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On dual unit balls of Thurston norms

Abdoul Karim SANE

Abstract

Thurston norms are invariants of 3-manifolds defined on their se-
cond homology and understanding the shape of their dual unit balls
is a widely open problem. In this article, we provide a large family of
polytopes in R2g that appear like dual unit balls of Thurston norms,
generalizing Thurston’s construction for polygons in R2.

mes enseignants premier,

1 Introduction

Let M be a compact orientable 3-manifold with possibly non-empty
boundary. In [9], W. Thurston defined a semi-norm on the second homology
of M . Let a ∈ H2(M,∂M ;Z) be an integer class, then a admits represen-
tatives that are disjoint unions of properly embedded oriented surfaces Si
in M . The Thurston norm of a is given by:

x(a) := min
[∪iSi]=a

{∑
i

max{0,−χ(Si)}

}
;

where χ(Si) is the Euler characteristic of Si. When a representative S of a
is such that x(a) = −χ(S), we say that S is minimizing .

If M is prime, i.e., every embedded sphere bounds a ball and atoroidal,
i.e., every embedded torus bounds a solid torus, then x extends to a norm on
H2(M,∂M ;R). By construction x takes integer values onH2(M,∂M ;Z). It is
an integer norm : a norm on a vector space that takes integer values on a top
dimensional lattice. W. Thurston showed that the dual unit ball of an integer
norm on a vector space E relative to a lattice Λ is an integer polytope
namely the convex hull of finitely many 1-forms ui ∈ E∗ that take integer
values on Λ. Moreover, x is completely determined by the vectors ui ∈ E∗:

x(a) = max
ui
{〈ui, a〉}.
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For a 3-manifold with toral boundary components, Thurston showed ([9]-
Page 106) that the vectors defining the dual unit ball B1

x∗ of x satisfy the
parity condition. More precisely, B1

x∗ is the convex hull of finitely many
vectors ui ∈ H2(M,∂M ;R) and ui = uj mod 2 for all i; j = 1, .., n.

Just after defining his norm, Thurston started to compute it on a few
examples of 3-manifolds. Even better, he showed the following:

Theorem 1. [W. Thurston, [9]-Theorem 6] Every symmetric integer polygon
in Z2 with vertices satisfying the parity condition is the dual unit ball of the
Thurston norm on a 3-manifold.

Theorem 1 is not stated in the same way like in Thurston article but when
we analyse closely the equality established in [9]-Theorem 6, it implies impli-
citly an equality between the Thurston norm on the 3-manifold constructed
by Thurston and a norm —associated to a collection of closed geodesics on
the torus— on the first homology of the torus. Now, these norms are known
as intersection norms.

Our main result is a generalization of Thurston’s theorem to symmetric
polytopes in dimension 2g. We achieve that extension by establishing a bridge
between Thurston norms and intersection norms on surfaces (see Section 2
for the definition of intersection norms). Intersection norms are also integer
norms on the first homology of a surface and there is a class of polytopes
realized by intersection norms called homologically non-trivial polytopes
(see Definition 1). We show:

Main Theorem. Every homologically non-trivial polytope is the dual unit
ball of a Thurston norm on a 3-manifold.

Unlike intersection norms, computing the dual unit ball of a Thurston
norm is difficult. There is an algorithm ([1], [3]) that determines whether
a given surface S is minimizing or not. This algorithm uses the theory of
sutured manifold hierarchies introduced by D. Gabai in [4]. D. Gabai used
hierarchies to construct taut foliations in the complement of many knots and
as a consequence to determine their genus. M. Scharlemann [8] then showed
that hierarchies determine the Thurston norm of a homology class in general.
The difficulty in that algorithm is to find a sutured manifold hierarchy for
checking that an embedded surface is minimizing or not. The Thurston norm
minimizing problem is NP [3].

Since the matter is less complicated for intersection norms, our main
theorem provides many polytopes which are dual unit balls of Thurston
norms. Nonetheless, we showed in [7] that there are symmetric polytopes
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in Z4 satisfying the parity condition that are not dual unit balls of inter-
section norms. This result makes the characterization of polytopes (in even
dimensions) that appear for those two norms widely open. We wonder those
polytopes that are not dual unit balls of intersection norms are also not dual
unit balls of Thurston norms.
The proof of our main theorem goes through a detailed analysis of incompres-
sible surfaces in the complement MK of an oriented knot K (with [K] 6= 0)
in a circle bundle M with Euler number equal to 1 over a surface. We porve:

Theorem 2. An incompressible surface in MK is isotopic to an almost ver-
tical surface.

From Theorem 2 (see Theorem 4 in Section 3 for its elaborate version),
we obtain a total description of minimizing surfaces. This approach avoids
foliation techniques for checking whether a given surface is minimizing, and
also the use of sutured manifold algorithm.

Outline of this article: Section 2 starts with the definition of intersection
norms and it ends with Thurston’s construction of polygons as dual unit balls
of Thurston norm on 3-manifolds. Section 3 is about incompressible surfaces
and we prove Theorem 2. The proof of Main Theorem is given in Section 4.

2 Intersection norms and Thurston’s construction
of 3-manifolds realizing polygons

In this section, we first recall some basic facts about intersection norms
on closed oriented surfaces ; see [2] for more details. We finish by explai-
ning the idea in Thurston’s proof of Theorem 1 from which one can see our
generalization.

Intersection norms: They are integer norms defined on the first homo-
logy of a closed oriented surface Σg. Introduced by V. Turaev in [10] intersec-
tion norms received a new interpretation in the article of M. Cossarini and
P. Dehornoy [2]: they used intersection norms to classified Birkhoff sections
of the geodesic flow on the unit tangent bundle of a closed oriented surface.

Let Γ = {γ1, ..., γn} be a finite collection of closed curves on Σg with only
transverse intersection points. Assume that Γ is a filling collection, i.e., its
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complement in Σg is a union of topological disks. The function

NΓ : H1(Σg,Z) −→ N
a 7−→ inf{card{α ∩ Γ}; [α] = a},

where α is an oriented collection of closed curves representing a with each
of its components transverse to Γ, satisfies the following properties:

— seperation: NΓ = 0 if and only if a = 0 —since Γ is filling ;
— linearity on rays: NΓ(n.a) = n.NΓ(a) for a ∈ H1(Σg,Z) and n ∈ N ;
— convexity: NΓ(a+ b) ≤ NΓ(a) +NΓ(b) for a; b ∈ H1(Σg,Z).
In the definition of NΓ, Γ is fixed in its homotopy class and NΓ computes

the minimal intersection number with Γ among all the representatives of a
homology class.

For n ∈ N∗ and a ∈ H1(Σg,Z), we set NΓ( 1
n .a) := 1

nNΓ(a) and by
linearity on rays, NΓ extends to a well-defined function on H1(Σg,Q). In
fact, NΓ(nn .a) = 1

nNΓ(n.a) = 1
n(n.NΓ(a)) = NΓ(a). By density, NΓ extends

to a norm on H1(Σg,R) called the intersection norm.
By definition, NΓ is also an integer norm. Therefore, its dual unit ball

is the convex hull of finitely many vectors vi ∈ H1(Σg,Z). Like dual unit
balls of Thurston norms on 3-manifolds with toral boundary components,
the vectors vi also satisfy the parity property.

We recall that the norm is completely determined by the vectors vi:

NΓ(a) = max
vi
{〈vi, a〉}.

M. Cossarini and P. Dehornoy provided a fast algorithm that computes
all the vectors of the dual unit ball of an intersection norm. It is also known
that symmetric integer polygons satisfying the parity condition are dual
unit balls of intersection norms, but there are examples of such polytopes in
dimension 4 that cannot be realized by intersection norms (see [7]). Here is
the class of polytopes that interest us.

Definition 1. A filling collection Γ on Σg is homologically non-trivial if

there exists an orientation
→
Γ of Γ such that [

→
Γ] is a non-trivial homology

class. A homologically non-trivial polytope in Z2g is a symmetric poly-
tope, satisfying the parity condition, that appears like the dual unit ball of an
intersection norm on Σg associated to a homologically non-trivial collection.

A filling collection Γ is homologically trivial if and only if its components
are all separating curves. So, many filling collections on Σg are homologically
non-trivial and therefore, most of dual unit balls of intersection norms are
homologically non-trivial.
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Thurston’s construction: Let Γ = {γ1, ..., γn} be a filling collection of
closed geodesics on the flat torus T. Since every component of Γ is simple and
non-separating, there is an orientation of each component of Γ making the
oriented collection

−→
Γ non-trivial in homology: every collection of geodesics

on the torus is homologically non-trivial.

−→
Figure 1 – Attaching two curves at an intersection point.

By applying the operation on Figure 1 at finitely many well-chosen double
points, we obtain a filling closed curve −→γ in T which is no longer a geodesic.

Now, let π : M −→ T be the circle bundle over T with Euler number 1.
Then, H2(M ;Z) is isomorphic to H1(T;Z).

Let K be a lift of −→γ in M and MK the complement in M of a tubular
neighborhood T (K) of K. The morphism

r : H2(M ;Z) −→ H2(MK , ∂MK ;Z)

[S] 7−→ [S ∩MK ]

is an isomorphism. In fact, we have the following exact sequence:

0→ H2(M ;Z)→ H2(M,T (K);Z)→ H1(T (K);Z)→ H1(M ;Z)

Since [−→γ ] = π∗(K) is nonzero, the inclusion H1(T (K);Z) → H1(M ;Z) is
injective. It follows that the map H2(M ;Z) → H2(M,T (K);Z) is an iso-
morphism. By excision, we obtain the isomorphism r.

Thus, H2(MK , ∂MK ;Z) is isomorphic to H1(T;Z) and canonical repre-
sentatives of H2(MK , ∂MK ;Z) are of the form π−1(α) ∩MK , where α is an
oriented simple curve in T. Since π−1(α) is a torus, the Euler characteristic
of π−1(α) ∩MK is given by its number of boundary components:

−χ(π−1(α) ∩MK) = card{π−1(α) ∩K} = card{α ∩ Γ}.

Thurston showed that if α minimally intersects Γ, then π−1(α) ∩MK is
minimizing:

x([π−1(α) ∩MK ]) =
n∑

m=1

i(α, γm). (1)
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The technical part in Thurston’s proof is the construction of a foliation
on MK without Reeb component and having π−1(α)∩MK as a leaf —which
by Thurston’s characterization of minimizing surface implies that π−1(α)∩MK

realizes the norm in its homology class.
Equation (1) describes exactly an equality between Thurston norm onMK

and the intersection norm on the torus associated to Γ and this remark is
from us. It can be rewritten as follows:

x(a) = NΓ(π∗(a)). (2)

Polygons satisfying the parity conditions can be realized as dual unit balls
of intersection norms on the torus (see [7]-Proposition 9 for the proof of this
fact ). Equation 2 implies that they can also be realized as dual unit ball of
Thurston norms.

We aim to extend Thurston’s construction to higher genus surfaces using
intersection norms, namely for every circle bundle π : M −→ Σg with Euler
number equal to 1. For the general case, there are essentially two differences.

— There exists filling collections that are not homologically non-trivial.
A consequence of this fact is that the dimension of H2(MK) increases
by one with one homology class corresponding to K. For instance,
filling collections made with separating simple closed curves are ho-
mologically trivial.

— There are examples of filling collections Γ andNΓ-minimizing oriented
curves α for which π−1(α) ∩NK is not minimizing for the Thurston
norm which contrasts with the case of the torus (see Figure 2).

↑
α

Figure 2 – The vertical surface S := π−1(α) ⊂ MK (in the middle) is a torus with
four boundary components. By replacing these four boundary components by a handle,
we obtain a genus 2 closed surface S′ (on the right-picture) and |χ(S′)| < |χ(S)|.
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3 Incompressible surfaces in non-trivial knot com-
plements in circle bundles.

This section is devoted to the study of incompressible surfaces in the
complement of a knot in a circle bundle over a closed surface.

Definition 2. Let M be a 3-manifold. An embedded surface S in M is
incompressible if every simple curve on S which bounds an embedded disk
inM also bounds a disk in S. Otherwise we say that S is compressible and
the disk in M bounded by α is called a compression disk .

If S is compressible in M , then one can cut S along a compression disk
(see Figure 3). This cutting operation reduces the complexity of the sur-
face. Therefore, a minimizing surface with nonzero Euler characteristic is
incompressible.

Figure 3 – Cutting a surface S along a compression disk. This cutting operation reduces
the genus by one.

Classification (up to isotopy) of incompressible surfaces of 3-manifolds is
an interesting question in topology. For the case of circle bundles over closed
surfaces, a complete answer is given in [11].
A circle bundle M over a closed surface is obtained as follows. Let Σg,1 be a
closed surface with one boundary component andM ′ := Σg,1×S1 be the tri-
vial circle bundle. The bundle structure onM ′ induces a foliation by vertical
closed curves F on its boundary component which is a torus, and let α be
the trace of a section Σg,1×{∗} ofM ′ on its boundary. Let D2×S1 be a solid
torus, l := {∗}×S1 ⊂ ∂(D2×S1) be its longitude and m := ∂D2× {∗} be its
meridian. We obtain a closed 3-manifoldM by Dehn fillingM ′ with D2× S1

and the bundle structure ofM ′ extend toM if and only if the vertical the me-
ridian m is mapped to a curve β ∈ ∂M ′ which intersects F exactly one time.
The geometric intersection between α and β is called the Euler number of
the circle bundle M . All circle bundles over a closed surface are obtained in
this way and the Euler number classified them (see [6]).

When the Euler number of M is equal to 1, then β = F + α. It implies
that [F + α] = 0 in M . Since α = ∂(Σg,1 × {∗}), we obtained that [F ] = 0.
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So, π∗ : H1(M ;Z) −→ H1(Σg;Z) is an isomorphim.

Theorem 3. [F. Waldhausen [11]] Let π : M −→ Σg be a circle bundle.
Then, an incompressible surface in M is either isotopic to a vertical sur-
face S, that is π−1(π(S)) = S, or a horizontal surface, that is π|S : S −→
Σg is a finite covering.

One can check the proof of Waldhausen’s theorem in Hatcher’s notes [5]-
Proposition 1-11.

The existence of horizontal surfaces in M depends on its Euler number.
More precisely, a circle bundle admits a horizontal surface if and only if its
Euler number is zero ([5], Proposition 2.2).

We push Waldhausen’s classification a bit further. Let π : M −→ Σg

be a circle bundle with Euler number 1 and K an oriented knot in M such
that π(K) is a non-trivial homology class. We denote byMK the complement
in M of a tubular neighborhood of K. Let S be a surface embedded in MK .

Definition 3. The closure of S in M denoted S̄, is the surface embedded
in M obtained by forgetting K and gluing disks along all the boundary
components of S.

The closure S̄ is embedded in M and S = S̄ ∩MK . So, to classify incom-
pressible surfaces in MK , all we need is to understand their closure in M .

For the proof of Main Theorem, we show the following elaborate version
of Theorem 2 in the introduction:

Theorem 4. Let S be an incompressible surface in MK and S̄ its closure
inM . There is a sequence S0 −→ S1 −→ ... −→ Sn = S̄ of embedded surfaces
in M such that:

— S0 is a disjoint union of vertical surfaces ;
— Si+1 is obtained by attaching a handle to Si ;
— Si ∩MK is incompressible in MK .

Proof. Let S̄ be the closure of S in M . Since [K] 6= 0, then ∂S 6= K. If S̄ is
incompressible in M , then S̄ is vertical and S0 = Sn = S̄.

If S̄ is not incompressible, we obtain a sequence S̄ −→ S1 −→ ... −→ Sn,
where each step consists in cutting Si along an essential simple curve which
bounds a disk inM , and gluing disks on boundary components of the surface
obtained. This process ends with a possibly non-connected incompressible
surface Sn in M which is a disjoint union of vertical surfaces. The reverse
sequence achieves the proof.
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Theorem 4 shows that the only obstruction for an incompressible surface
to be vertical comes from attaching handles like in Figure 2.

Definition 3.1. Let S be an incompressible surface inMK and α an essential
simple curve on S̄ which bounds a disk Dα in M . The weight of α is the
integer w(α) defined by:

w(α) = min{card{Dα′ ∩K}, α′ isotopic to α}

The verticality defect of S is the integer vd(S) defined by:

vd(S) = max
α
{w(α)}.

One can see that vd(S) is equal to zero if and only if S is a vertical surface
up to isotopy namely

S = π−1(α) ∩MK ,

where α is a simple closed curve on Σg. Moreover, if vd(S) = 1, then S is
homologous to a vertical surface with the same Euler characteristic. In fact,
if α is a simple curve on S̄ such that w(α) = 1, we can cut S̄ along α to
obtain a surface S̄1. The surface S1 := S̄1 ∩MK has two more boundary
components than S and one handle less and is homologous to S. It follows
that χ(S) = χ(S1). Repeating this process, we obtain a vertical surface Sn
in the same homology class and with the same Euler characteristic like S.

↑ ↑s0

s 1
2

s1

s0

s 1
2

s1

a

b

a

b

Figure 4 – Rectangle between two arcs obtained by lifting a homotopy between two
sections. On the left, we have the case where the orientations of the arcs agree and on the
right we have the case where the orientations are opposite.
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We end this section with some definitions. Let A and B be two sub-
arcs of K such that a := π(A) and b := π(B) are disjoint simple arcs with
extremities ∂a = {t, x} and ∂b = {y, z}. Let λ1 and λ2 be two arcs from t
to y and x to z, respectively, such that λ1, a, λ2 and b bound a topological
disk.

The oriented arcs a and b can be seen as sections of the unit tangent
bundle of their supports, and there is a homotopy (see Figure 4) of sections st
such that:

— st is an isotopy between the support of a and b, with extremities
gliding in λ1 and λ2 ;

— s0 = a and s1 = b.
The isotopy st lifts to a rectangle R from A to B and when we blow up R
—the blow up of a rectangle R consists in replacing R by the boundary of
a tubular neighborhood of R (see Figure 5)— , we obtain a handle (homeo-
morphic to S1 × [0, 1]) enclosing A and B.

−→

Figure 5 – Blowing up of a rectangle.

Lemma 3.1. If H is a handle in M enclosing two sub-arcs A and B whose
projections are disjoint simple arcs, then H is isotopic to a blow up of a
rectangle between A and B.

Proof. Since H is a compressible handle enclosing A and B, then there is
an isotopy between A and B inside H. This isotopy gives a rectangle R
between A and B and the blow up of that rectangle is inside H. Therefore, H
is isotopic to the blow up of R.

The construction described above works for more than two sub-arcs and
in what follows, we will consider handles as blow up of rectangles between
sub-arcs.
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4 Proof of the main theorem

Let us start this section with the following statement: if two filling collec-
tions Γ and Γ′ differ by an "attachment" (see Figure 1), then the intersection
norm associated to Γ is equal to the one associated to Γ′ (see [7] ; Lemma 11).
Therefore any intersection norm is realized by one filling curve γ, not neces-
sarily in minimal position.

−→

Figure 6 – Modification of K around a fiber of a double point of γ. The red arc is
coming out of the page. Each vertical arc (the dark and the red one) individually follows
a fiber and is linked to itself. Along the fiber, the modified arcs form a braid with two
strands twisted three times.

Let −→γ be an oriented filling curve with non vanishing class in homo-
logy. Let π : M −→ Σg be a circle bundle with Euler number equal to
1. Then, H2(M ;Z) is isomorphic to H1(Σg;Z). In fact, by Poincarality,
H2(M ;Z) is isomorphic to H1(M ;Z) which is isomorphic to H1(Σg,Z) since
the Euler number is equal to 1. Instead of only taking a lift of −→γ in M , we
add the modification depicted in Figure 6 on the neighborhood of each fiber
of a double point of γ. Let K̂ be the knot obtained and MK̂ be the comple-
ment of K̂. Since π(K̂) is still homologous to −→γ , one can use exact sequence
and excision theorem in homology, like in Thurston’s proof (Section 2), to
check that H2(MK̂ ;Z) is isomorphic to H1(Σg;Z) with vertical surfaces as
canonical representatives.

Thurston’s construction does not extend in a trivial way to higher genus
surfaces since a minimizing surface S could have verticality defect greater
than two (see Figure 2). Our modification, which consists in braiding the
knot K along fibers (see Figure 6), as we will see increases the complexity of
incompressible surfaces with verticality defect greater than two. The modifi-
cation involves a choice (which is not unique) and the goal of the modification
along fibers of double points is to avoid handles attaching that reduce the
complexity of vertical surfaces like in Figure 2.
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Definition 4.1. Let Hα be a handle with ∂Hα = {α1, α2}. Let λ be a
simple arc from α1 to α2. The handle Hα is horizontal if the homotopy
class —with fixed extremities— of λ in M has no fibers.

Lemma 4.1. Let S1 and S2 be two vertical surfaces in MK̂ on which we
attach a handle Hα to obtained a surface S := S1 #

Hα

S2.

If w(α) ≥ 2, then there is a surface S′ homologous to S such that

−χ(S′) < −χ(S).

Proof. Their are two alternatives concerning the configuration of a handle
depending on wether π(Hα) contains a double point or not.

If π(Hα) does not contain a double point of →γ , then S is compressible. In
fact, the curve β (Figure 7-a) which is obtained by summing two fibers in S1

and S2 along Hα is essential in S (since fibers are essential in S1 and S2)
and bounds a disk in MK̂ (see Figure 7-a). So, we can reduce the complexity
of S in this case by cutting S along the disk bounded by β.

β

S1 S2(a) (b)

Figure 7 – (a) Compression disk in MK̂ bounded by an essential curve β in S. (b) The
arc around the fiber of a double point which intersects a rectangle. This shows that the
rectangle cannot go completely along the fiber.

Now, suppose that π(Hα) contains double points of →γ . We claim that Hα

is horizontal. Since w(α) ≥ 2, Hα is isotopic to a blow up of a rectangle bet-
ween sub-arcs of K̂. A rectangle stays on one side of an arc. Thus, it cannot
follow a sub-arc of K̂ along a fiber (see Figure 7-b).
Finally, if Hα is horizontal and π(Hα) contains a double point p, then the
fiber π−1(p) intersects Hα twice. Therefore, Hα intersects K̂ four times the
braiding above p and these intersection points define four boundary compo-
nents on S. By attaching a new handle along the fiber π−1(p) which encloses
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those four boundary components (see Figure 8) we obtain a surface S′ with
one more handle and four boundary components less. So −χ(S′) ≤ −χ(S).

−→

Figure 8 – Replacing four boundary components by attaching a handle which enclosed
the modification along a fiber.

Corollary 4.1. Let S be a surface embedded in MK̂ . If S is Thurston norm
minimizing, then vd(S) ≤ 1.

Proof. Since a minimizing surface S is incompressible, S is obtained by at-
taching finitely many handle between vertical surfaces embedded in MK̂
according to Theorem 4. By Lemma 4.1, the weight of each handle is less or
equal to 1. It follows that vd(S) ≤ 1.

Now, we are able to prove the main theorem.

Proof of the main theorem. Let S be a minimizing surface inMK̂ . By Corol-
lary 4.1, vd(S) ≤ 1. If vd(S) = 0 then S = π−1(α) ∩MK̂ . So x(S) = Nγ(α).

If vd(S) = 1, then one can replace each handle of S by two boundary
components by cutting along essential simple curves in S which are trivial
inM . This operation does not increase the Euler characteristic and we obtain
at the end an incompressible surface S′ in the homology class of S such that
vd(S′) = 0. Again in this case, there is a vertical surface which minimizes
the Thurston norm. So x(a) = NΓ(π∗(a)).

Homologically non-trivial polytopes realized by our construction do not
have fibered faces since a fibration of MK̂ by vertical surfaces would give a
foliation on Σg without singularities.
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Our main theorem links the realization problems of intersection norms
and Thurston norms. In [7], we showed that every polytope P in P8: the set
of non degenerate symmetric sub-polytopes of [−1, 1]4 with eight vertices, is
not the dual unit ball of an intersection norm.

Question 1. Let P ∈ P8. Is P the dual unit ball of a Thurston norm on a
3-manifold ?

By Gabai’s theorem which states that minimizing surfaces are leaves of
foliations without Reeb component, this question is somehow related to the
studying of the topology of foliated (without Reeb component) 3-manifolds
with pairs of pants or one-holed torus as leaves.
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