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Modeling of the contact forces
Solving (10) requires to know the expression ofλ̃λλ. Unfor-

tunately it is not possible to calculate it directly in the Galerkin
procedure, indeed it depends on the state of each contact nod
stick, slip or separation - which is a priori unknown. To under-
take this difficulty it is common to use the Alternating Frequency
Time method (AFT). Displacements and velocities are calculate
in the frequency domain and transformed into the time domai
using an inverse DFT procedure (iDFT). In the time domain, con
tact forces could be evaluated through different methods. Th
easiest one is to regularize thesign function - depending on the
velocity in the evaluation of Coulomb’s forces - by another func-
tion which is continuous. It allows a direct computation of the
non-linear friction forces [18]. The use of a penalty method is
another popular method [10, 19]. The additional stiffnesses ma
then represent a damper’s stiffness or the contact asperities sti
ness. In the case of fretting-wear theses stiffnesses could chan
with wear process, to take the modification of material propertie
in the contact area into account.

Another method has been proposed by Nacivetet al. [4]:
the Dynamic Lagrangian Frequency-Time method (DLFT). It
uses augmented Lagrangians which allow to calculate withou
any softening of the non-smooth frictional contact law. A
time-marching procedure in the time domain is also required
Compared to the conventional contact penalty method, th
main advantage of the DLFT method is that, at convergence
results don’t depend on any penalty coefficient (hence th
term ”pseudo-penalty” coefficient to designate the coefficien
used below to enforce the matching between the time an
frequency descriptions of displacements). This method ha
been successfully used to predict friction damping in blade
attachments [3] and to quantify the efficiency of friction ring
dampers [19]. In a precedent paper [7] this method has bee
coupled with a polynomial expansion of wear to calculate
directly the wear evolution for a two-degrees-of-freedom model
Here the formalism for contact forces calculation is the same a
in [7] (but wear depth is evaluated in a less complex manne
explained farther).

In the frequency domain, the Lagrange multiplierλ̃λλ is for-
mulated as a pseudo-penalization of the equations of motion o
the tangential and normal directions:

λ̃λλ
TTT

= F̃FF
T
rrr −

(
ZrŨUU rrr

)T
+ εT

(

ŨUU
T
rrr − X̃XX

T
rrr

)

, (12a)

λ̃λλ
NNN

= F̃FF
N
rrr −

(
ZrŨUU rrr

)N
+ εN

(

ŨUU
N
rrr −WWWN − X̃XX

N
rrr

)

. (12b)

εT andεN are pseudo-penalty coefficients,X̃XXrrr is a new vec-
tor of relative displacements, which is computed in the time do

main. The pair
(

λ̃λλ, X̃XXrrr

)

is determinated through an AFT proce-
Copyright c© 2009 by ASME
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f (ŨUU rrr) = ε
(
ŨUU rrr −WWW− X̃XXrrr

)
. (13)

The convergence ensures that the time domainX̃XXrrr and frequency
domainŨUU rrr match with respect for contact conditions.

The AFT is based on a prediction/correction procedure
the time domain (summarized in Fig. 2). Algorithmically, this i
the internal loop of the method.

ŨUU r

Pseudo-penalty
form - Eq. (14)

λ̃λλ = λ̃λλu− λ̃λλx

Prediction - Eq. (15)
nλλλpre = nλλλu

Correction - Eq. (17-19)
friction & contact laws

+ −

λ̃λλ f
(
ŨUU r
)

iDFT

nλλλpre

nλλλu

nλλλx

DFT

Figure 2: Computation of the Lagrangian vector with wear

The contact forces are calculated in the time domain, whe
the transition criteria between the three possible states are ea
formulated. Equation (12) is reformulated as:

λ̃λλ = F̃FF rrr −ZrŨUU rrr + ε
(
ŨUU rrr −WWW

)

︸ ︷︷ ︸

λ̃λλuuu

− εX̃XXrrr
︸︷︷︸

λ̃λλxxx

, (14)

The period is split intoN time steps. λ̃λλ, λ̃λλuuu and λ̃λλxxx have
{

λλλnnn}

n=1..N,
{

λλλnnn
uuu

}

n=1..N and
{

λλλnnn
xxx

}

n=1..N as respective time do-
main counterparts. These vectors are obtained from the
quency domain vectors through an iDFT procedure. A pred
tion/correction is then used to compute the contact forces.
each time increment it first assumes that the contact node is
stick situation, thus the node doesn’t move:λλλn,T

xxx = λλλn−1,T
xxx and
5
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λλλn,N
xxx = 0. The predicted contact forces are:

λλλn,T
pre = λλλn,T

uuu −λλλn−1,T
xxx , λn,N

pre = λn,N
u . (15)

The corrected contact forces will be:

λλλnnn = λλλnnn
uuu−λλλnnn

xxx, (16)

andλλλnnn
xxx will we be calculated to satisfy the contact and friction

laws.

1. Separation:λn,N
pre ≥ 0

The contact is lost and the forces should be zero.

λλλnnn
xxx = λλλnnn

uuu. (17)

2. Stick:λn,N
pre < 0 and

∥
∥
∥λλλn,T

pre

∥
∥
∥< µ

∣
∣
∣λn,N

pre

∣
∣
∣

In this case, the prediction verifies the contact conditions:

λn,N
x = 0, λλλn,T

xxx = λλλn−1,T
xxx . (18)

3. Slip: λn,N
pre < 0 and

∥
∥
∥λλλn,T

pre

∥
∥
∥≥ µ

∣
∣
∣λn,N

pre

∣
∣
∣

Again, there is no normal relative displacement. The correc
tion is made assuming that the tangential contact force h
the same direction as the tangential predicted force. The d
finition of relative velocity and the respect of the Coulomb’s
law give:

λn,N
x = 0, λλλn,T

xxx = λλλn−1,T
xxx + λλλn,T

pre 1−µ
|λn,N

pre|

‖λλλn,T
pre‖

)

. (19)

The final step consists of transforming back the time doma
updated Lagrangian in the frequency domain using the DF
algorithm.

At the end of this internal loop, it becomes possible to cal
culate the nodal wear for a single fretting cycle, denotedδWM

1 ,
by wear rate integration:

δWM
1 (η) =

Kw

αM

∫ η+Texc

η
|PM

N (τ,η)|‖U̇UU
M
T (τ,η)‖dτ, (20)

whereTexc is the time period of the harmonic excitation force (it
is also the period at which the system is supposed to respon
The interface gap - i.e. the geometry - can then be updated.
the level of the contact, equilibrium conditions are then mod
fied: this imposes a return back to the beginning of the predi
tion/correction process to re-equilibrate them. Then, a new loo
- the wear updating loop or intermediate loop - appears in th
algorithm. This is specific to the DLFT-with-wear method.
asme/terms-of-use
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IMPROVEMENTS TO THE DLFT-WITH-WEAR METHOD

About the wear depth calculation
Previously, an arbitrary number of cycles was chosen befo

the geometry was updated. To decrease the number of the s
time steps, it is necessary to choose a more efficient cycle jum
strategy.

Here the proposal consists of incrementing the wear dep
instead of time. A maximum authorized total wear depth, d
noted byWtot, is heuristically set for the whole considered dura
tion up toT. Wtot is split intok intermediate wear steps. A too im-
portant wear step would provoke such an unbalance in the cont
zone that a high number of loops in the prediction/correction pr
cess would be required to compensate for it.k is chosen heuristi-
cally as the probably best compromise between the total num
of wear steps and the number of required prediction-correcti
loops.

The relation between
Wtot

k
and the number of jumped cycles

∆N is:

∆N(η) =
Wtot

k maxM
(
δWM

1 (η)
) . (21)

If l denotes the considered step of the external loop - still pe
formed on the slow time scale - andηl the time of the beginning
of this step, the vector of nodal wears at the beginning of the ne
step,∆N(η) cycles later, is obtained by:

WWW(ηl+1) = WWW(ηl )+ ∆N(ηl )δδδWWW111(ηl ) (22)

If ∆N(η) becomes ”very” important, the algorithm stops. Phy
sically, it means that the wear rate becomes too small and tha
stationary state may have been reached.

About the Jacobian matrix calculation
In the external loop, the use of a Newton-like solver - her

a Hybrid Powell solver - requires the evaluation of a Jacobia
matrix. It is possible to evaluate it numerically by finite differ-
ences but it’s time-consuming (this strategy was originally use
in the DLFT-with-wear method). Petrov [10] has shown that it’
possible to calculate analytically the Jacobian in the case o
penalty formulation of frictional contact. Here, it’s proposed t
evaluate quasi-analytically the Jacobian matrix in the case of t
Dynamic Lagrangian formulation. The dependencies off on re-
spectivelyŨUU r andW are both considered with the introduction o
the corresponding JacobiansJ andJw.

The Jacobian with respect tõUUU r is defined as follows:

J =
∂f(ŨUU r )

∂ŨUU r
. (23)
6
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f consists of two parts, a linear one and a nonlinear one:

J = Zr +
∂λ̃λλ

∂ŨUU r
= Zr +

∂λ̃λλu

∂ŨUU r
−

∂λ̃λλx

∂ŨUU r

)

. (24)

First, λ̃λλx is formulated using an exact integration on the vi-
bratory period. This period is split in several time intervals ac
cording to the state of the contact. The idea is the same as in [1
but the present approach differs from Petrov’s one because it w
finally use a time discrete algorithm. The strategy is as follows

λ̃(0)
x =

m

∑
k=1

∫ τk+1

τk

λx(τ)dτ, (25a)

λ̃( j ,c)
x =

m

∑
k=1

∫ τk+1

τk

λx(τ)cos( jτ)dτ, (25b)

λ̃( j ,s)
x =

m

∑
k=1

∫ τk+1

τk

λx(τ)sin( jτ)dτ, (25c)

wherem is the number of the different contact states.τ = τk

andτ = τk+1 are the transition moments. Using Leibniz’s rule,
the derivatives of these functions with respect toŨi are, for the

cosine terms (the expressions of derivatives ofλ̃(0)
x andλ̃( j ,s)

x are
similar):

∂λ̃( j ,c)
x

∂Ũi
=

m

∑
k=1

(
∂τk+1

∂Ũi
λx(τk+1)cos( jτk+1) −

∂τk

∂Ũi
λx(τk)cos( jτk)+

∫ τk+1

τk

∂λx(τ)
∂Ũi

cos( jτ)dτ
)

(26)

Sinceλx is a continuous and periodic function, proportional to
displacementXr , a simplification occurs:

m

∑
k=1

(
∂τk+1

∂Ũi
λx(τk+1)cos( jτk+1)−

∂τk

∂Ũi
λx(τk)cos( jτk)

)

= 0.

(27)
And finally the gradients of (25) are:

∂λ̃( j ,0)
x

∂Ũi
=

m

∑
k=1

∫ τk+1

τk

∂λx(τ)
∂Ũi

dτ (28a)

∂λ̃( j ,c)
x

∂Ũi
=

m

∑
k=1

∫ τk+1

τk

∂λx(τ)
∂Ũi

cos( jτ)dτ (28b)

∂λ̃( j ,s)
x

∂Ũi
=

m

∑
k=1

∫ τk+1

τk

∂λx(τ)
∂Ũi

sin( jτ)dτ (28c)
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In time domain, the gradient ofλλλxxx is calculated according
to the contact states defined by Eqs. (17)-(19). The three co
ponents of vectorλλλn

x areλN,n
x in the normal direction andλλλT,n

x in
the tangential direction (withλx,n

x andλy,n
x its components in an

orthonormal basis of the tangential contact plane, perpendicu
to nc).

∂λN,n
x

∂Ũr
=

{
∂λN,n

u
∂Ũr

(separation)
0 (contact)

(29a)

∂λx,n
x

∂Ũr
=







∂λx,n
u

∂Ũr
(separation)

∂λx,n−1
x
∂Ũr

(stick)

∂λx,n−1
x

∂Ũr
+

∂λx,n
pre

∂Ũr
1−µ

|λN,n
u |

‖λλλT
pre‖

)

+

µ
∂λN,n

u

∂Ũr

λx,n
pre

‖λλλT,n
pre‖

+

λx,n
pre

λx,n
x .

∂λx,n
x

∂Ũr
+ λy,n

x .
∂λy,n

x
∂Ũr

‖λλλT,n
pre‖

3
|λN,n

u |

(slip)

(29b)

∂λy,n
x

∂Ũr
=







∂λy,n
u

∂Ũr
(separation)

∂λy,n−1
x

∂Ũr
(stick)

∂λy,n−1
x

∂Ũr
+

∂λy,n
pre

∂Ũr
1−µ

|λN,n
u |

‖λλλT
pre‖

)

+

µ
∂λN,n

u

∂Ũr

λy,n
pre

‖λλλT,n
pre‖

+

λx,n
pre

λx,n
x .

∂λx,n
x

∂Ũr
+ λy,n

x .
∂λy,n

x
∂Ũr

‖λλλT,n
pre‖

3
|λN,n

u |

(slip)

(29c)

with

∂λλλT,n
pre

∂Ũr
=

∂λλλT,n
u

∂Ũr
−

∂λλλT,n−1
x

∂Ũr
. (30)

Then a Discrete Fourier Transform (DFT) of

{
∂λλλn

x

∂Ũr

}

n=1..N
gives

∂λ̃λλx

∂Ũr
.

∂λλλn
u

∂Ũr
is obtained by:

∂λλλn
u

∂Ũr
= iDFT (−Zr + εI) . (31)

whereI designates the identity matrix, with the same size asZr .
7

-

r

Finally, the introduction of this expression in (24), gives the
Jacobian of functionf :

J = εI −
∂λ̃λλx

∂Ũr
. (32)

The gradient off with respect toW, denotedJw is:

Jw = −ε IMmax+
∂λ̃λλx

∂W
(33)

whereIMmax is identity matrix, with the same size as the tota
number of interface nodesMmax.

These gradients are used here to predict the multiharmon
displacement vector for an updated worn geometry. First,f is

expanded as a Taylor series of the first order, withŨUU
l+1
r = ŨUU

l
r +

δŨUU r andWWWl+1 = WWWl + δWWW.
(

ŨUU
l+1
r ,Wl+1

)

and
(

ŨUU
l
r ,W

l
)

are

supposed to be solutions of the nonlinear problem respectively
timesηl+1 andηl . Then

f (ŨUU
l+1
r ,WWWl+1) = f (ŨUU

l
r ,WWW

l )+JδŨUUr +Jw δWWW = 0, (34)

δWWW being known from the wear rate integration, the expressio
for δŨUU r is:

δŨUU r = −J−1JwδWWW (35)

The prediction-correction algorithm is then used, withU l+1
r

as initial vector. This method leads to a significant decrease
the number of iterations in the Hybrid Powell’s algorithm.

The program used for this paper is written in Matlab lan
guage. The Hybrid Powell used here is the one implemented
thefsolvefunction of theOptimization Toolbox.

About the error estimation
The accuracy of the results with HBM/AFT methods de

pends on the number of harmonics,Nh. The biggerNh is, the
slower the calculation is. Moreover, an increase ofNh doesn’t
necessarily improve the accuracy a significant way.

Before the implementation of wear,Nh was controlled, as
proposed by Laxalde [20], by an estimation of the error betwee
the contact forces corrected in the time domain and the conta
forces expanded in time domain from the multiharmonic forc
asme/terms-of-use
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vector. The definition of the error in force for the DLFT metho
is:

εFc(Nh) =

∫ T
0 |λ(τ)−∑Nh

j=0

(

λ̃λλ
c
cos( jτ)+ λ̃λλ

s
sin( jτ)

)

|dτ
∫ T

0 |λ(τ)| dτ
(36)

The present work proposes to expand this method to the
sipated energy. Indeed, in case of fretting-wear the accurac
the dissipated energy is the most important: it conditions the e
lution of wear profiles.

The dissipated powerPd is obtained by:

Pd(τ,Nh) =
Nh

∑
j=0

(

λ̃λλ
c
cos( jτ)+ λ̃λλ

s
sin( jτ)

)

×
Nh

∑
j=0

(
˙̃UUUc

r cos( jτ)+ ˙̃UUUs
rsin( jτ)

)

.

(37)

The error estimator based on the dissipated energy is then defi
as:

εEd(Nh) =

∫ T
0 |λ(τ)U̇UU r(τ)−Pd(τ,Nh)|dτ

∫ T
0 |λ(τ)U̇UU r(τ)|dτ

(38)

NUMERICAL EXAMPLE
The algorithm developed for the coupled calculation of bo

the wear kinetics and the vibratory response has been applied
compressor’s bladed disk. The fretting-wear zones are the in
faces between disk and blades in the dovetail attachments.
disk (Fig. 3a) has 47 sectors. Its natural frequencies (normaliz
are shown in Fig. 3b. All the parts are made of titanium.

It is also assumed that the wear process respects the cy
symmetry. Therefore, only one sector is studied. This hypot
sis is common for bladed-disk studies in the presence of con
nonlinearities. It hasn’t been demonstrated but Petrov [21] sho
numerical results for which contact nonlinearities don’t cause
calization phenomena. Vakakis [22] has encountered case
localizations which break the cyclic symmetry. Indeed, he has
vealed a case of mistuning due to nonlinearities between bla
However, here, nonlinearities occur inside each sector, hence
hypothesis.

The nonlinear interaction occurs at the nodes shown
Fig. 4. The friction coefficient isµ = 0.5, corresponding to a
contact between parts made of titanium without coating. T
wear rateKw is chosen equal to 1.110−11Pa−1 as in [14]. The
first mode for 0 diameter (a flexural mode) is excited through
harmonic force applied perpendicularly to the top of the bla
8
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Figure 3: Analyzed bladed disk: finite element geometry (a) an
natural frequencies (b)

(at the level of the isolated red point in Fig. 4). Its amplitude is
0.5N.

From a purely numerical point of view, 3 harmonics have
been used, with 128 time-step in the DFT procedures. Calcul
tions have lasted 1.630swith the improved Jacobian evaluation,
against 16.000swith the former approach.

A preliminary calculation is necessary to evaluate the stat
forces and displacements due to the centrifugal loading. Th
nonlinear problem can be solved either by a commercial finit
element software or by a quasi-static formulation of the algo
rithm presented in this paper. The second option has been ch
sen here. The obtained contact pressure distribution is shown
Fig. 5. Without any consideration of wear, the frequency res
ponse of the blade displacement amplitude at the level of th
excited point is drawn in Fig. 6. For comparison’s sake, the v
bratory level if the contact were glued (the problem is then lin
ear) is shown besides the solution of the non-linear problem: th
is a good example of the damping effect of friction. The aver
age power dissipated during a single cycle in the contact zone
shown in Fig. 7.
asme/terms-of-use
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Figure 4: Calculated bladed sector: finite element geometry (a) 
and contact nodes (b) on the intrados (top) and on the extrados 
(bottom). The left side of the grid is at the leading edge of the 
blade and the right side is at the trailing edge.

For the first fretting cycle, the wear rate profile for each side of 
the dovetail is shown in Fig. 8. The values are normalized by the 
maximum value of wear rate in both contact areas. In Fig. 9 are 
drawn wear depth evolutions for different contact nodes. Wear 
kinetics is very complex and, of course, very depending the ob-
served location. Nevertheless it is very interesting to remark, on 
this example, a tendency to reach a steady state, characterized by 
a null wear rate. This is more evident in Fig. 10. For some nodes, 
after an initial acceleration, wear rates reach a peak, decrease and 
then tends to zero. For others, wear rates only decrease.

The final worn geometry for both sides of the dovetail are 
shown in Fig. 11. These profiles are very asymmetrical.

To go further, the proposed strategy is used to simulate the 
interaction between wear and vibration in the vicinity of the re-
sonance frequency. Indeed, a very important information is the 
evolution of the resonance amplitude due to wear (Fig. 12 and 
Fig. 13). When going on to excite the structure precisely at the 
initial resonance frequency, wear evolution provokes a decrease 
of the amplitude. It is a positive aspect of wear for this frequency. 
But actually the resonance peak has slid towards lower frequen-
cies. And there, the amplitude is higher than at the unworn state. 
This can be very dangerous if the excitation frequency is not per-

fectly known and controlled and above all if the structure has not
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Figure 5: Pressure distribution: on the extrados (a) and on
intrados (b)
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Figure 6: Frequency response of the top of the blade
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Figure 7: Average power dissipated per cycle
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Figure 8: Wear rate profile: (a) in extrados (b) in intrados

been designed to endure the corresponding loads. For this ex
ple, the results show clearly that wear evolution is coupled w
dynamics phenomena. Results found in this study are sim
to the results found for a two-degrees-of-freedom fretting-we
model proposed in [7].
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Figure 9: Nodal wear depth evolution at the resonance on
extrados (a) and on the intrados (b)

CONCLUSIONS AND PROSPECTS
A method has been proposed to calculate simultaneously

wear and the vibrations of bladed disks. Steady-state perio
vibrations are analysed in the frequency domain using a mu
harmonic representation of the structure’s displacements. W
evolution is studied on a slow time scale. This method allows t
calculation of forced responses as functions of the wear dep
Conversely it enables one to predict the worn geometry fo
given number of cycles, in the presence of inertial forces.

During the calculations, a Jacobian matrix must be eva
ated to solve the nonlinear equations of motion and to trace
resonance characteristics as functions of wear depth. Its for
evaluation process was time consuming. Here, quasi-analyt
expressions have been derived for this matrix to accelerate
calculation.

An efficient jump cycle strategy has been tested to decre
the number of iterations in the wear evolution loop. It is based
a control of the prediction-correction procedure through a co
stant wear depth target increment.

A new way to calculate the error committed by the Fouri
series truncation has been proposed.
asme/terms-of-use
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Figure 10: Nodal wear rate evolution at the resonance: on t
extrados (a) and on the intrados (b)

The new approach has been applied to the finite elem
model of an assembled bladed disk with dovetail joints. Th
example has revealed a coupling between dynamics and w
Wear depths are very small (a few microns) but they modify
lot the vibratory behaviour of the disk. That is why it is strongl
recommended that designers take this parameter into acco
when they dimension dovetail attachments. They can use
method presented here, nevertheless, calibration tests mus
performed to guarantee that the life expectancy calculations
faithful to reality.

In the future, the considerations about asymptotic states, t
have emerged in this paper, may give rise to another meth
that would be especially valuable: it would enable one to kno
rapidly an asymptotic worn geometry, if it exists. Even if the ca
culation is so direct that it doesn’t give the history of the wea
process, such a method would take its place in the design lo
of optimal dovetails. In the global design process, it would com
before the method developed in this paper and work in syner
with it: indeed, the complete dynamical history on the vicinity o
a target frequency would only be calculated on thea priori ”best”
candidates - from the point of view of their ultimate profile.
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Figure 11: Worn geometry profile: (a) in extrados (b) in intrado
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blade during the fretting cycles
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