
HAL Id: hal-02537183
https://hal.science/hal-02537183v2

Submitted on 5 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Fluctuation relations and fitness landscapes of growing
cell populations

Arthur Genthon, David Lacoste

To cite this version:
Arthur Genthon, David Lacoste. Fluctuation relations and fitness landscapes of growing cell popula-
tions. Scientific Reports, 2020, �10.1038/s41598-020-68444-x�. �hal-02537183v2�

https://hal.science/hal-02537183v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


1

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:11889  | https://doi.org/10.1038/s41598-020-68444-x

www.nature.com/scientificreports

Fluctuation relations and fitness 
landscapes of growing cell 
populations
Arthur Genthon* & David Lacoste

We construct a pathwise formulation of a growing population of cells, based on two different 
samplings of lineages within the population, namely the forward and backward samplings. We 
show that a general symmetry relation, called fluctuation relation relates these two samplings, 
independently of the model used to generate divisions and growth in the cell population. these 
relations lead to estimators of the population growth rate, which can be very efficient as we 
demonstrate by an analysis of a set of mother machine data. These fluctuation relations lead to 
general and important inequalities between the mean number of divisions and the doubling time of 
the population. We also study the fitness landscape, a concept based on the two samplings mentioned 
above, which quantifies the correlations between a phenotypic trait of interest and the number of 
divisions. We obtain explicit results when the trait is the age or the size, for age and size-controlled 
models.

While the growth of cell populations appears deterministic, many processes occurring at the single cell level 
are stochastic. Among many possibilities, stochasticity at the single cell level can arise from stochasticity in the 
generation  times1, from stochasticity in the partition at  division2,3, or from the stochasticity of single cell growth 
rates, which are usually linked to stochastic gene  expression4. Ideally one would like to be able to disentangle the 
various sources of stochasticity present in experimental  data5. This would allow to understand and predict how 
the various sources of stochasticity affect macroscopic parameters of the cell population, such as the Malthusian 
population growth  rate6,7. Beyond this specific question, research in this field attempts to elucidate the funda-
mental physical constraints which control growth and divisions in cell populations.

With the advances in single cell experiments, where the growth and divisions of thousand of individual cells 
can be tracked, robust statistics can be acquired. New theoretical methods are needed to exploit this kind of 
data and to relate experiments carried out at the population level with experiments carried out at the single cell 
level. For instance, one would like to relate single-cell time-lapse video microscopy experiments of growing cell 
 populations8, which provide information on all the lineages in the branched tree, with experiments carried out 
with the mother machine configuration, which provide information on single  lineages9,10.

Let us now review quickly how the issue was addressed theoretically. In 2015, a pathwise thermodynamic 
framework was built for population dynamics using large deviation theory. One important result was a variational 
principle for the population growth  rate11, which was formulated in terms of two key path distributions, namely 
the chronological and the retrospective probability distributions. Then, in order to explain their experimental 
observation that populations of Escherichia coli double faster than the mean doubling time of their constituent 
single cells, Hashimoto et al. extended the classical work of  Powell6 for age models without mother-daugher 
 correlations12. Nozoe et al.13 then showed that the difference between the forward (chronological) and backward 
(retrospective) distributions can be used to define a quantity called phenotypic fitness landscape, which informs 
whether a specific phenotypic trait affects the population growth rate. In that work, they also derived the key 
relation between the two distributions, already known in the mathematical literature of branching  processes14, 
but they did not connect this result with the field of fluctuation relations. Various theoretical works followed 
which addressed other aspects of the role of the stochasticity at the single cell  level3,15,16. As far as we can tell, the 
connection between the results of Nozoe and the field of fluctuation relations was only made explicit in our first 
work on this  topic17. In that work, we also derived inequalities for mean generation times, already obtained  in12 
for age models, but importantly we proved using the fluctuation relation that they are valid beyond age models, 
in particular for a broad class of size models.
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In the present work, we further investigate the connection between the statistics at the single lineage and 
population levels using fluctuation relations. These fluctuation relations only depend on the structure of the 
branched tree but not on the class of dynamical variables (protein concentration, cell size or cell age.) defined on 
it. These relations imply that the above inequalities for the mean number of divisions or mean generation times 
hold regardless of the specific dynamics.

We then provide an interpretation of the fluctuation relations within Stochastic  Thermodynamics18 and we 
explore some consequences. One application concerns the inference of the population growth rate using single 
lineage  data19. We then introduce some specific dynamical models, which we simulate to confirm the fluctua-
tion relations and their consequences for mean generation times. Then, for these specific models and for key 
phenotypic variables such as the size and the age, we also study the fitness  landscape13.

theoretical framework
the backward and forward processes. Let us consider a branched tree, starting with N0 cells at time 
t = 0 and ending with N(t) cells at time t as shown on Fig. 1. We assume that all lineages survive up to time t, and 
therefore the final number N(t) of cells corresponds to the number of lineages in the tree.

The most natural way to sample the lineages is to put uniform weights on all of them. This sampling is called 
backward, (or retrospective) because at the end of the experiment one randomly chooses one lineage among the 
N(t) with a uniform probability and then one traces the history of the lineage backward in time from time t to 0, 
until reaching the ancestor population. The backward weight associated with a lineage l is defined as

In a tree, some lineages divide more often than others, which results in an over-representation of lineages that 
have divided more often than the average. Therefore by choosing a lineage with uniform distribution, we are 
more likely to choose a lineage with more divisions than the average number of divisions in the tree.

The other way of sampling a tree is the forward (or chronological) one and consists in putting the weight

on a lineage l with K(l) divisions, where m is the number of offspring at division. This choice of weights is called 
forward because one starts at time 0 by uniformly choosing one cell among the N0 initial cells, and one goes 
forward in time up to time t, by choosing one of the m offspring with equal weight 1/m at each division. The 
backward and forward weights are properly normalized probabilities, defined on the N(t) lineages in the tree at 
time t: 

∑N(t)
i=1 ωback(li) =

∑N(t)
i=1 ωfor(li) = 1.

Single lineage experiments are precisely described by a forward process since experimentally, at each divi-
sion, only one of the two daughter cells is conserved while the other is eliminated (for instance flushed away 
in a microfluidic  channel9, 10). In these experiments, a tree is generated but at each division only one of the two 
lineages is conserved, with probability 1/2, while the rest of the tree is eliminated. This means that single lineage 
observables can be measured without single lineage experiments, provided population experiments are analyzed 
with the correct weights on lineages.

(1)ωback(l) = N(t)−1 .

(2)ωfor(l) = N−1
0 m−K(l) ,

Figure 1.  Example of a tree with N0 = 1 and N(t) = 10 lineages at time t. Two lineages are highlighted, the first 
in blue with 2 divisions and the second in orange with 5 divisions. The forward sampling is represented with the 
green right arrows: it starts at time t = 0 and goes forward in time by choosing one of the two daughters lineages 
at each division with probability 1/2. The backward sampling is pictured by the left purple arrows: starting from 
time t with uniform weight on the 10 lineages it goes backward in time down to time t = 0.
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Link with the population growth rate. Since the backward weight put on a lineage depends on the 
number of cells at time t, it takes into account the reproductive performance of the colony but it is unaffected by 
the reproductive performance of the lineage considered. On the contrary, the forward weight put on a specific 
lineage depends on the number of divisions of that lineage but is unaffected by the reproductive performance of 
other lineages in the tree. Therefore, the difference between the values of the two weights for a particular lineage 
informs on the difference between the reproductive performance of the lineage with respect to the colony.

We now introduce the population growth rate:

which is linked to forward weights by the relation

where �·�for is the average over the lineages weighted by ωfor , and Ki = K(li) . Combining the two equations 
above, we  obtain19:

which allows an experimental estimation of the population growth rate from the knowledge of the forward 
statistics only.

Equation (4) can also be re-written to express the bias between the forward and backward weights of the 
same lineage

which is the reproductive performance of the lineage divided by its average in the colony with respect to ωfor.
A similar relation is derived using the relation

Combining Eqs. (5) and (7) we obtain:

 A similar equation as Eq. (6) can be obtained in terms of the backward sampling and reads: 

Combining Eqs. (1) to (3), we obtain the fluctuation  relation13,17:

If we now introduce the probability distribution of the number of divisions for the forward sampling 
pfor(K) =

∑

l δ(K − K(l))ωfor(l) and similarly for the backward sampling, we can also recast the above rela-
tion as a fluctuation relation for the distribution of the number of divisions:

Let us now introduce the Kullback–Leibler divergence between two probability distributions p and q, which is 
the non-negative number:

Using Eq. (10), we obtain

A similar inequality follows by considering DKL(ωfor||ωback) . Finally we obtain

In the long time limit, limt→+∞ t/�K�back = �τ �back , where τ is the inter-division time, or generation time, 
defined as the time between two consecutive divisions on a lineage. The same argument goes for the forward 

(3)�t =
1

t
ln

N(t)

N0
,

(4)
N(t)

N0
=

N(t)
∑

i=1

mKi ωfor(li) = �mK �for ,

(5)�t =
1

t
ln�mK �for ,

(6)
ωback(l)

ωfor(l)
=

mK(l)

�mK �for
,

(7)
N0

N(t)
=

N(t)
∑

i=1

m−Ki ωback(li) = �m−K �back .

(8)�t = −
1

t
ln�m−K �back .

(9)
ωback(l)

ωfor(l)
=

�m−K �back

m−K(l)
.

(10)ωback(l) = ωfor(l) e
K(l) lnm−t�t .

(11)pback(K , t) = pfor(K , t) e
K lnm−t�t .

(12)DKL(p||q) =

∫

dx p(x) ln
p(x)

q(x)
≥ 0 .

(13)DKL(ωback||ωfor) = �K�back lnm− t�t ≥ 0 .

(14)
t

�K�back
≤

lnm

�t
≤

t

�K�for
.
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average. In the case of cell division where each cell only gives birth to two daughter cells ( m = 2 ), the center term 
in the inequality tends to the population doubling time Td . Therefore, this inequality reads in the long time limit:

Let us now mention a minor but subtle point related to this long time limit. For a lineage with K divisions up to 
time t, we can write t = a+

∑K
i=1 τi , where a is the age of the cell at time t and where τi is the generation time 

associated with the ith division. Then t/K = τm + a/K , where τm is the mean generation time along the lineage. 
For finite times, all we can deduce is t/K ≥ τm . Therefore the left inequality of Eq. (15) always holds

while the right inequality does not necessarily hold at finite time.
Inspired by work by  Powell6, the inequalities of Eq. (15) have been theoretically derived  in12 for age models. In 

our previous  work17, we have replotted the experimental data  of12 which confirm theses inequalities and we have 
shown theoretically that the same inequalities should also hold for size models. In fact, as the present derivation 
shows, the relation equation (14) is very general and only depends on the branching structure of the tree, while 
the relation equation (15) requires in addition the existence of a steady state. These inequalities and Eq. (11) 
express fundamental constraints between division and growth, which should hold for any model.

Stochastic thermodynamic interpretation. The results derived above have a form similar to that found 
in Stochastic  Thermodynamics18. According to this framework, Eq. (5) is an integral fluctuation relation (similar 
to Jarzynski relation) while Eq. (11) is a detailed fluctuation relation (similar to Crooks fluctuation relation). Fur-
thermore, the inequalities equation  (14) represent a constraint equivalent to the second law of thermodynamics, 
which classically follows from the Jarzynski or Crooks fluctuation relations. It is known that these inequalities 
take a slightly different form when expressed at finite time or at steady state, which is indeed the case here when 
comparing Eq. (14) with Eq. (15). A difference between work fluctuation relations like Crooks or Jarzynski and 
equations (5) and (11), is that Crooks or Jarzynski describe non-autonomous systems which are driven out of 
equilibrium by the application of a time-dependent protocol, whereas the relations for cell growth derived here 
concern autonomous systems, in the absence of any external protocol.

One of the main applications of Jarzynski or Crooks fluctuation relations concerns the thermodynamic infer-
ence of free energies from non-equilibrium fluctuations. Similarly, Eq. (5) or Eq. (11) can be used as estimators 
of the population growth rate. The specific advantage of Eq. (5) with respect to Eq. (11) is that it only requires 
single lineage statistics, which can be obtained from mother machine experiments. Let us now show how this 
can be done in practice. We use the data  from20, where the growth of many independent lineages of E. coli have 
been recorded over 70 generations in a mother machine at three different temperatures (25 °C, 27 °C, and 37 °C), 
precisely 65 lineages for 25 °C, 54 for 27 °C, and 160 for 37 °C. For each temperature condition, we study the 
convergence of the estimator of the population growth rate based on Eq. (5), which we call �lin as a function 
of the length t of the lineages for a fixed number of independent lineages L, and as a function of the number of 
independent lineages for a fixed observation time.

Firstly, for each temperature, we take into account all the lineages available and truncate them at an arbitrary 
time t smaller than the length of the shortest lineage of the set. On these portions of lineages of length t, we 
compute �lin versus the time t as shown in Fig. 2a. We see that the estimator �lin starts from zero, increases and 
eventually converges rather quickly towards a limiting value. The limit we found agree with the independent 
analysis carried out  in19, with only one caveat, these authors reported that their estimator started at high values 
and then decreased towards the limit, while in our case, the estimator starts at zero and later increases towards 
the limit. In our case, the estimator needs to be zero at short times, before the first divisions occur.

Secondly, we truncate all the lineages at a fixed time equal to the length of the shortest lineage of the set, 
and compute �lin versus the number L of lineages considered for the estimation, which have been randomly 
selected from the ensemble of available lineages. As shown in Fig. 2b for the case at 37 ◦C (curves for the other 
temperatures look exactly the same), the convergence is also excellent in that case. Although the value of the 
population growth rate which is obtained in this way can not be measured independently from the evolution 
of the population in the mother machine setup, this convergence is indicative of the success of the method. The 
figure also confirms that the value of the population growth rate deduced from the estimator �lin is larger than 
ln(2)/〈τ 〉for , as predicted by the right inequality of Eq. (15).

Here, the estimator is found to provide an excellent estimation, but this is not always so. For instance, for the 
inference of free energies from non-equilibrium work measurements, the exponential average of the estimator is 
often dominated by rare values, which are not accessible or not well  sampled21. To understand why this problem 
does not arise here, we show in inset of Fig. 2b, the distribution P(K) of the number of divisions together with 
the same distribution weighted by the factor 2K and normalized. The peak of that modified distribution informs 
on the dominant values in the  estimator21. Here, we observe that both distributions have a narrow support and 
are close to each other. The weighted distribution is peaked at K = 67 while P(K) is peaked at K = 66 , therefore 
typical and dominating values are very close, which explains why the estimator is good.

Let us now further develop the Stochastic Thermodynamic interpretation of our results by analyzing the 
implications of the previous fluctuation relations when dynamical variables are introduced on the branched tree 
of the population. Let us introduce M variables labeled (y1, y2, . . . , yM) to describe a dynamical state of the system, 
then a path is fully determined by the values of these variables at division, and the times of each division. We 

(15)�τ �back ≤ Td ≤ �τ �for .

(16)�τ �back ≤
t

�K�back
≤

lnm

�t
,



5

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:11889  | https://doi.org/10.1038/s41598-020-68444-x

www.nature.com/scientificreports/

call y(t) = (y1(t), y2(t), . . . , yM(t)) a vector state at time t and {y} = {y(tj)}
K
j=1 a path with K divisions. For cell 

growth models, the variables yi can typically be the size and age of the cell, or the concentration of a key protein.
The probability P of path {y} is defined as the sum over all lineages of the weights of the lineages that follow 

the path {y}:

where {y}i is the path followed by lineage li . Using the normalization of the weights ω on the lineages, we show 
that P is properly normalized: 

∫

d{y}
∑

K P ({y}, K, t) = 1 . We then define the number n({y},K , t) of lineages 
in the tree at time t that follow the path {y} with K divisions:

This number of lineages is normalized as 
∫

d{y}
∑

K n({y}, K, t) = N(t) . Then, the path probability can be re-
written as

Since n({y},K , t) is independent of a particular choice of lineage weighting, we obtain

which generalizes Eq. (11). In our previous  work17, we have derived this relation for size models with individual 
growth rate fluctuations (i.e. y = (x, ν) ) but we were not aware of the weighting method introduced  by13, and 
for this reason, we used the term ‘tree’ to denote the backward sampling, and the term ‘lineage’ to denote the 
forward sampling.

This relation has a familiar form in Stochastic Thermodynamics. The central quantity called entropy produc-
tion can indeed be expressed similarly as the relative entropy between probability distributions associated with 
a forward and a backward evolution. In this analogy, {y} is analog to the trajectory and t�t − K lnm is analog to 
the entropy production. Then, the equivalent of a reversible trajectory for which the entropy production is null is 
a lineage for which the number K of divisions is equal to t�t/ lnm , that is, a lineage having the same reproduc-
tive performance as that of the colony. When all the lineages in a tree have this property, there is no variability 
of the number of divisions among them. In that case, the forward and backward distributions are identical, and 
the cost function t�t − K lnm vanishes for all lineages.

Mixed age-size controlled models
Dynamics at the population level. The state of a cell is described by its size x, its age a and its individual 
growth rate ν , with y = (x, a, ν) . Such mixed size-age model includes the ‘adder’ in which the cell divides after 
adding a constant volume to its birth  volume22–25.

(17)P ({y},K , t) =

N(t)
∑

i=1

ω(li) δ(K − Ki)δ({y} − {y}i) ,

(18)n({y},K , t) =

N(t)
∑

i=1

δ(K − Ki)δ({y} − {y}i) .

(19)P ({y},K , t) = n({y},K , t) · ω(l) .

(20)
Pback({y},K , t)

Pfor({y},K , t)
=

ωback(l)

ωfor(l)
= eK lnm−t�t ,

(a) (b)

Figure 2.  Estimator of the population growth rate �lin based on Eq. (5), (a) as function of the the length t of the 
lineages and (b) as function of the number L of lineages used in the estimation. In (a), the curves for the three 
temperatures converge to a constant value. In (b), only the curve for 37 °C is shown and the horizontal dashed 
line represents the quantity ln(2)/〈τ 〉for , which is smaller than the limit value of �lin , as expected from the 
second law-like inequality, namely Eq. (15). In the inset, the purple histogram is the distribution of the number 
of divisions, while the green filled histogram is the histogram deduced from it by weighting it by a factor 2K and 
normalizing. All the 160 lineages were used to plot these histograms.
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The evolution of the number of cells n(y,K , t) in the state y at time t, that belong to a lineage with K divisions 
up to time t is governed by the equation

and the boundary condition

where B(y) is the division rate and �(y|y′) is the conditional probability (also called division kernel) for a new-
born cell to be in state y knowing its mother divided while in state y′ , normalized as 

∫

�(y|y′)dy = 1 , for any y′.

Dynamics at the probability level. While n(y,K , t) in Eq. (21) is independent of the choice of weights 
put on the lineages, we now turn to a description in terms of the probability p(y,K , t) for a cell to be in state 
(y,K) at time t if chosen randomly among the N(t) cells in the tree at that time. To do so, one has to choose how 
to weight each cell in the colony, which is equivalent to weight each lineage, since at time t each cell is the ending 
point of one lineage.

The first possibility is the backward sampling, for which each lineage is weighted uniformly. In this case, we 
define pback as

Dividing Eq. (21) and the boundary condition equation (22) by N(t) we obtain

and

where we defined the instantaneous population growth rate as

The instantaneous population growth rate and the population growth rate defined in Eq. (3) are related by:

In the long-time limit, N grows exponentially with constant rate �p , and thus �t = �p = �.
The other possibility is to use the forward statistics, in which case we define the probability pfor , as

Dividing Eq. (21) and the boundary condition equation (22) by mK we obtain

and

One can notice that the backward statistics is well suited to study the population, while the forward statistics 
reproduce the behaviour of single lineage experiments. Indeed, by taking Eqs. (24) and (25) for the population/
backward probability pback , and choosing �p(t) = 0 and m = 1 we recover Eqs. (29) and (30). This equation is 
then a population equation in which we follow only one cell, so that �p(t) = 0 and m = 1 , which we call single 
lineage experiment.

Illustration of the fluctuation relation. We simulated the time evolution of colonies of cells, obeying 
Eqs. (21) and (22), for age and size models in order to illustrate the fluctuation relation. Since results are very 
similar—as expected—for age models, we restrict ourselves to size models. We tested two results: the fluctuation 
relation for the number of divisions Eq. (11) and one of its consequences: the inequality for the mean number 
of divisions Eq. (14).

All simulations for size models were conducted with the division rate B(x, ν) = νxα , where α is the strength 
of the control and x is the dimensionless size. Power law were found to be good approximations for empirical 
division rates B(x)2,24,26. The factor ν , being the only time scale for size models, gives B(x) its proper dimension. 
Similarly for age  models26, we choose B(a, ν) = νaα.

(21)(∂t + ∂a)n(y,K , t)+ ∂x[νxn(y,K , t)]+ B(y)n(y,K , t) = 0 ,

(22)n(x, a = 0, ν,K , t) = m

∫

dy′B(y′)�(y|y′)n(y′,K − 1, t) ,

(23)pback(y,K , t) =
n(y,K , t)

N(t)
.

(24)(∂t + ∂a)pback(y,K , t)+ ∂x
[

νxpback(y,K , t)
]

+
[

B(y)+�p(t)
]

pback(y,K , t) = 0 ,

(25)pback(x, a = 0, ν,K , t) = m

∫

dy′B(y′)�(y|y′)pback(y
′,K − 1, t) ,

(26)�p(t) =
Ṅ

N
.

(27)�t =
1

t

∫ t

0
�p(t

′)dt ′ .

(28)pfor(y,K , t) =
n(y,K , t)

mK
.

(29)(∂t + ∂a)pfor(y,K , t)+ ∂x
[

νxpfor(y,K , t)
]

+ B(y)pfor(y,K , t) = 0 ,

(30)pfor(x, a = 0, ν,K , t) =

∫

dy′B(y′)�(y|y′)pfor(y
′,K − 1, t) .
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On Fig. 3a, the backward and forward probability distributions of the number of divisions are shown for a 
size model. The two distributions intersect at the number of divisions K = t�t/ ln 2 . The inset of Fig. 3a shows 
the logarithm of the ratio q(K , t) = pfor(K , t)/pback(K , t) of the two distributions, which is as expected a straight 
line of slope − ln 2 when plotted against the number of divisions. For convenience and for Fig. 3a only, noise 
in the volume partition at division has been introduced, by choosing for the conditional probability �(x|x′) a 
uniform distribution between sizes x = 0 and x = x′ . This has the effect of broadening the distributions P(K) 
with respect to the case of deterministic symmetrical volume partition.

Then, we tested the inequality on the mean numbers of divisions by varying the strength of the size-control α . 
Results are shown on Fig. 3b. One one hand, we see that the less control on size, the more discrepancy between 
the two determinations 〈K〉back and 〈K〉for . On the other hand, when increasing the control, the two determina-
tions converge to the population doubling time, where no stochasticity in the number of divisions is left, and 
every lineage carries the same number of divisions, leading to the equality of the backward and forward statistics.

Phenotypic fitness landscapes
The fitness of a phenotypic trait s is a measure of the reproductive success of individuals carrying it. It is usually 
defined as the number of offsprings of one individual with a given value of the trait and is quite difficult to evalu-
ate. Nozoe et al. suggested that one way to measure it could be to compare the chronological and retrospective 
marginal  probabilities13 and accordingly defined it as:

so that

This has again the form of a fluctuation relation similar to Eq. (11), except for the replacement of the factor 
K ln 2/t by the function h(s). This suggests that the fitness landscape h(s) plays a role similar to that of an effective 
division rate, which depends on the trait s. In line with this interpretation, in the particular case where s = K , Eq. 
(11) leads to h̃(K) = K ln 2/t , where the fitness landscape for trait K is called the lineage fitness and is written h̃ . 
In a branched tree, lineages with a large number of divisions K are exponentially over-represented in the popu-
lation with the backward sampling as compared to the forward sampling. This means that lineages with large K 
have a larger fitness than the ones with a small K, which is coherent with h̃(K) being an increasing function of K.

In the following, we rewrite the definition of h(s) in a slightly different  way17 using

where we have introduced the probability of the number of division events conditioned on trait s at the forward 
level, Rfor(K |s) . Lastly, the fitness landscape  reads17

(31)h(s) = �t +
1

t
ln

[

Pback(s)

Pfor(s)

]

,

(32)Pback(s) = Pfor(s) exp [(h(s)−�t)t] .

(33)Pback(s) = e−t�t Pfor(s)
∑

K

2KRfor(K |s),

(a) (b)

Figure 3.  Illustration of (a) the fluctuation relation for the number of divisions and (b) the inequality on 
the mean number of divisions, for a size-controlled model with division rate B(x) = νxα . In (a), the forward 
distribution is shown as orange filled histogram and the backward distribution as blue empty histogram. The 
vertical dashed line at K = t�t/ ln 2 is the theoretical value at which the two distributions should intersect. The 
inset shows the logarithm of the ratio q(K) of the forward to backward probabilities (purple crosses), and the 
theoretical result t�t − K ln 2 (green line). The conditional probability �(x|x′) is uniform between sizes 0 and 
x
′ . The simulation was conducted with constant ν = 1 , α = 2 and t = 7 . In (b), the quantity t/〈K〉 , re-scaled by 

the population doubling time Td = ln 2/�t , is plotted when α is varied from 1 to 15, with orange diamonds for 
the forward sampling and with blue circles for the backward sampling. The volume partition between the two 
daughter cells at division is symmetrical, so that �(x|x′) = δ(x − x

′/2) . The simulation was conducted with 
constant ν = 1 , and t = 6.
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An increasing or decreasing fitness landscape means a positive or negative correlation of the trait value with the 
capacity to divide, whereas a constant fitness landscape means that the trait is not correlated with the number of 
divisions. Indeed, if we consider a trait s which does not affect the number K of divisions, then Rfor(K |s) = Pfor(K) 
and Eq. (34) reads h(s) = ln

[
∑

K 2KPfor(K)
]

/t , which is equal to �t according to Eq. (5). In that case, we find 
that the backward and forward probabilities for that trait s are equal.

In the next sections, we evaluate the relevance of the key variables from our model, namely the size and the 
age by evaluating their fitness landscapes in size and age models.

Size models. We start with a case where the fitness landscape is fully solvable namely a size model with 
no individual growth rate fluctuations and with symmetric division. Let us consider a colony starting with one 
ancestor cell of size x0 . Then, the available sizes at time t are discrete and given by x = x0 exp[νt]/2

K where K 
is the number of divisions undergone by the cell. Therefore a particular size x can be reached only if there is an 
integer K satisfying this relation, and this integer is unique, leading to

Using this relation in Eq. (34), one finds

The fitness landscape of the size is a decreasing function, which is coherent with the over-representation of cells 
that divided a lot, since these cells are more likely to be small due to the numerous divisions. Reporting this result 
in Eq. (33), we obtain a fluctuation relation for the size

which in the long time limit becomes

where we used the property that in a steady state, the population growth rate and the individual growth rate are 
equal when there is no individual growth rate variability.

In some setups, experiments do not start with a unique ancestor cell but with N0 > 1 initial cells, with possibly 
heterogeneous sizes. We describe this heterogeneity by the average initial size 〈x0〉 and the standard deviation 
σx0 . In this case, accessible sizes are still discrete but depend on both the number of divisions and the initial 
cell that started the lineage, and are expressed as xi0 exp[νt]/2K , where K takes integer values from 0 to ∞ and 
where xi0 ∈ X0 , with X0 the set of initial sizes. Consequently, a final size x can possibly be reached by different 
couples (Ki , x

i
0).

In order to go further, we now introduce explicitly the initial sizes xi0 in Eq. (34) as

When conditioning on the initial size xi0 , there is only one possible number of divisions K to reach size x, so that 
Rfor(K |x, x

i
0) obeys an equation similar to Eq. (35).

Let us examine two limit cases: (i) small variability in the initial sizes and (ii) large variability in the initial 
sizes.

Case (i) is characterized by a small number N0 of initial cells and a small coefficient of variation σx0/〈x0〉 . In this 
case, it is realistic to say that a final size x can only be reached by one couple (K∗, x∗) , because the sets of accessible 
sizes generated by each initial cell do not overlap. Therefore, Rfor(xi0|x) = δ(xi0 − x∗) and so for any final size x, 
only one initial size x∗ survives in the sum, so that Eq. (39) reads h(x) = ν + ln

(

x∗/(x∗ exp[νt]/2K )
)

/t = h̃(K) . 
Thus cells that come from lineages with the same number of divisions K have the same fitness landscape value 
h(x) for the size, regardless of the size x∗ of the initial cell of their lineages. Thus, available values for h(x) are 
quantified by K and form plateaus, where points representing cells coming from different ancestors but with the 
same number of divisions accumulate, as shown in Fig. 4a.

Case (ii) is characterized by a large number N0 of initial cells and a large coefficient of variation σx0/〈x0〉 . 
Unlike in case (i), the sets of accessible sizes generated by each initial cell have many overlaps, so that a final size 
x can be reached by many different couples (Ki , x

i
0) . We make the hypothesis that a final size x can be reached by 

any initial cell with uniform probability, so that Rfor(xi0|x) = 1/N0 . Therefore, Eq. (39) becomes

(34)h(s) =
1

t
ln

[

∑

K

2KRfor(K |s)

]

.

(35)Rfor(K |x) = δ



K −
ln
�

x0e
νt

x

�

ln 2



 .

(36)h(x) = ν +
1

t
ln
(x0

x

)

.

(37)Pback(x) = e(ν−�t )t
x0

x
Pfor(x) ,

(38)Pback(x) =
x0

x
Pfor(x) ,

(39)

h(x) =
1

t
ln

[

∑

K

∑

i

2KRfor(K , x
i
0|x)

]

=
1

t
ln

[

∑

K

∑

i

2KRfor(K |x, x
i
0)Rfor(x

i
0|x)

]

.
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This behavior was tested numerically and the result plotted on Fig. 4b confirms that the plateaus observed in 
case (i) are replaced by a smooth curve depending on the mean initial size.

We observe the same effect, namely the loss of the plateaus, when introducing fluctuations in individual 
growth rates.

Age models. Constant individual growth rate. We consider the case where the individual growth rate is 
constant and equal to ν . In steady-state, the forward age distribution reads  (see17 where pfor(a) (resp. pback(a) ) 
were denoted p(a) (resp. P(a))):

To find the integration constant pfor(0) , we use the normalization of probability pfor:

Similarly, the steady-state backward distribution of ages reads

In this case, the integration constant pback(0) can be expressed both using the normalization of pback(a) , as done 
for the forward case, or using pback(0) = 2� , as shown  in17.

Therefore, the ratio of the age distributions using the backward and forward statistics reads

where Z is defined in Eq. (42) and only depends on the division rate B(a). This relation has a similar form as 
the relation derived by Hashimoto et al.12 for the distributions of generation times, except for the extra age-
independent factor Z� . Finally, the fitness landscape reads

(40)
h(x) =

1

t
ln

[

1

N0

∑

i

xi0e
νt

x

]

= ν +
1

t
ln

�x0�

x
.

(41)pfor(a) = pfor(0) exp

[

−

∫ a

0
B(a′)da′

]

.

(42)Z = pfor(0)
−1 =

∫ ∞

0
da exp

[

−

∫ a

0
B(a′)da′

]

.

(43)pback(a) = pback(0) exp

[

−�a−

∫ a

0
B(a′)da′

]

.

(44)
pback(a)

pfor(a)
= 2Z�e−�a ,

(45)h(a) =
1

t
[�(t − a)+ ln(2Z�)] .

(a) (b)

Figure 4.  Size fitness landscapes for size models with B(x) = νxα , constant ν = 1 , α = 1 , t = 5 , symmetrical 
division and N0 initial cells following a Gaussian distribution of sizes N(〈x0〉, σx0) . The black horizontal 
dashed lines represent the population growth rates � . In (a), there is small variability in initial sizes: N0 = 10 , 
σx0/�x0� = 0.15 . The grey dotted lines represent the plateaus available for h(x), depending on the number 
of divisions K. The right y-axis displays the values of K corresponding to these plateaus. In (b), there is large 
variability in initial sizes: N0 = 100 , σx0/�x0� = 0.5 . The green curve is the theoretical prediction, on which the 
simulated purple dots align.
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For the same reason as for h(x) in size models, h(a) in age models is a decreasing function of a because lineages 
that divided a lot are over-represented in the population and are therefore more likely to contain young cells at 
time t.

The initial condition does not play any role in this derivation, therefore, unlike size models, the results 
obtained are unchanged for any number N0 of initial cells with heterogeneous initial ages.

The above calculation is general because we did not put any constraint on B(a). Let us now go into more details 
by choosing a power law for the division rate: B(a) = νaα . In this case, the integral of Eq. (42) is solvable and gives

in terms of Gamma function Ŵ(x) . Results are plotted on Fig. 5a, which shows that theoretical predictions for 
the backward and forward age distributions are in good agreement with the numerical histograms. The inset plot 
shows the age fitness landscape, which follows the linear behavior predicted by Eq. (45).

Let us examine the particular case of uncontrolled models, for which the division rate is constant: B = ν . This 
corresponds to the case α = 0 in the power law analysis conducted above. Replacing α by 0 in Eq. (46) leads to 
Z = 1/ν ; moreover in steady state � = ν , so that

Moreover, the distributions themselves are greatly simplified and read

which shows that in this special case the age distributions are themselves identical with the generation time 
distributions.

Fluctuating individual growth rates. Another interesting extension of this calculation concerns the case of fluc-
tuating individual growth rate ν , for which the division rate then becomes a function of a and ν : B(a, ν) . Then, 
steady state age distributions  are17:

(46)Z =
1

α + 1

(

α + 1

ν

)
1

α+1

Ŵ

(

1

α + 1

)

,

(47)pback(a) = 2 pfor(a) e
−�a .

(48)pfor(a) = νe−νa ,

(49)pback(a) = 2νe−2νa ,

(50)pfor(a) =

∫

dν pfor(0, ν) exp

[

−

∫ a

0
B(a′, ν)da′

]

,

(a) (b)

Figure 5.  Age distributions and age fitness landscape for constant individual growth rate ν (a) and age fitness 
landscapes for fluctuating ν (b). In (a), the forward (resp. backward) age distribution is shown with orange 
filled histogram (resp. blue empty histogram). The red and green curves are the corresponding theoretical 
predictions. The inset plot shows the age fitness landscape (purple crosses) and the theoretical linear law (green). 
The horizontal black dashed-line represents the population growth rate � . The simulation was conducted with 
B(a) = νaα , ν = 1 , α = 2 , t = 12 and N0 = 1 . In (b), the age fitness landscapes are shown for models without 
(purple dots) and with (pink squares) mother-daughter correlations in individual growth rates. The green line 
of slope −� fits well the purple dots. For both models, we chose a Gaussian distribution for � , of standard 
deviation σν , and centred either on the mother growth rate ν′ for models with correlations or on a constant 
mean growth rate νm for uncorrelated models. The simulation was conducted with νm = 1 , σν = 0.4 , α = 5 , 
t = 12 and N0 = 1.
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where pfor(0, ν) and pback(0, ν) are given by the boundary conditions:

In the absence of mother-daughter correlations for the individual growth rate, then �
(

ν|ν′
)

= �̂(ν) , which 
implies that pfor(0, ν) and pback(0, ν) have the same dependency in ν:

Finally, the fluctuation relation for the age reads

which is the equivalent of Eq. (44) for fluctuating growth rates without mother-daughter correlations. Therefore, 
the age fitness landscape features the same linear dependency in age with a slope −� as in the case of constant 
individual growth rate.

In the general case with mother-daughter correlations, this statement is not necessarily true though, because 
pfor(0, ν) and pback(0, ν) do not have in general the same dependency in ν.

Consequently, looking at the slope of the age fitness landscape informs on the presence of mother-daughter 
correlations as illustrated numerically in Fig. 5b, where the age fitness landscape for models without mother-
daughter correlations aligns with the theoretical prediction of slope −� ; while the same function for models 
with mother-daughter correlations presents a non-linear age dependency.

Discussion
We have studied the relation between two different samplings of lineages in a branched tree: one sampling called 
backward or retrospective presents a statistical bias with respect to the forward or chronological sampling, an 
observation which is important to relate experiments carried out at the population level with the ones carried 
out at the single lineage level. This statistical bias can be rationalized by a set of fluctuation relations, which 
relate the probability distributions in the two ensembles and which are similar to fluctuation relations known in 
Stochastic Thermodynamics. This analogy leads to efficient methods to infer the population growth rate from an 
analysis of lineages, as we demonstrated by the analysis of the mother machine data of Tanouchi et al.20. Impor-
tant inequalities for the mean number of divisions or the mean generation times follow from these fluctuation 
relations, which have been verified  experimentally12 for various strains of E Coli. It would be interesting to gen-
eralize these studies to other cell types, and in the particular context of this paper, it would be useful to perform 
experimental studies in bulk or semi open configurations, to test the predictions which involve a comparison 
between forward and backward samplings.

By measuring the difference between these two samplings for a specific trait, one obtains the fitness landscape, 
introduced by Nozoe et al.13. While these authors have applied that concept to variables which are not reset or 
redistributed at division in their work, in the present paper, we used the concept of fitness landscape for variables 
like the size and the age, which precisely undergo a reset at division in size and age models. We derived expres-
sions for these fitness landscapes, which agree with the statistical bias which we expect when measuring size or 
age distributions in cell populations. In addition, we also find that the precise form of the age fitness function 
appears to inform whether or not mother-daughter correlations are present in age models.

In the future, it would be valuable to extend our approach to include other important phenotypic state 
variables besides size or age, such as variables controlling replication  dynamics3,27. We hope that our work con-
tributes to clarifying the connection between single lineage and population statistics and to understanding the 
fundamental constraints which cell growth and division must obey.

Received: 20 April 2020; Accepted: 25 June 2020

(51)pback(a) =e−�a

∫

dν pback(0, ν) exp

[

−

∫ a

0
B(a′, ν)da′

]

,

(52)pfor(0, ν) =

∫

dadν′B(a, ν′)�
(

ν|ν′
)

pfor(a, ν
′) ,
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∫
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ν|ν′
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∫
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