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ABSTRACT tact interfaces illustrate the performances of this method and
Assembled bladed disks have many contact interfaces show the coupling between dynamical and tribological pheno-

(blade-disk joint, blade shrouds, friction dampers...). Because of mena.

relative displacements at these interfaces, fretting-wear occurs,

which affects negatively the lifetime of the structure. Methods

exist to predict fretting-wear in quasi-static analysis. However NOMENCLATURE

they don’t predict all the phenomena observed in blade attach-~ pultiharmonic vectors.

ments on real industrial plants. This paper studies the assumption_T,_N Tangential and normal directions.

of a responsibility of dynamics for fretting-wear damage.
A numerical treatment of fretting-wear under vibratory load-

ing is proposed. The method is based on the Dynamical La- .

. ) : u,v Displacements.

grangian Frequency Time method. It models unilateral contact .

through Coulomb’s friction law. The basic idea is to separate g Initial gap.

time in two scales, slow scale for tribological phenomena and fast wW Wgar depth, nodal wear depth vector.

scale for dynamics. For a chosen number of periods of vibration, - Rglatlve valye. ]

a steady state is assumed and the variables are decomposed i¥ ~Time-domain nodal displacement vector. .

Fourier series. An Alternating Frequency Time procedure is per- M. C, K Mass, viscous damping and stiffness matrices.

formed to calculate the non-linear forces. Then, a Hybrid Pow- Zr Reduced dynamic stiffness.

ell's algorithm is used as solver. A quasi-analytical expression of Fc _ Nodal contact force.

the Jacobian matrix decreases the duration of calculations. ThisA, A Lagrangian multiplier in time and frequency domains.

expression is also used to predict new relative displacement at

the interfaces due to the increase of wear depth. This method is

similar to a prediction-correction method, with wear depth as the INTRODUCTION

term of continuation. One of the most important sources of nonlinearities in as-
Numerical investigations on a bladed-disk with friction con-  sembled bladed disks is the frictional contact at the interfaces.

These nonlinearities have often a positive aspect because they
introduce damping in the vibratory response. But relative dis-

PN, p; Normal pressures.
pr, p'T Tangential shears.

*Address all correspondence to this author.



placements at the interface also have a damaging effeck sinc the proposal of a specific error estimator to control the number
fretting-wear appears and can induce cracking. of required harmonics.

Fretting-wear studies in blade roots are usually performed There is nothing new about wear quantification. Wear
on the assumption of quasi-static loading. Thus, in the case of is a complex phenomenon because many causes can change
plane engines, only the take off or landing configurations are cal- wear debris creation: hardness, plasticity, grain structure,
culated [1] or tested [2]. Nevertheless, some industrial damage temperature. .. Here the Archard’s model [12] is used on the
surveys lead one to think that wear also occurs at cruising rate, local scale in the interface. It is assumed that the friction
in spite of the fact that only micro-slidings due to vibrations are coefficient is unaffected by the evolution of wear. A model
observed in such conditions. Wear could be explained by a cou- based on the dissipated energy [13] could have been used as well.
pling between vibrations and wear, and by the fact that fretting
cycles are repeated during a much longer time than the durations ~ The improved DLFT-with-wear method is applied here to
of take off and landing stages. the industrial case of a bladed disk with dovetail joints. Its vi-

Methods exist to study the vibratory response of bladed bratory response and wear kinetics are calculated. The results
disks in the presence of frictional contact [3,4]. But studies of provide a numerical evidence that worrying about the coupling
fretting-wear under dynamical loading - including inertial effects  between fretting-wear and dynamics is of particular relevance to
- are seldom [5, 6]. Recently a new method [7] was proposed to designers.
couple the calculations of the vibratory response and of the wear
kinetics based on the Dynamical Lagrangian Frequency Time
method (DLFT) [4] and on a multiscale approach (these deve- THE REFERENCE PROBLEM
lopments were also used [8] to calculate a kind of "modal wear”
in synergy with the Nonlinear Normal Modes concept [9]). The Continuous formulation
present paper presents improvements to the method introduced
in[7].

To model the coupling between fretting-wear and vibration,
the continuous formulation of the problem is discretized through
the finite elements method. The main assumption is that a pe-
riodic steady state is reached and that wear will modify this
state only a little. Thus, it is possible to use methods based
on Multi Harmonic Balance and Alternate Frequency Time pro-
cedures [10]. A multiscale formalism is introduced to distin-
guish between the "fast” phenomena caused by vibrations and
the "slow” phenomena due to wear.

Iterative numerical techniques are necessary because a non- y
linear system must be solved, at each step of the slow scale.
The first improvement to the DLFT-with-wear method [7] is the
choice to proceed by "wear steps” instead of "long time steps”,
as previously. This way, the number of non-linear systems to
solve is better controlled. Figure 1: Description of the problem with two solids

Here the strategy is based on a Hybrid Powell’'s solver. This
algorithm requires to evaluate a Jacobian matrix. This step is
very time consuming if the usual finite difference method is em-
ployed. An analytical estimation of the Jacobian is more effi- The formalism is the one described by Stromberg [14]. The
cient [10, 11]. The second improvement to the method is the constitutive equations are built for two elastic bodies with a fric-
implementation of a quasi-analytical Jacobian inspired by liter- tional contact interface in situation of fretting-wear. Each solid
ature’s analytical Jacobians. It is obtained by derivation of the | occupies a domai' with smooth boundariedQ' as drawn
non-linear forces expressed in the time domain according to the in Fig. 1. Each boundadQ' is divided into three disjoint parts
contact state. The dependancy of the Jacobian on wear is taken}, I'l, andl"c (common to both solids). Traction forc@$ are
into account in the same manner. The two Jacobian matrices re-imposed or}, displacements of, and frictional contact with
sulting from this operation allow one to predict an updated worn fretting-wear conditions ofic.
geometry in a very time-saving way. The constitutive law for the interface is given by Signorini’s

The third improvement to the DLFT-with-wear method is unilateral contact conditions and Coulomb’s law of friction,
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with u the frictional coefficient. Wear is characterised by loss with
of matter. Archard’s law is used. It is supposed to be true

for an elementary volume. Then, a local relation is derived 7 — {v|v(x) —0o,xer }

between normal pressure, tangential velocity and wear rate. An

internal state variabley, the wear gap, is introduced so that the = {pn|Pn(X) = 0,x ETc},

interface law is derived from a generalized standard material ?(pN) = {(pr,W)| (pr(x), W(X)) € F(pn),X € T} .

. - . . K
formulation. The friction coefficienk,, is such thaky,, = —=,

where K, is the wear rate coefficient of Archard's law and F(pn) is a closed convex set describing the friction and wear
H is material’s hardness in the contact zonk,, is deduced limit criterion. Itis such that

from experiments. For example, McColl [15] determines an

averaged wear coefficient from the measured wear profile for a F(pn) = {llprll — KIpn| -+ Kwpn W — Ky PR < 0}.
cylinder-flat contact (this averaged coefficient is then introduced

in a discretized Archard’s law to simulate the evolution of wear |n (2), g is the initial gap between both solids. In (3), the com-
in a finite element "wear box” approach). Heg stems from ponents of each vector are expressed in an orthonormalrgsis

a flat punch contact configuration. Experiments have shown that perpendicular ta.. W is obtained through the following equa-
the coefficient of friction changes with wear evolution. Indeed, tjon:

it actually depends on the chimical composition of the contact
area. Dicket al. [16] have proposed a model to take this into
account. Here, material damage is neglectedkqnis supposed
not to evolve as wear increases.

W= K |pn| [[UT | (4)

Finite element discretization

A FEM discretization of (1) is performed. In practice, this
strategy can be coupled together with a component mode synthe-
sis to reduce the size of the problem. Capital letters designate the
FEM counterpart of the variables named by small letters before:
they are vectors of nodal quantities. When both structures are in
contact, the equations of motion for each structure are:

Variationally, the problem is defined by three integral equa-
tions and one constitutive law (1-4). These equations stem
from the principle of virtual work, the weak formulation of Sig-
norini’s unilateral contact conditions, the complementary law of
Coulomb and the local formulation of Archard’s law. More de-
tailed explanations can be found in [14].

MU' +cU' +kU' +FLUu' ' Wh =FL, (5)

For each moment of the studied time intervgD, T}], are
sought the displacement fieldfor each pointx of both solids whereM, C andK respectively designate the mass, damping and

(with uy andur its normal and tangential components) and the  stiffness matrices. For the sake of simplicity, exporiemill be
contact pressure fiefl(with py andpr its normaland tangential  dropped afterwards.

components) 7 designates the dual ef i.e. the driving force Fexis the vector of external forces it provides here a periodic
for wear. It has the same physical meaninggsv, p and % excitation. F represents the non-linear contact forces due to
designate the test-fields associated respectivelywiprand 74/ friction and impact; they also depend on the wear and on the

materials in contact.
Wear is calculated at each interface node by:

. K M
M W | 5M
Ouk 0V,
/ pulv.dV+/ Bijki 55 ax OX; Xj a4V aM is the weighting factor for nod®1. The weighting factors
(1) depend on the quadrature rule used to calculate the integrals on

+/ pivi dA — /,—| tvMdA=0 We?, each elementary contact area. Exporrin PM andUY desig-

nate the nodal quantities.

/r uy —W—g)(py— pn)dA< O Vpy € Ky, (2) The constraints introduced by Egs. (2) and (3) become:
/rc Uty (P, — PTo)+ 3) ‘(UN—W—_G)( n—Pn) <0 WPy € &Y, ()
W (W — W) dA< 0 V(pr, W)€ F(pn) ‘Ut (Pr—Pr) <0 YPreF"(Py), (8)



where %} = {PY'|PY >0} is the approximation ofky and
Fh(Pn) = {PY'|||PY|| —H/P)| < 0} is the approximation of
F (pn) with wM =P},

Modeling of the contact forces .

Solving (10) requires to know the expressioniof Unfor-
tunately it is not possible to calculate it directly in the Galerkin
procedure, indeed it depends on the state of each contact node -
stick, slip or separation - which is a priori unknown. To under-
take this difficulty itis common to use the Alternating Frequency
Time method (AFT). Displacements and velocities are calculated
A Harmonic Balance Method with two time scales in the frequency domain and transformed into the time domain

The main idea is to split time into two different scales: afast ysing an inverse DFT procedure (iDFT). In the time domain, con-
one associated with vibratory phenomenaand a slow one associatact forces could be evaluated through different methods. The
ted with wear. Indeed, at the scale of a few cycles wear appearseasiest one is to regularize thigin function - depending on the
as an almost constant interface gap. Itis then assumed that weakelocity in the evaluation of Coulomb’s forces - by another func-
doesn’t change the aspect of the periodic response during a shortjon which is continuous. It allows a direct computation of the
lapse of time. On this period it is then possible to describe dis- non-linear friction forces [18]. The use of a penalty method is
placements and contact forces with Fourier series. On a longer another popular method [10, 19]. The additional stiffnesses may

BASIC ASPECTS OF THE DLFT-WITH-WEAR METHOD

duration, Fourier coefficients will evolve as functions of a time
variable linked with the fretting-wear. It is important to men-
tion that, here, the depth of wear is very small compared with

then represent a damper’s stiffness or the contact asperities stiff-
ness. In the case of fretting-wear theses stiffnesses could change
with wear process, to take the modification of material properties

the characteristic dimensions of the structures in contact. That is in the contact area into account.

why the modifications of the mass and stiffness matrices due to

wear are neglected.

This procedure belongs to the family of multiscale methods,
described by Meirovitch [17] for a single harmonic balance. The
Fourier series of) can be expressed as:

Nh

U(t,n) =Uo(n) (U nc(n)cos(jT) + On,s(r])sin(jr)) ;
9)

wheret is the variable of the fast time scale anthe one of the

J:

Another method has been proposed by Naceteal. [4]:

the Dynamic Lagrangian Frequency-Time method (DLFT). It

uses augmented Lagrangians which allow to calculate without
any softening of the non-smooth frictional contact law. A

time-marching procedure in the time domain is also required.
Compared to the conventional contact penalty method, the
main advantage of the DLFT method is that, at convergence,
results don’'t depend on any penalty coefficient (hence the
term “"pseudo-penalty” coefficient to designate the coefficient
used below to enforce the matching between the time and
frequency descriptions of displacements). This method has

slow time scale. In the frequency domain, after condensation on peen successfully used to predict friction damping in blade

the interface nodes, the equation of motion becomes:

(10)
or

(11)

whereU,, F, andZ, designate respectively the reduced multi-
harmonic relative displacement vector, reduced stiffness matrix
and reduced external excitatioN.is the vector of the Lagrange
multipliers which represent the contact forces in the frequency
domain.

Algorithmically, the solution over the time interve, T| is
originally calculated through a step-by-step procedure involving
an incrementation of the slow time variable: for each step, Eq. 11
is solved through a Newton-like solver; this process constitutes
the external loop of the method.

attachments [3] and to quantify the efficiency of friction ring
dampers [19]. In a precedent paper [7] this method has been
coupled with a polynomial expansion of wear to calculate
directly the wear evolution for a two-degrees-of-freedom model.
Here the formalism for contact forces calculation is the same as
in [7] (but wear depth is evaluated in a less complex manner,
explained farther).

In the frequency domain, the Lagrange multiplfe'rs for-
mulated as a pseudo-penalization of the equations of motion on
the tangential and normal directions:

(Gr -%/).
(O{“ —wN —X{“) .

€1 andey are pseudo-penalty coefficienfé|ﬁ is a new vec-
tor of relative displacements, which is computed in the time do-

main. The pair(}N\,)N(,) is determinated through an AFT proce-

(12a)

(12b)

Copyright (© 2009 by ASME



dure. Equation (11) becomes: AQ’N = 0. The predicted contact forces are:

- ~ - nT _ ynT n—-1T N _ N

t(0r) =0y —W—X,). (13) Moe =My =M Ape =A0T (15)
. The corrected contact forces will be:

The convergence ensures that the time dorXgiand frequency

domainU; match with respect for contact conditions. AT=A]—AD, (16)

The AFT is based on a prediction/correction procedure in ang\? will we be calculated to satisfy the contact and friction
the time domain (summarized in Fig. 2). Algorithmically, thisis  |gus.

the internal loop of the method. aN
1. SeparationApre > 0
The contact is lost and the forces should be zero.

Ur A=A 17)

Pseudo-penalty 2. Stick:Agre <0 andHAB’rEH < M‘AB}'Q“
form - _Eq. (14) In this case, the prediction verifies the contact conditions:

A:Au_}\x

AN =0 ART = AR T (18)
iDFT
s N nT n,N
Prediction - Eq. (15) |"ere| Correction- Eq. (17-19) 3. S“p:)\pre < O. and‘ }‘preH = u’)\.pre’ _
A pre = "y friction & contact laws Agal_n, there is no no_rmal relative dlsplac_ement. The correc-
tion is made assuming that the tangential contact force has
"y the same direction as the tangential predicted force. The de-
- finition of relative velocity and the respect of the Coulomb’s
E;I My law give:
DFT
T 1T T ABre
A] f(0r) MN=0 ART=NTT A A 1-p A;{T ) G
[Aprel

Figure 2: Computation of the Lagrangian vector with wear The final step consists of transforming back the time domain
updated Lagrangian in the frequency domain using the DFT

algorithm.

The contact forces are calculated in the time domain, where o ] ]
the transition criteria between the three possible states are easily At the end of this internal loop, it becomes possible to cal-
formulated. Equation (12) is reformulated as: culate the nodal wear for a single fretting cycle, dendg,
by wear rate integration:

X == lfr - ZrUr + € (Ur —W) - 8)([ 5 (14) K "N+ Texc - M
~ —~ ' =cu [ P @lI0T wnldn (20
Au X P

o . whereTeycis the time period of the harmonic excitation force (it
The period is split intoN time steps. A, Ay and Ax have is also the period at which the system is supposed to respond).
{A"} v {AGoy y @and AR}, as respective time do-  The interface gap - i.e. the geometry - can then be updated. At
main counterparts. These vectors are obtained from the fre- the level of the contact, equilibrium conditions are then modi-
quency domain vectors through an iDFT procedure. A predic- fied: this imposes a return back to the beginning of the predic-
tion/correction is then used to compute the contact forces. At tion/correction process to re-equilibrate them. Then, a new loop
each time increment it first assumes that the contact node is in - the wear updating loop or intermediate loop - appears in the
stick situation, thus the node doesn’t mO\Aé}T = )\Q’l’T and algorithm. This is specific to the DLFT-with-wear method.



IMPROVEMENTS TO THE DLFT-WITH-WEAR METHOD f consists of two parts, a linear one and a nonlinear one:

About the wear depth calculation

Previously, an arbitrary number of cycles was chosen before J—7 4+ i —7 0_7~\u B 6_5\x (24)
the geometry was updated. To decrease the number of the slow - a0, ' a0, a0,
time steps, it is necessary to choose a more efficient cycle jump
strategy.

Here the proposal consists of incrementing the wear depth First, Ay is formulated using an exact integration on the vi-

instead of time. A maximum authorized total wear depth, de- bratory period. This period is split in several time intervals ac-
noted byWt, is heuristically set for the whole considered dura- cording to the state of the contact. The idea is the same as in [10],
tion up toT. Wt is splitintok intermediate wear steps. Atooim-  butthe present approach differs from Petrov’s one because it will
portant wear step would provoke such an unbalance in the contactfinally use a time discrete algorithm. The strategy is as follows:
zone that a high number of loops in the prediction/correction pro-

cess would be required to compensate fok it chosen heuristi- = (0) M Tkt
cally as the probably best compromise between the total number A= kl/T x(T)dr, (252)
of wear steps and the number of required prediction-correction " _—
~ +
loops. W MO =S / Ax(T) cogjT)dr, (25b)
The relation between—Ot and the number of jumped cycles kr_nl Tk
~ i T
AN is: AGS = / . Ax(T)sin(jT)drT, (25c¢)
K=1"Tk

Wtot
k maxy (dWM(n))

AN(n) = (21)

wherem is the number of the different contact stateas—= 1
andt = Ty;1 are the transition moments. Using Leibniz's rule,

If | denotes the considered step of the external loop - still per- the derivatives of these functions with respchtcare for the

formed on the slow time scale - andithe time of the beginning cosine terms (the expressions of denvatweh@f and)\ 19 are
of this step, the vector of nodal wears at the beginning of the next similar):
step,AN(n) cycles later, is obtained by:
6)\ gom /g . ot .
W(n'" =w(n') + AN W1 (n") (22) —— Z < ab“)xx Tkt1)COS([Ti1) — a—L{Ax(rk)cos( i)+
k=1 1 1
If AN(n) becomes "very” important, the algorithm stops. Phy- /Tk+1 6)\X( )COS(JT) )
sically, it means that the wear rate becomes too small and that a T« Ui
stationary state may have been reached. (26)

Sincely is a continuous and periodic function, proportional to

About the Jacobian matrix calculation ) o
displacemenX,, a simplification occurs:

In the external loop, the use of a Newton-like solver - here
a Hybrid Powell solver - requires the evaluation of a Jacobian

matrix. It is possible to evaluate it numerically by finite differ- (aTk+ A(te. 008 i) — T%0 (1 )cod it > _0
ences but it's time-consuming (this strategy was originally used kZ ou; (T 1)COS( [ Ter 1) ou; (T cosJTh) '
in the DLFT-with-wear method). Petrov [10] has shown that it's 27)

possible to calculate analytically the Jacobian in the case of a And finally the gradients of (25) are:
penalty formulation of frictional contact. Here, it's proposed to

evaluate quasi-analytically the Jacobian matrix in the case of the 05\>(<j’0) M Ten OAg(T)
Dynamic Lagrangian formulation. The dependencie$ oh re- — = / ~—dt (28a)
spectivelyd, andW are both considered with the introduction of U k=1 o
the corresponding JacobiahandJy. ALY M o)
The Jacobian with respecttdy is defined as follows: o ) 1/ a0 cog(jt)dt (28b)
~ 3 (i.s
;30 23) L [ M) i jrya (280)
a':'I' . aL'll k=1 Tk aU|



Finally, the introduction of this expression in (24), gives the
In time domain, the gradient X is calculated according  Jacobian of functiori:
to the contact states deflned by Egs. (17)-(19). The three com-

ponents of vecto)&" are)\x in the normal direction anN

the tangential dlrectlon (withX" andAy" its components in an J—¢l — a{‘X. (32)
orthonormal basis of the tangential contact plane, perpendicular Uy
tong).
N, N :
a)\i'” _ %LUTT (separation (29a) The gradient off with respect taV, denotedly is
oy, 0 (contach
N (sparatio A
:}\Lirnfl ( p rj Jw = —€l Mmax T 6V\)/( (33)
o0, (stick)
)\xn 1 X,n )\N,n o . . - .
O~ ONpre o _ H | " | + wherel ., is identity matrix, with the same size as the total
A" _ oU; Uy H)‘preH (29h) number of interface nodédmax.
Uy A" ?3.% )
H a0, AL (slip) These gradients are used here to predict the multiharmonic
‘n aApre yn o displacement vector for an updated worn geometry. Firss
xn X -, +AX 0, AN expanded as a Taylor series of the first order, \fﬁfﬁl = U'r +
bre IApel® ! 30, andW'*tt = W' + 3w. (U 1 wi+1) and (UL,W') are
%ﬁn (separation ;umpez(:]sler(lj ;onz?]lselllﬁtei(r)]ns of the nonlinear problem respectively at
‘”ayu (stick)
VAP A . -~ .
) X bre —u| L) FO W) = £(0) W) +380, +3,0W =0,  (34)
oA . oUr oU; H)‘ re” (29¢)
Y. N,n
o a)\ Ajre (slip) dW being known from the wear rate integration, the expression
aUr ”)‘pre” for oU, is:
xn aa" A N
xn X Uy “oUr | N,n| ~ 1
pre u _ 1
H}‘pre||3 o, =—-J3""JuOW (35)
with The prediction-correction algorithm is then used, viigh*
as initial vector. This method leads to a significant decrease of
ATT TN gATnt the number of iterations in the Hybrid Powell’'s algorithm.
pe _ ZTu X (30) The program used for this paper is written in Matlab lan-
oU; oUr Uy guage. The Hybrid Powell used here is the one implemented in
thefsolvefunction of theOptimization Toolbox
n
Then a Discrete Fourier Transform (DFT P)‘—J‘ gives
ou
rJn=1.N
a)\x a)\” About the error estimation
a0, " a0, The accuracy of the results with HBM/AFT methods de-
pends on the number of harmonidg,. The biggerN; is, the
n slower the calculation is. Moreover, an increaséNgfdoesn’t
6)\ =iDFT (—=Z, +¢l). (31) necessarily improve the accuracy a significant way.

r

wherel designates the identity matrix, with the same siz& as

Before the implementation of weakx}, was controlled, as
proposed by Laxalde [20], by an estimation of the error between
the contact forces corrected in the time domain and the contact
forces expanded in time domain from the multiharmonic force



vector. The definition of the error in force for the DLFT method
is:

ST M@ =3, (X°cos( iT) + A°sin( jr)) |dt
Jo M©)| dr

er.(Nh) = (36)

The present work proposes to expand this method to the dis-
sipated energy. Indeed, in case of fretting-wear the accuracy of
the dissipated energy is the most important: it conditions the evo-
lution of wear profiles.

The dissipated powd?y is obtained by:

w
&

uenc
ey

N
&

Nooe . ~s
Py(T,Np) =]Z)()\ cogjT)+A SII’I(]T))

»
S

37)

Normalized Fre

o
o

a
/

-
S

Nh ~ ~
X ,Zo (U reoqjT) + Urssin(jT)) .

o

20 23

o
@

10 : 15
Nodal Diameter

The error estimator based on the dissipated energy is then defined
as: (b)

B Jo IN(OU () — Py(T,Np) | dT Figure 3: Analyzed bladed disk: finite element geometry (a) and

eey (Nh) JTA@U, (1) dr (38) natural frequencies (b)

NUMERICAL EXAMPLE (at the level of the isolated red point in Fig. 4). Its amplitude is

The algorithm developed for the coupled calculation of both 0.5N.
the wear kinetics and the vibratory response has been appliedtoa ~ From a purely numerical point of view, 3 harmonics have
compressor’s bladed disk. The fretting-wear zones are the inter- been used, with 128 time-step in the DFT procedures. Calcula-
faces between disk and blades in the dovetail attachments. Thetions have lasted.&30s with the improved Jacobian evaluation,
disk (Fig. 3a) has 47 sectors. Its natural frequencies (normalized) against 1800s with the former approach.
are shown in Fig. 3b. All the parts are made of titanium.

It is also assumed that the wear process respects the cyclic A preliminary calculation is necessary to evaluate the static
symmetry. Therefore, only one sector is studied. This hypothe- forces and displacements due to the centrifugal loading. This
sis is common for bladed-disk studies in the presence of contact nonlinear problem can be solved either by a commercial finite
nonlinearities. It hasn’t been demonstrated but Petrov [21] shows element software or by a quasi-static formulation of the algo-
numerical results for which contact nonlinearities don’t cause lo- rithm presented in this paper. The second option has been cho-
calization phenomena. Vakakis [22] has encountered cases ofsen here. The obtained contact pressure distribution is shown in
localizations which break the cyclic symmetry. Indeed, he has re- Fig. 5. Without any consideration of wear, the frequency res-
vealed a case of mistuning due to nonlinearities between blades.ponse of the blade displacement amplitude at the level of the
However, here, nonlinearities occur inside each sector, hence theexcited point is drawn in Fig. 6. For comparison’s sake, the vi-
hypothesis. bratory level if the contact were glued (the problem is then lin-

The nonlinear interaction occurs at the nodes shown in €ar)is shown besides the solution of the non-linear problem: this
Fig. 4. The friction coefficient ig1 = 0.5, corresponding to a  is a good example of the damping effect of friction. The aver-
contact between parts made of titanium without coating. The age power dissipated during a single cycle in the contact zone is
wear rateK,, is chosen equal t0.110-*Pa ! as in [14]. The shown in Fig. 7.
first mode for O diameter (a flexural mode) is excited through an
harmonic force applied perpendicularly to the top of the blade
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For the first fretting cycle, the wear rate profile for each side of
the dovetailis shownin Fig. 8. Thevaluesarenormalizedby the
maximumvalue of wearratein both contactareasIn Fig. 9 are

drawn wear depth evolutionsfor different contactnodes.Wear (b)

kineticsis very complexand,of course very dependinghe ob-

servedocation. Nevertheles#t is very interestingto remark,on Figure 5: Pressure distribution: on the extrados (a) and on the
this exampleatendency to reacha steadystate characterizetyy intrados (b)

anull wearrate. Thisis moreevidentin Fig. 10. Forsomenodes,
afteraninitial accelerationywearratesreacha peak,decreasend
thentendsto zero.For otherswearratesonly decrease.

The final worn geometrfor both sidesf the dovetailare
shown in Fig. 11. These profiles are very asymmetrical.

N

Blocked Interface
M Contact with friction
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o
o

To go further, the proposedstrategyis usedto simulatethe
interactionbetweerwearandvibrationin the vicinity of the re-
sonancdrequency.Indeed,a very importantinformationis the
evolution of the resonanceamplitudedue to wear (Fig. 12 and
Fig. 13). Whengoing on to excitethe structurepreciselyat the
initial resonancdrequency wearevolutionprovokesa decrease

Normalized amplitude
e o o
w S o
\
|

I
N

0.996 0.998 1 1.002 1.004

of theamplitude.lt is a positiveaspecbf wearfor thisfrequency. Normalized frequency
But actuallythe resonancgeakhasslid towardslower frequen-
cies. And there the amplitudeis higherthanat the unwornstate. Figure 6: Frequency response of the top of the blade

This canbeverydangerou# theexcitationfrequencyis not per-
fectly knownandcontrolledandaboveall if thestructurehasnot
9 Copyright (©) 2009 by ASME
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CONCLUSIONS AND PROSPECTS

A method has been proposed to calculate simultaneously the
wear and the vibrations of bladed disks. Steady-state periodic
vibrations are analysed in the frequency domain using a multi-
harmonic representation of the structure’s displacements. Wear
evolution is studied on a slow time scale. This method allows the
calculation of forced responses as functions of the wear depth.
Conversely it enables one to predict the worn geometry for a
given number of cycles, in the presence of inertial forces.

During the calculations, a Jacobian matrix must be evalu-
ated to solve the nonlinear equations of motion and to trace the
resonance characteristics as functions of wear depth. Its former
evaluation process was time consuming. Here, quasi-analytical
expressions have been derived for this matrix to accelerate the
calculation.

An efficient jump cycle strategy has been tested to decrease

been designed to endure the corresponding loads. For this exam-the number of iterations in the wear evolution loop. Itis based on

ple, the results show clearly that wear evolution is coupled with

a control of the prediction-correction procedure through a con-

dynamics phenomena. Results found in this study are similar stant wear depth target increment.

to the results found for a two-degrees-of-freedom fretting-wear
model proposed in [7].

10

A new way to calculate the error committed by the Fourier
series truncation has been proposed.
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The new approach has been applied to the finite element
model of an assembled bladed disk with dovetail joints. This
example has revealed a coupling between dynamics and weatr.
Wear depths are very small (a few microns) but they modify a
lot the vibratory behaviour of the disk. That is why it is strongly
recommended that designers take this parameter into account
when they dimension dovetail attachments. They can use the
method presented here, nevertheless, calibration tests must be
performed to guarantee that the life expectancy calculations are
faithful to reality. 1005 0 Normalized fretting cycle

Normalized frequency

o
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o
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o o
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©
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80

In the future, the considerations about asymptotic states, that
have emerged in this paper, may give rise to another method
that would be especially valuable: it would enable one to know
rapidly an asymptotic worn geometry, if it exists. Even if the cal-
culation is so direct that it doesn’t give the history of the wear
process, such a method would take |_ts place in th.e design IOOpSACKNOWLEDGMENT
of optimal dovetails. In the global design process, it would come
before the method developed in this paper and work in synergy Thanks go to Snecma for its technical and financial support.
with it: indeed, the complete dynamical history on the vicinity of ~ This work takes place in the framework of the MAIA mechanical
atarget frequency would only be calculated onatpeiori "best” research and technology program sponsored by CNRS, ONERA
candidates - from the point of view of their ultimate profile. and SAFRAN Group.

Figure 12: Evolution of the frequency response of the top ef th
blade during the fretting cycles
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