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ABSTRACT

In the field of remote sensing and more specifically in Earth
Observation, new data are available every day, coming from
different sensors. Leveraging on those data in classification
tasks comes at the price of intense labelling tasks that are
not realistic in operational settings. While domain adaptation
could be useful to counterbalance this problem, most of the
usual methods assume that the data to adapt are comparable
(they belong to the same metric space), which is not the case
when multiple sensors are at stake. Heterogeneous domain
adaptation methods are a particular solution to this problem.
We present a novel method to deal with such cases, based on
a modified cycleGAN version that incorporates classification
losses and a metric space alignment term. We demonstrate
its power on a land use classification tasks, with images from
both Google Earth and Sentinel-2.

Index Terms— Heterogeneous Domain Adaptation, Cy-
cle GAN, Land Use Classification

1. INTRODUCTION

In remote sensing, a lot of data are available but disposing of
associated labels is usually hard and time-consuming. Fur-
thermore, related to the sensor from which the data come
from, they do not share the same characteristics. While lever-
aging on one labelled dataset (the source domain) to perform
classification on a new dataset (target) with similar character-
istics can be cast as a domain adaptation problem, handling
data sources from different sensors is more tricky. This prob-
lem is known as an heterogeneous domain adaptation task. In
this case, the data have different characteristics (that can in-
clude spatial or spectral resolutions) and evolve in different
domains. Heterogeneous domain adaptation (HDA) is usu-
ally divided in two categories : semi-supervised HDA, when
a (small) quantity of target labels are available, and unsuper-
vised HDA, when no target labels at all is available. The diffi-
culty of heterogeneous domain adaptation is to find a sensitive
way of linking together the two different domains.

In the state of the art, methods dealing with HDA are
mostly shallow methods. EGW and SGW [1] aim to learn
an optimal coupling between the two domains through a
Gromov-Wasserstein distance. SHFA [2] aims at augmenting
source and target samples based on two projection matrices
and train simultaneously an SVM classifier on the augmented
data. CDLS [3] aims to find representative landmarks to learn
a domain-invariant feature subspace and then train a classifier
in the learned subspace for target data. DCA [4] aims to
jointly obtain a discriminative correlation subspace defined
by CCA and then learn a classifier in this subspace. Those
methods are not directly amenable to deep learning and the
related import quantity of data.

Our new approach for HDA, that is well suited in a deep
learning context, is based on the concept of CycleGAN [5,
6, 7]. This method is based on the notion of Generative Ad-
vsersarial Networks (GAN) [8] which consists in putting two
networks in competition: a generator network that produces
data and a discriminator network which tries to distinguish the
generated sample from a true data. The core idea of Cycle-
GAN is to find an invertible mapping between two domains
where examples are provided. Contrary to GANs, no source
of noise is considered, two generators (functions that imple-
ment mappings to and from the domains are considered, and
two discriminators for both domains. We cast the HDA in this
framework, but since we want to perform a classification task
we need to preserve labels during the image generation. Our
contribution focuses on this issue. With the help of this new
labeled images, we achieve a classification task on the target
domain. A few set of labeled data are used from the target
domain and we aim to reduce as much as possible the number
of available target labels.

2. PROPOSED METHOD

Two sets of data are used, source data Xs = {xsi}
Ns
i=1 with

Ps the data distribution, in the domain S ∈ Rm×n×d, with
ys = {ysi }

Ns
i=1 the class labels associated, and, target data

Xt = {xti}
Nt
i=1 with Pt the data distribution, in the domain



T ∈ Rk×l×e, with nyt labels yt = {yti}
Nt
i=1. Our method

is based on the CycleGAN idea and the notion of GAN. We
are going to present this two methods before introducing our
improvements.

2.1. GAN

The idea of GANs [8] consist in putting in competition two
networks. A generator network G maps a noise and generate
samples, and, a discriminator D network tries to distinguish
the generated sample from true data samples. The loss func-
tion is a minimax game between the generator and the dis-
criminator. We have x the real data, Pr the data distribution,
x̃ = G(z) with z the input of the generator, sampled from
some a noise distribution and PG the the model distribution.
The loss function LGAN of a GAN, which is minimized over
G and maximized over D, reads:

LGAN (G,D) = E
x∼Pr

[log(D(x))] + E
x̃∼PG

[log(1−D(x̃))].

The CycleGAN method lies in this idea with the addition
of a cycle consistency term during the generation.

2.2. Cycle GAN

The Cycle GAN [6] is a method based on GAN used to per-
form style transfer. The major advantages of this methods
are the weakly supervision and the fact that it does not need
paired images. The goal of Cycle GAN is to learn mapping
function between the two domains S and T . To achieve this,
we have two generators, Gs2t : S → T and Gt2s : T → S,
and two discriminators, Ds which aims to distinguish source
images from images generated by Gt2s and Dt which aims
to distinguish source images from images generated by Gs2t.
The Cycle GAN statement lies in the cycle consistency idea.
It is based on the fact that the generated data should be re-
transform to their original form: Gt2s(Gs2t(x

s)) ≈ xs and
Gs2t(Gt2s(x

t)) ≈ xt The cycle consistency loss measures
the difference between the original images and the two times
generated images. This loss can be written as :

Lcycle(Gs2t, Gt2s) = Exs∼Ps
||xs −Gt2s(Gs2t(x

s)||+
Ext∼Pt

||xt −Gs2t(Gt2s(x
t)||,

where || . || is a suitable norm. With the cycle consistency
loss, an adversarial loss is applied for both discriminators.
The global loss is then :

LcycleGAN (Gs2t, Gt2s, Ds, Dt) = LGAN (Gs2t, Dt)

+LGAN (Gt2s, Ds) + λLcycle(Gs2t, Gt2s).

2.3. Proposed architecture

The Cycle GAN method can be apply for our case to generate
source images in the target domain or the other way around.

However, because we are handling a classification problem,
specific cares have to be taken to ensure a correct transfer of
the labels.

2.3.1. Metric alignment, classification and total losses

With a Cycle GAN architecture, two samples can be arbitrar-
ily mapped in the target space and it is difficult to ensure that
two nearby samples in the target domain will share a correct
label. Yet, most classifiers are using this regularity to enforce
generalization. This issue is linked to the notion of regular-
ity of the mapping G, which is for example described in [9].
We add a metric alignment loss that will help us to assure
that two close samples from the source domain must be close
in the target domain after the generation, and the other way
around. The corresponding loss simply reads:

Lmetric(G) = E(xi,xj)∼Ps,(d(xi, xj)− d(G(xi), G(xj)))
2,

where d is a distance between the samples in the correspond-
ing domains. We notably simply choose a simple Euclidean
distance, but this choice could be improved in the future.

This classification consistency is also ensured by a spe-
cific loss based on the output of the classifiers C:

Lclassif (C,G) = E(x,y)l(C(G(x)), y),

evaluated over labelled samples from both source and target
domains (if any), and where l(., .) is a classification loss (typ-
ically cross-entropy in a deep learning setting) that forces the
sample coming from the generators to be classified according
the true associated labels.

Finally, the global loss of our method is:

L(Gs2t, Gt2s, Ds, Dt) =

LcycleGAN (Gs2t, Gt2s, Ds, Dt) + Lclassif (Cs)

+ Lclassif (Ct) + Lmetric(Gs2t) + Lmetric(Gt2s).

2.3.2. Overall architecture

In our architecture (see Fig. 1), we recover the elements of
the Cycle GAN plus two classifiers Cs and Ct. We pretrain
Cs with the source data and their labels. Then, we use it to
test the relevance of the generated images coming from Gt2s

with the help of the available target labels. In the same way,
we pretrain Ct with the target images and the labels available
(when any), and we use it to test the relevance of the generated
images coming from Gs2t with the help of the source labels.
Final classification on the target data is achieved with a third
classifier which is trained independently from the architecture
of Fig. 1, and discussed subsequently.



Fig. 1. Diagram of our architecture showing the different ele-
ments of its composition.

2.3.3. Final classification

Once the transformation architecture has been trained, there
are three ways of performing classification of the unlabelled
target samples. In all cases, we use the labelled target data
(if any), and we add: i) source images transferred to the
target domain by Gs2t and their corresponding labels. In
the remainder, we refer to this method as HDAsource; ii)
unlabelled target images, associated to the label obtained by
transforming them into their source equivalent (via Gt2s) and
associated to a label obtained by Cs (HDAtarget); iii) a
combination of both approaches to generate learning data
(HDAfull). Fig. 3 depicts the three approaches for training
the final classifier.

3. EXPERIMENTS AND RESULTS

To assess the qualities of the proposed method, we chose
two datasets to make Land Use classification. We selected
NWPU-RESISC45 and EuroSAT datasets.

3.1. Datasets

NWPU-RESISC45 [10] contains 31,500 images and cover 45
scene classes. The images come from Google Earth, have a
size of 256*256 and are in RGB. The spatial resolution of
this dataset varies from about 30 m to 0.2 m per pixel. Eu-
roSAT [11], [12] contains 27,000 images and cover 10 scene
classes. The images come from Sentinel-2 satellite, are com-
posed by 13 spectral bands and have a size of 64*64. Since
EuroSAT dataset contains only 10 classes, we choose to start

Fig. 2. On the left, we have the original images, in the cen-
ter, we have the first generated images, and on the right, we
have the second generated images which should look like the
original images.

from this dataset, we look for common classes between the
two datasets. We have 9 classes (annual crop, permanent crop,
forest, highway, industrial, pasture, residential, river and sea
lake) and we choose to merge annual crop and permanent
crop into crop because the images were very similar. Then
we selected the corresponding one from NWPU-RESISC45
dataset. For each classes, 700 labelled samples are available.
We take 650 samples at best to test our architecture and we
keep 50 samples to do the validation.

3.2. Results

We show in Fig. 2 images generated by our method. We want
to analyse the influence of the number nyt

of target labels
available, so we run our tests with different amount of target
labels.

For the model we use a similar architecture as SRGAN
[13] for the generators, a convNet for the discriminators made
up of four convolutional layers, with batch normalisation and
ReLU activation function and also a convNet for the two clas-
sifiers made up of four convolutional layers with dropout,
maxpooling and ReLU activation function. The final classi-
fier trained is also a convNet made up of three convolutional
layers with ReLU activation function. We train the model for
300.000 iterations and the final classifier on 30 epochs.

We compare the accuracy scores of 4 methods: baseline,
that is the score when only labelled samples in the target are
considered, HDAsource, HDAtarget and HDAfull. As one can
observe from the results of table 1, our method gives better
classification results than with target labeled data only in all
cases. Less we have available target labels, more we improve
the classification results. Interestingly enough, HDAtarget

gives the best score consistently. This can be explained by
the following fact: since labels are available in the source do-



Fig. 3. On the left, diagram of the HDAsource method. In the middle, diagram of the HDAtarget method. On the right,
diagram of the HDAfull method. This diagrams are showing the origin of the data use for the final classifier.

# nyt
baseline HDAsource HDAtarget HDAfull

650 77.00 71.25 80.00 75.00
325 70.75 70.00 77.00 72.00
130 64.00 50.75 70.00 66.50
65 62.00 43.00 68.50 64.25
1 19.00 32.25 66.75 62.00
0 - 30.75 65.75 57.50

Table 1. Rate of accuracy scores for classification on Eu-
roSAT dataset

main, the Cs classifier is very good, and helps in training a
performant Gt2s transformation. A contrario, the transfor-
mation from source to target is less performant, and when
combined in the HDAfull setting, it only worsen the classifi-
cation accuracy. Also, the best performance 66% in the fully
unsupervised setting is very good (only 11 points behind the
golden score (77%), which indicates that our method is capa-
ble of transferring knowledge even in the absence of labelled
samples in the target domain.

4. CONCLUSIONS

In this paper, we presented a novel approach for classification
with heterogeneous domain adaptation using a cycle GAN
based approach. Our contribution lies in the addition of spe-
cific classification and metric alignment losses, that also helps
in the generation process. Experimental results on a Land Use
classification problem involving very different remote sens-
ing images indicate the power of our method, in both semi-
supervised and unsupervised settings. Future works will con-
sider ablation studies to fully undertstand the role of each
loss independently, and compare with existing unsupervised
or semi-supervised deep HDA methods.
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