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3 rue Fernand Hainaut, 93407 Saint-Ouen, France.

Abstract

A numerical method is proposed to approximate the solution of parametric eigenvalue problem when the
variability of the parameters exceed the radius of convergence of low order perturbation methods. The
radius of convergence of eigenvalue perturbation methods, based on Taylor series, is known to decrease when
eigenvalues are getting closer to each other. This phenomenon, knwon as veering in structural dynamics,
is a direct consequence of the existence of branch point singularity in the complex plane of the varying
parameters where some eigenvalues are defective. When this degeneracy, referred to as Exceptional Point
(EP), is close to the real axis, the veering becomes stronger.

The main idea of the proposed approach is to combined a pair of eigenvalues to remove this singularity.
To do so, two analytic auxiliary functions are introduced and are computed through high order derivatives
of the eigenvalue pair with respect to the parameter. This yields a new robust eigenvalue reconstruction
scheme which is compared to Taylor and Puiseux series. In all cases, theoretical bounds are established
and all approximations are compared numerically on a three degrees of freedom toy model. This system
illustrate the ability of the method to handle the vibrations of a structure with a randomly varying parameter.
Computationally efficient, the proposed algorithm could also be relevant for actual numerical models of large
size, arising from other applications involving parametric eigenvalue problems, e.g., waveguides, rotating
machinery or instability problems such as squeal or flutter.

Keywords: Uncertainty propagation, Veering, Exceptional point, Puiseux series, parametric eigenvalue
problem, defective eigenvalue

1. Introduction

The prediction of the vibrational behaviour of structure or machinery allows to design and optimize
solutions for noise and vibration reduction from early design stage. Moreover, considering the variability of
the actual behavior of a structure allows to design more robust solutions. For usual industrial structures,
finite element models with large number of degree-of-freedom are usuelly required, besides, when the system
have varying or uncertain parameters, the characterization of its vibrational behaviour becomes even more
challenging. This implies high computational costs to solve the associated eigenvalue problem.

Uncertainty propagation is mainly addressed using two frameworks. On the one hand, non-probabilistic
approaches allow to handle random and epistemic uncertainties. They include for instance interval ap-
proaches, fuzzy logic [1] or lack-of-knowledge theory [2–4]. On the other hand, probabilistic approaches
aim to model the natural variability of random phenomena. Such approaches can be further divided into
parametric and non-parametric approaches [5]. While the later allows to consider measurement or modeling
uncertainties, parametric methods only consider the variability of the model parameters. This latter frame-
work is retained for this work. In the context of computational mechanics, the most common parametric
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probabilistic method is the Stochastic Finite Element Method (SFEM). The SFEM is based on the classi-
cal deterministic Finite Element Method and consider the elements properties as random [6]. It is mainly
divided into three main approaches: statistical approaches, also referred to as Monte-Carlo Simulations
(MCS) [7, 8], perturbation methods [9–11] and the Spectral Stochastic Finite Element Method (SSFEM)
[6, 12–15].

MCS are the most straightforward methods. They consist in sampling the input random parameters and
solving each associated configurations of the deterministic model to generate samples of the output random
quantities. Even if they converge to the exact solution of the random problem, their major drawback is
their rate of convergence. Numerous techniques, generally based on variance reduction or on computa-
tion parallelization, have been developed [11], nevertheless these methods remain inadequate for structural
analysis. Initiated by Wiener’s works [16], the SSFEM was introduced by Ghanem and Spanos [12]. It is
based on the discretization of the random quantities among a finite random space. The random output
of the system is then represented using orthogonal polynomials of the input random variables called the
Polynomial Chaos (PC). Even if efforts have been made to reduce the computational cost of PC methods
[14, 17], SSFEM still requires intensive computations when high-order polynomials or a high number of
random parameters are involved. Polynomial Chaos expansion can be identified as a surrogate model (also
referred to as metamodel [18]) to be substituted to the original model to decrease computational costs.
Other surrogate models like quadratic response surfaces or Kriging can be found in the litterature [19].
Common to all these models is to be built from a limited number of runs of the original model. As all in-
terpolation techniques, the convergence is sensitive to the smoothness of the original model and may be less
efficient in the vicinity of spectral degeneracies [20]. Finally, perturbation approaches provide a framework
both straightforward and easy to implement to reduce the computational cost of MCS. It consists in the
approximation of the random quantities using Taylor (or Neumann) expansion [9–11, 21]. They are usually
limited to first or second order and have been applied to a large field of applications [22]. The first order
Taylor expansion allows to obtain a closed-form expression of the joint probability density function of the
random eigenvalues when input random variables are assumed to be Gaussian [10]. If random eigenvalues
cannot be modeled as Gaussian random variables, perturbation methods (if necessary using higher order
expansion) allows to approximate statistical moments of the random eigenvalue in order to identify their
probability density function (pdf) [9]. These approaches implicitly requires small variability of the random
parameters in order to be able to describe it as perturbations around their nominal value. It is commonly
assumed that perturbation approaches are restricted to input random variables with coefficient of variation
smaller than 0.15 [23, 24] or less when eigenvalues are getting close to each other [9]. This constitutes the
major limitation of perturbation methods and is emphasized by the lack of intrinsic quantitative criterion
to a priori define a “small variability” of a parameter and thus the validity domain of these methods. To
tackle random parameter with larger variability, it is possible to carefully choose the expansion point [9] or
to consider a first order Taylor expansion of the structure eigenvectors to estimate random eigenfrequencies
[25]. This yields a non-intrusive and scalable approach to approximate the random eigenvalues with a better
accuracy than the classical second order perturbation technique while reducing the computational costs.

This study focuses on perturbation methods for real random eigenvalue problems. It aims to identify
the validity domain of such approaches and to extend it through analytic continuation. Eigenvalue pertur-
bation is a widely spread mathematical problem [20, 26] arising in many fields of application, ranging from
noise attenuation in waveguides [27] to fluid-structure interaction like flutter [28, 29]. These problems are
inherently parametric and the behavior of eigenvalue loci, when parameters varies, has been widely studied
for these applications in a deterministic framework.

The parametric study of the eigenvalues of an hermitian system shows that, some eigenvalues may
approach to each other, without crossing, and then veer away, depending on the parameter value. Concur-
rently, the involved eigenvectors swap. This phenomenon is referred to as the veering phenomenon [30–32]
in structural dynamics. In a stochastic context, the radius of convergence of perturbation methods is known
to decrease when eigenvalues are getting closer to each other [9]. Although the literature has few criteria to
qualify the veering intensity [33, 34], the validity domain of perturbation methods for random eigenvalues is
hardly predictable. The veering is known to be a consequence of the existence of branch point singularity[31],
where eigenvalue coalesce, in the complex plane of the varying parameters referred to as Exceptional Point
(EP) [20]. When the parameter is extended from real axis to the complex plane, the eigenvalue problem
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becomes non-Hermitian and this kind of system has recently attracted a large attention in classical and in
Quantum Physics when losses, gain or Parity-Time symmetry [35] are introduced.

The key idea of this paper is to use non-Hermitian framework and analytic continuation around the
EP, introduced in [36], to go beyond the standard limitations of perturbation methods. For the sake of
simplicity, a single varying parameter is considered, but the results could be extended to multi-parametric
systems.

The paper is organized as follows. Section 2 recalls the random generalized eigenvalue problem and
presents a three degrees of freedom (dof) toy model system [9, 37] used as a guideline example throughout
the paper. Then, section 3 provides a scalable and computationally efficient way to get high order eigenvalues
derivatives and the associated Taylor series with its radius of convergence. The analytic continuation of
the eigenvalue loci in the vicinity of the EP using the Puiseux series and analytic auxiliary functions is
then investigated in section 4. Finally, the section 5 compares the proposed approximation and provides
an algorithm to reconstruct the eigenvalue loci over an extended range of the system input parameter in
comparison with standard perturbation approaches.

2. Stochastic eigenvalue problem

2.1. Problem statement
The random eigenfrequencies characterization of an undamped (or proportionally damped) structure

with random parameters requires to solve a discrete random eigenvalue problem arising, for instance, from
the finite element method discretization of the continuous system. The random generalized parametric
eigenvalue problem, fulfills by the N degrees of freedom (DoF) of the discretized structure, is defined by

[K(ν(θ))− λi(ν(θ))M(ν(θ))] Φi(ν(θ)) = 0, (1)

where ν(θ) is the random parameter of the structure standing for material properties and θ ∈ Ω is a
basic event from the complete probability space Ω. The real symmetric matrices M(ν(θ)) ∈ RN×N and
K(ν(θ)) ∈ RN×N are the mass and stiffness matrices of the structure and their randomness is inherited
from the random parameters ν(θ). The random eigenvalues, corresponding to the square of the resonance
frequency, and the associated random eigenvectors of the dynamic system are denoted by λi(ν(θ)) (i =
1, ..., N ) and Φi(ν(θ)) 6= 0, respectively. To alleviate notations, the randomness of the different quantities
will be implicitly handled by ν in the following. Random eigenvalues are modeled as random variables
characterized by their joint pdf. Computing the statistical moments of the eigenvalues allows to synthesize
statistical realizations to estimate their pdf.

Without loss of generality, we assume that the mass properties of the structure are better handled than
stiffness properties, thus the mass matrix M is assumed to be deterministic.

2.2. A three Dof toy model system
To illustrate the performances and the validity range of perturbation methods, computation will be

performed on a simple undamped three-DoF system. This example, taken from the literature [9, 37], is
presented in Fig. 1. Its mass and stiffness matrices are

M =

m1 0 0
0 m2 0
0 0 m3

 and K =

k1 + k4 + ν −k4 −ν
−k4 k2 + k4 + k5 −k5
−ν −k5 k3 + k5 + ν

 . (2)

Here, the random parameter ν corresponds to the stiffness of the central spring, between m1 and m3.
Its support is positive, its expectation and its coefficient of variation are given by µ = E[ν] = 1 N m−1 and
δ[ν] = σν

E[ν] = 0.2 (where σν stands for the standard deviation of ν). Thus, the random parameter ν can be
modeled as random variables with Gamma distribution Γ(α, β) [5] where the coefficients α and β, are given
by E[ν] = αβ and Var[ν] = αβ2.

It is assumed that other stiffnesses are deterministic and respectively equal to k1 = 1 N m−1, k2 =
2 N m−1, k3 = 3 N m−1, k4 = 1 N m−1, k5 = 1 N m−1. The masses are also deterministic and equal to
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Figure 1: Sketch of the three-DoF undamped spring-mass system.

mi = 1 kg with i = 1, 2, 3. It is known from Ref. [38] that systems with a high degree of symmetry is more
prone to veering. Here, the masses configuration is symmetric, and the tuning parameter k3 will be changed
from its nominal to reinforce or attenuate the veering effect, when specified.

A Monte-Carlo reference simulation (MCS) has been performed to characterize the marginal density
function of the three random eigenvalues of the 3-Dof system. Thus 30000 independent samples of the stiff-
ness ν have been used to obtained the marginal pdf of all the eigenvalues. The results are presented in Fig. 2
in combination with the eigenvalue loci with respect to ν for low veering to strong veering configurations.
Here, the eigenvalues are labeled by ordering their magnitude in ascending order at the nominal value of
the parameter. When the veering intensified, it can be observed that the asymmetry of the random eigen-
values marginal pdf strongly increases. In this case, the transformation which yields the pdf of the random
eigenvalues from the input random parameter distribution becomes highly non-linear. This illustrates the
limitation of first order perturbation methods to small variations when veering occurs between eigenvalues.

A precise knowledge of the mapping λi(ν), ie the eigenvalue loci, is of primary importance because it
can be used to quickly generate the realizations of the random eigenvalues from the realizations of the input
parameter. Building such mapping could be related to meta-models approaches [18, 19]. In the next section,
the potentiality of higher order perturbation methods to accurately map eigenvalue loci will be investigated.

3. High order Taylor expansion of the eigenvalues

The general way to get accurate approximation of the eigenvalue loci is to sample the parametric space
and use interpolation [18], altough several eigenvalue problems have to be solved. To the authors best
knowledges, no attempt was made to use local approximation based on higher order derivatives. Following
results of [39, Theorem 2.1], it is assumed that the operator from Eq. (1) is an analytic function of both ν
and λ in the neighborhood of ν0. Then an eigenvalue λi and its associated eigenvector are also analytic in
a neighbourhood of ν0, and can be expressed as a N -order truncated Taylor expansion around ν0

Tλi(ν) =
N∑
n=0

tn (ν − ν0)
n
, where tn =

λ
(n)
i (ν)

n!

∣∣∣∣∣
ν=ν0

. (3)

This expansion holds as long as the eigenvalue of the problem (1) are simple. To practically compute such
truncated Taylor series, the high order derivatives of the few monitored eigenvalue are required and efficient
computational framework exist to obtained them recursivelly.

3.1. Higher order eigenvalues derivatives computation
Structural dynamic problems arising in sec. 2 are generally real symmetric and positive definite. Here,

these assumptions are relaxed for consistency with next section (see Appendix Appendix A for the Hermitian
version). Let us consider a general non-Hermitian eigenvalue problem depending on one complex parameter
ν. This eigenvalue problem is represented by a N ×N matrix valued function L(λi(ν), ν) ≡ K(ν)−λi(ν)M,
such as

L(λi(ν), ν)Φi(ν) = 0. (4)

Here λi(ν) and Φi(ν) 6= 0 are the ith eigenvalue and associated right eigenvector. Computing eigenvalue
and eigenvector derivatives have received a particular attention over the last decades. Several techniques
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(a) Weak veering, k3 = 4, ν∗ ≈ 0.6341 + 1.032i.
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(b) Mild veering, k3 = 3, ν∗ ≈ 0.8926 + 0.5977i.
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(c) Strong veering, k3 = 2.1, ν∗ ≈ 1.147 + 0.2600i.

Figure 2: Impact of the veering phenomenon on the marginal density function of the random eigenvalues of the 3-Dof system.
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have been developed depending on the required order of derivative and on the number of studied eigenvalue.
See for instance Murthy’s survey [40] dedicated to complex non-Hermitian matrices. In the context of this
work, the direct method proposed by Andrew et al. [39] based on the bordered matrix, is adopted as in
[36]. It is noteworthy that this method can be used to obtained the eigenvalue derivatives with respect to
several variables [39].

As the eigenvector are defined up to multiplicative constant, the derivative of the eigenvector cannot be
obtained uniquely as long as a normalization condition has not been applied. For convenience, we define
the following norm

vtΦi(ν) = 1 , (5)

where v is a constant vector (see [39] and Appendix Appendix A for other normalization like the M-norm)
and the superscript t denotes the transposition.

The successive derivatives of the selected eigenvalue λi can be recursively obtained by solving the linear
system built on the nth derivative of the eigenproblem (1) and the normalization condition (5) at ν = ν0[

L ∂λLΦi

vt 0

](
Φ

(n)
i

λ
(n)
i

)
≡
(

Fn
0

)
, (6)

where the right hand side (RHS) Fn contains all the other terms arising from the successive derivatives of
the considered eigenpairs. The last row of the RHS is zero due to the chosen norm (5) since v is a constant
vector, this normalization choice allows to simplify the recurrence relation. For generalized eigenvalue
problem, commonly encountered in structural dynamics, closed form expression of the RHS can be obtained
with the Liebnitz’ rule for product derivation

(K− λiM) Φ
(n)
i −MΦ

(0)
i λ

(n)
i = Fn ≡ −

n∑
k=1

(
n

k

)
K(k)Φ

(n−k)
i + M

n−1∑
k=1

(
n

k

)
λ
(k)
i Φ

(n−k)
i . (7)

with the convention Φ
(0)
i = Φi and λ

(0)
i = λi. This approach [39] requires to factorize the operator L for

each eigenmode of interest. Nevertheless, it is the most computationally intensive step and the computation
of the RHS is generally faster. Its computational complexity depend on the number of non-zeros in the
operator derivative and the length of the recurrence (see sec. 5.4 for further details).

3.2. Radius of convergence and Exceptional Point location
Let us first study the validity range of the Taylor expansion with the approximation order. We consider

the 3-Dof system with all its stiffnesses taken at their deterministic values (see sec. 2.2) and we assume
that ν is varying about ν0 = µ = 1 N m−1. The Taylor expansions of the three eigenvalues of the problem,
obtained with (6), are presented Fig. 3 for different approximation orders N ∈ J1, 20K. When no veering
occurs, see for instance the first eigenvalue λ1 or the other when ν0 � 1 N m−1, the series converge quickly
and only few terms are required to reconstruct the eigenvalue on a wide stiffness range. If a moderate
veering is present, like between λ2 and λ3, the Taylor expansion perfectly fits these eigenvalues about the
point ν0 but diverges over a certain value of ν regardless of the approximation order. This illustrates the
strong influence of the veering on the convergence of the Taylor series. To quantify this impact, the veering
between λ2 and λ3 can be tuned by varying the stiffness parameter k3 like in Fig. 2. The Fig. 4 illustrates
the Taylor series reconstruction of the eigenvalues for weak, mild and strong veering conditions. It can be
noticed that the radius of convergence of the Taylor expansion decreases when the veering increases. This
behavior reveals the presence of a singularity in the parameter complex-plane [41, sec. 5.4].

For hermitian problems, it can be shown that the veering phenomenon is a consequence of the eigenvalue
problem degeneracy for a complex value of the parameter [31, 38, 42]. Indeed, if the parameter of the
problem is extended in the complex-plane, the K (and M) matrices becomes non-Hermitian and eigenvalues
and eigenvectors could coalesce. The coalescing point in the complex space is referred to as Exceptional
Point (EP) [20] and is denoted by ν∗. At the EP, two or more eigenvalues are defective and the matrix
cannot be diagonalized.

To illustrate that, the evolution of the real parts of λ2 and λ3 are given in Fig. 5 when the parameter
ν is extended in the complex-plane. It can be observed that the different eigenvalues are in fact different
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Figure 3: Impact of the order of the Taylor expansion (n ∈ J1, 20K) on the eigenvalue approximation (dashed lines) around
ν0 = 1Nm−1 for k3 = 3. The darkest colors correspond to highest degree of approximation.

branches of the same Riemann surface [20]. When ν corresponds to the EP i.e. ν = ν∗, it can be noticed
that the two eigenvalues are equals. The case of a real-valued parameter ν ∈ R, like outline in Fig. 4(b)
for k3 = 3, is equivalent to a slice of the Riemann surface associated to the eigenvalues and is conveniently
plotted in Fig. 5.

Analytical details are postponed to the next section, but it can be observed in Fig. 5 that the defective
eigenvalue will split into two simple eigenvalues as soon as the parameter is detuned from the EP. The EP is
a branch point singularity and the local behavior of the merging pair of eigenvalues depends on the square
root of the distance between the parameter and the EP. This distance gives also the radius of convergence
ρ of the Taylor expansion of the merging eigenvalues

ρ(Tλi) = |ν0 − ν∗| . (8)

In this case, ρ ≈ 0.6 N m−1 which is consistent with the results presented in Fig. 3. In conclusion, the more
the EP will be close to the real axis (Im(ν∗) → 0), the more the veering phenomenon will be exacerbated
and the radius of convergence of the Taylor series will be limited.

3.3. Estimation of the radius of convergence of Taylor expansion
To efficiently use Taylor approximation, the knowledge of the radius of convergence is of primary interest

i) to ensure the best use of the computational resources avoiding to compute higher order terms and ii) to
avoid wrong prediction. Different criteria have been proposed to quantify the veering phenomenon [33, 34]
which could help to characterize the validity domain of Taylor expansions. Nevertheless, estimating the
radius of convergence of the Taylor series seems to be a more robust strategy and becomes possible when
high order derivative are available. Two estimators of the radius of convergence can be used. The first
is based on the roots zn (n = 1, . . . , N) of the Taylor expansion Tλi . Eigenvalues’s Taylor polynomial
expansion of order N has N complex roots (counting their multiplicities) in the parameter space. Moreover,
it can be shown that the roots of high order polynomials tends to be located on a circle [43]. For this class
of problem, the eigenvalues are usually non vanishing functions. The radius of this circle thus provides an
upper bounds of the radius of convergence of the Taylor expansion because the reconstructed function is
not supposed to vanish here. Here, the estimator is obtained as the average distance between the roots zn
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(a) Low veering, k3 = 4, ν∗ = 0.6341 + 1.0323i
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(b) Mild veering, k3 = 3, ν∗ ≈ 0.8926 + 0.5977i

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

10

i

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
p

d
f 

(c) Strong veering, k3 = 2.1, ν∗ ≈ 1.147 + 0.2600i

Figure 4: Impact of the veering phenomenon on the Taylor series approximation (dashed lines) for different approximation
orders (n ∈ J1, 20K) for the second and third eigenvalues of the 3-Dof system at ν0 = 1Nm−1. The pdf of the input random
parameter is added for convinience.
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Figure 5: Riemann surface of the real parts of λ2 and λ3 for k3 = 3 and illustration of the branch point singularity at the EP
ν∗.

of the Taylor series and the computation point ν0

ρrootsN (Tλi) =
1

N ′

N ′∑
n=1

|zn − ν0| . (9)

For a sake of generality with other series representation used hereafter, N ′ denotes the number of spurious
roots only, genuine roots have to be excluded.

Another estimator is based on the Cauchy-Hadamard’s root test [41, sec. 2.6]. This criterion states that
the radius of convergence at the point ν0 is defined as the superior limit when n→∞

ρCH
N (Tλi) = |tn|−1/N . (10)

In practice, only the first terms of this sequence will be available, but hopefully, the truncated sequence can
still provide a relevant convergence estimator.

Both estimators are compared in Tab. 1 and in Fig. 6 for the veering case presented in Fig. 5. The
exact EP locations are also presented as it provides the reference estimation of the radius of convergence.
For strong veering case, ie k3 = 1.5, it is shown in Tab. 1 that the radius depends clearly on the distance
between the EP and the initial computational point ν0. When the real part of the parameter is very close to
the real part of the EP, the radius of convergence is restricted to the imaginary part of the EP. The bound
obtained by the truncated Cauchy-Hadamard sequence ρCH

N (Tλi) is illustrated in Fig. 6b) for N ∈ J1, 22K.
This criterion is slightly tighter than those provided by ρrootsN (Tλi). On the other hand, the root-based
estimator oscillates less because of the averaging on several roots. It should be noticed that both estimators
overestimate the radius of convergence even when the number of derivatives increases but remain cheap in
terms of computational resources.

Recently an algorithm to precisely locate EP has been proposed by Nennig and Perrey-Debain [36]. It
exploits high order eigenvalue derivatives and analytic continuation of the parameter in the vicinity of the
EP. As EP provides the tightest bounds of the radius of convergence of Taylor series, this strategy will be
investigated in the next section.
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Figure 6: Illustration of a singularity of the complex eigenvalue loci and their impact on the radius of convergence ρ of the
Taylor series (k3 = 3). a) Roots of Tλ2

(•) for N = 8 (gray) and N = 15 (black) computed from ν0 = 1, the dotted line is a
guide for the eye and is the mean radius of the roots distribution from Eq. (9); b) Cauchy-Hadamard’s root test, the dotted
line stand for the distance to the EP from Eq. (8).

Table 1: Estimators of the radius of convergence of the Taylor series of λ2. The values are expressed in Nm−1.

k3 ν0 ν∗ (EP) ρ(Tλ2) ρCH
n (Tλ2) ρrootsn (Tλ2)

N = 5 N = 10 N = 15 N = 5 N = 10 N = 15
4. 1. 0.6341+1.0323i 1.09 2.06 1.82 1.65 3.03 2.32 2.06
3. 1. 0.8926+0.5977i 0.61 1.21 0.95 0.87 1.80 1.13 0.98
1.5 1. 1.2618+0.1219i 0.29 0.77 0.64 0.44 1.14 0.79 0.49
1.5 1.26 1.2618+0.1219i 0.12 0.35 0.28 0.19 0.52 0.41 0.21
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4. Eigenvalues analytic continuation

As illustrated in sec. 3.2, the veering phenomena becomes clearer when the parameter is allowed to be
complex-valued. When the defective double root split, both eigenvalue exhibit a local square root behavior
as shown in Fig. 5. Such behavior cannot be approached by a Taylor series, but is well captured by Puiseux
series [20, 26].

Such series are considered as a generalization of Laurent series with fractional exponents of the function’s
indeterminate. They are widely used to represent locally algebraic surfaces such as the surface defined
by the characteristic polynomial D(λ, ν) ≡ det (K(ν)− λM) = 0, with analytical dependency of ν. As
the radii of convergence of the Puiseux expansion and of the Taylor series are not bounded by the same
kind of singularities in the complex-plane, the Puiseux expansion thus appears as a suitable approximation
framework to extend perturbations methods to larger variability of the input parameters. A similar strategy
has been previously proposed for mechanical applications by Luongo [44] to approximate eigenvalues with
veering. However, the approach proposed by Luongo has lacked a generic and robust method to localize
the EP and to compute the high order Puiseux series terms. The comparison between Puiseux and Taylor
approximation and their combination will be discussed section 5.

4.1. Puiseux series
Let us consider the Puiseux expansion of the merging pair of eigenvalues (λ+, λ−) about the point ν∗

[20]

Pλ+ = a0 + a1 (ν − ν∗)
1
2 +

∞∑
k=2

ak

(
(ν − ν∗)

1
2

)k
, (11a)

Pλ− = a0 − a1 (ν − ν∗)
1
2 +

∞∑
k=2

ak

(
− (ν − ν∗)

1
2

)k
, (11b)

although it could be generalized to an arbitrary number of modal merging. Here, both eigenvalues of the
pair are described by the same Puiseux series up to a sign that defines the two branches of the Riemann
surface that merge at the EP ν∗ as shown in Fig. 5. As a consequence, for a given path in the complex
parametric space, one can continuously change from one branch to the other. For instance, when ν move
along the real axis, it explains the eigenvector switching at veering point [31]. Puiseux series are the only
representation that allow capture the Riemann surface topology and to follow each modal branch.

This kind of spectral degeneracy does not exist for real symmetric eigenvalue problems [31, 42]. Indeed,
an Hermitian problem with two varying parameters can admit singularity referred to as Diabolic point [45]
which corresponds to a conical intersection of the eigenvalue loci surface. For real non-symmetric problems,
EP can be also found and are strongly related to stability issues [28, 29].

4.2. Puiseux series coefficient computation
The algorithm proposed by Nennig and Perrey-Debain [36] also exploits the high order derivatives of the

veering pair of eigenvalues. The key idea is to introduced two analytic auxiliary functions of the eigenvalues
pair

g(ν) = λ+ + λ−, (12)

h(ν) = (λ+ − λ−)
2
, (13)

to remove the square root singularity. The method has 2 steps :

1. Find the EPs location by finding h(ν) roots (h(ν) vanishes when the two eigenvalues merge),
2. Get the coefficient a0, . . . , a2N of the truncated Puiseux series by matching the truncated Taylor

expansion of Th and Tg with their expansion using the Puiseux series Pλ+
and Pλ− .
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From the Puiseux series given in Eq. (11), it can be shown that g(ν) and h(ν) are analytic function so
it is assumed they have convergent power series expansion around ν0

Tg(ν) =

N∑
n=0

bn (ν − ν0)
n
, where bn =

g(n)(ν)

n!

∣∣∣∣
ν=ν0

, (14a)

Th(ν) =

N∑
n=0

cn (ν − ν0)
n
, where cn =

h(n)(ν)

n!

∣∣∣∣
ν=ν0

. (14b)

Note that the smoothness of these functions has already been remarked in [46–48] for h(ν) and in [20, p.
66] for g(ν).

The derivative of g and h at ν0 can be directly obtained from the derivative of the selected pair of
eigenvalues

g(n)(ν0) = λ
(n)
+ (ν0) + λ

(n)
− (ν0), (15a)

h(n)(ν0) =

bn2 c∑
k=0

(
n

k

) (
2− δn

2 k

)(
λ
(n−k)
+ (ν0)λ

(k)
+ (ν0) + λ

(n−k)
− (ν0)λ

(k)
− (ν0)

)
− 2

n∑
k=0

(
n

k

)
λ
(n−k)
+ (ν0)λ

(k)
− (ν0),

(15b)

where upperscript (n) denotes the nth derivative with respect to the complex parameter ν. Here, δn
2 k

is the
Kronecker symbol generalized to rational numbers and is equal to zero whenever n is odd and symbol b c is
the floor function. These convention have been introduced in order to take into account symmetries in the
expression to optimize the computation speed.

Since h(ν) is known as a Taylor polynomial, roots of Th(ν) are obtained by companion matrix method. As
already discussed for Tλi , the spurious roots of a Taylor polynomial tends to be aligned on a circle. Genuine
zeros, which therefore corresponds to EP, can be located as they stand apart from the circle boundary
[43]. The second step is to get Puiseux series coeffcient ak. The basic idea is to compute separately the
even and the odd terms using the auxiliary functions h and g. The N first derivatives for each eigenvalue
are exploited to compute the 2N first terms of the Puiseux series at the EP. This part is detailed in the
Appendix Appendix B. To get Puiseux series coefficients, other approaches exist, like those proposed in
Refs. [28, 49] but they are limited to first or second terms and the computation performed at EP are hard to
handle numerically. The advantage of the method proposed in [36] is to compute eigenpairs and derivatives
far from the singularity where the standard eigenvalue solver may encounter some difficulties.

The roots of Th Taylor series computed at ν0 are given in Fig. 7. Comparing this figure to Fig. 6, it can
be observed that the estimator of radius of convergence ρroots(Th) = 2.7 is larger than ρroots(Tλ2

) = 0.6. As
expected, the function h is smoother than the eigenvalue λ+ and λ− because the branch point singularity has
been removed. Although this approach is efficient to remove all the singularity involving the two selected
eigenvalues, it is not possible to remove singularities involving one of the eigenvalue from the pair and
another eigenvalue of the system. The singularity involving the merging of (λ1, λ2) has also been found by
the proposed algorithm at ν∗12 = −0.4482 ± 0.8305i. This second EP limits the radius of convergence of
Th(λ2, λ3). In Fig. 7b), the computation point ν0 is moved further away from the EP ν∗12, the radius of
convergence is clearly larger but is still bounded by the EP ν∗12. The radius of convergence of Tg has exactly
the same limitation.

4.3. Radius of convergence of Puiseux series
It has been shown in the previous sections which kind of singularity may limits the radius of convergence

of eigenvalues Taylor expansion Tλi and the analytic auxiliary function Th or Tg. It remains to state the
convergence limits of the Puiseux expansion given by Eq. (11). Puiseux series Pλi provides a local description
of the eigenvalue locus in the vicinity of the EP. However, according to the implicit function theorem, the
Puiseux local representation of the algebraic surface D(λ, ν) = 0, ceases to converge when ∂D(λ,ν)

∂λ = 0. This
double root condition of the characteristic polynomialD(λ, ν) is equivalent to an EP. Thus, to characterize, a
priori, the radius of convergence of the Puiseux series, a criterion can be defined by the distance between the
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Figure 7: Roots of Taylor expansion of Th(λ2, λ3) and EP location when k3 = 3 and N = 15. The •-markers stand for the
roots of Th and + markers indicate EPs of other eigenvalues pairs, namely ν∗12 and ν∗12. a) For ν0 = 1, Th exact radius of
converge is

∣∣ν0 − ν∗12∣∣ = 1.66 and its estimation is ρroots(Th) = 2.7; b) For ν0 = 2, further away from the EP ν12, Th exact
radius of converge is

∣∣ν0 − ν∗12∣∣ = 2.58 and its estimation is ρroots(Th) = 4.4.

EP used to compute the Puiseux series to the closest other EP. Actually, it corresponds to the EP associated
to the same pair of eigenvalues but for the complex conjugate value of the parameter. It can be easily shown
from Eq. (1) that the complex conjugated value of the parameter yields to a complex conjugated eigenvalue
if ν is only one complex variable in the problem. These EPs pairs can be observed in Figs. 6(a) and 7.

Let us note ν∗ = a+ ib the point where the Puiseaux series are computed and ν∗ = a− ib the complex
conjugate value of the EP. It follows that the radius of convergence of the puiseux expansion in the complex-
plane do not exceeding 2b. It can be noticed that it is twice the radius of convergence of the Taylor expansion
when computed at ν0 = a. If the parameter is real valued and ν0 = a, the Taylor series validity domain is
then limited to [a − b, a + b], while the Puiseux series validity domain is [a − b

√
3, a + b

√
3], the effective

gain is therefore
√

3. Numerical experiment is presented in Fig. 8 for weak and strong veering configurations
when ν0 ≈ a. This figure presents the error isolines at 1% and the theoretical prediction of the convergence
disk for the Taylor and the Puiseux approximations of λ2. In both cases, the theoretical prediction of
the convergence disk are in good agreements with the numerical simulation and slightly underestimate the
radius of convergence. When the veering become stronger, both EP ν∗ and ν∗ move to the real axis and
the radius of convergence of Puiseux series (and Taylor) decrease, but Puiseux series radius of convergence
still remains

√
3 larger than Taylor series one.

The random eigenfrequencies of a structure could thus be characterized using the Puiseux approximation
from realizations of the input parameter respectively within the intervals ν(θ) ∈ [−0.1, 1.9] and ν(θ) ∈
[1., 1.5] for the weak and strong veering configurations. For these configurations, assuming the input random
parameter to be a random variable centered on µ ≈ a, the largest variability which can be handled with the
Puiseux approximation can be defined with a simple two-sigma criterion. This way, 95% of the realizations
of the parameter will lie within the interval [a − b

√
3, a + b

√
3]. With a classical Taylor approximation,

this interval has to be reduced to [a − b, a + b]. Let us note σP and σT the maximum standard deviation
of the random input parameter allowing to ensure a good approximation of the eigenvalues respectively
with Puiseux and Taylor approximations. The two-sigma criterion implies that 4σP ≤ 2b

√
3 and 4σT ≤ 2b.

When centered on the real part of an EP, the validity domain of Puiseux and Taylor approximations can
be defined by the maximum coefficient of variation of the input random parameter ensuring the two-sigma
criterion. The relation between the maximum coefficient of variation admissible for Puiseux and Taylor
approximations is therefore

δPλi =
√

3δTλi . (16)

The last point to investigate concerns the validity of the computed Puiseux series coefficients. It is
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Figure 8: Reconstruction error isolines at 1% (solid line) in the ν-complex plane with ν0 ≈ a (red: Pλ2
, blue: Tλ2

) and the
theoretical radii of convergence (dash line). a) Weak veering ν∗ = 1.262+0.122j, k3 = 3, b) Strong veering ν∗ = 0.893+0.598j,
k3 = 1.5 with a smaller radius of convergence. The gray frame aims to help the scale comparison between the two subfigures.

noteworthy that the presence of this complex conjugated EPs pair does not affect the analyticity of h and
g because all shared singularity in the pair are removed from the analytic auxiliary functions [31, 36]. Thus
EP and Puiseux series coefficient can be obtained as long as the EP belong to the convergence disk of the
Taylor series Th and Tg. This domain is generally larger than the Puiseux series convergence disk. It means
that, once an EP has been located from ν0 and the Puiseux series coefficients have been obtained, this series
can be uses in the vicinity of the EP even if the ν0 is outside the radius of convergence of the Puiseux
series. This remarks is important because the same computation can be exploited through a Taylor series
expansion in the vicinity of ν0 and the Puiseux series can be use when Taylor break down in the vicinity of
the EP ν∗.

4.4. Eigenvalue reconstruction from analytic auxiliary function
The discussion initiated in the previous section on the operable domain to compute the Puiseux series

coefficents has highlight the good properties of the analytic auxiliary function h and g. It has been shown
that the convergence domain of the Taylor series Th and Tg, is generally larger than the Puiseux series
convergence disk. As a consequence, we propose to exploit these functions to directly reconstruct the pair
of eigenvalues on a wide range of the varying parameter. From the definitions of g and h given in Eqs. (12)
and (13), the two eigenvalues can be written as a function of g and h

λ+ =
g +
√
h

2
, (17a)

λ− =
g −
√
h

2
. (17b)

These expressions can be approximated through the truncated Taylor series Th and Tg

Aλ+ =
Tg +

√
Th

2
, (18a)

Aλ− =
Tg −

√
Th

2
. (18b)

This new representation allows to bypass the singularity at ν∗ and to considerably increase the validity
range of the reconstruction of the eigenvalues pair.

A comparison between the approximation based on analytic auxiliary function Aλ± and a direct eigen-
value computation is provided in Fig. 9 for the eigenvalues pair (λ2, λ3). The 1%-error isolines of (λ2, λ3)
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Figure 9: Error isolines at 1% for analytic auxiliary function reconstruction (solid lines) for ν0 ∈ {0.45, 1.26, 1.70} and com-
parison with the theoritical convergence bounds (dashed lines) for strong veering k3 = 1.5.

for a strong veering case k3 = 1.5 are given for three computation points ν0 such as : i) ν0 is at equal
distance of ν∗12 and ν∗23 ; ii) ν0 = Re ν∗23, and iii) ν0 � Re ν∗23. When N = 15, it can be observed in Fig. 9(a)
that the radii of convergence of Th are limited by the presence of the EPs involving one eigenvalue from the
pair and another one, i.e. ν∗12. The theoretical bounds are thus accurate and provide a good estimation of
the convergence radius of the representation when the computational point ν0 is not too close from the EP
ν∗. For this latter case, the numerical experiment shows a suboptimal radius of convergence. This can be
explained by the coefficients of the Taylor series Th which increase dramatically. Limiting N = 10, where
|c10| ≈ 1000 solve the problem, and the theoretical bound is recovered as shown in Fig. 9b). In the neigh-
borhood of the EP, although h and g are analytic, their Taylor series is based on the eigenvalue derivatives
which are unbounded because of the EP singularity. As a consequence, coefficients of the Taylor series may
be prone to round off error for strong veering case (e.g. k3 = 1.5). A more robust approach is to truncate
the series if its coefficients become too high.

Finally when, Re ν0 � Re ν∗, because this 3DoF system as only 3 eigenvalue branches, there is no other
EP on the right side of ν0. This explain the huge validity range of the reconstruction Aλi which is bounded
only on the left side by ν∗12.

5. Comparison of the proposed approaches

Computing high order derivatives allows to switch between several representations to reconstruct the
eigenvalue loci. This section summarizes and compares each representation in term of convergence and
validity range and ends by the proposition of an algorithm formalizing the more suitable approach to
efficiently approximate the eigenvalue loci with real input parameter.

Let us consider a stringent test case with strong veering between λ2 and λ3 by tuning the stiffness
parameter such k3 = 1.5. Two computation points ν0, respectively outside and inside the veering area, are
then studied to compare the strength and weakness of each approaches.
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5.1. Computation point outside of a veering area
Fig. 10(a) illustrates the eigenvalue loci and their different approximations using Taylor series, Puiseux

series and the analytic auxiliary functions for real values of ν, corresponding to the Hermitian eigenvalue
problem (1). All representations are computed from the point ν0 = 0.5 outside of a veering area. It can
be noticed that the Taylor approximation (solid lines) fits well the direct computation solution until it
reaches the veering area. On the other hand, the Puiseux expansion (dash-dotted lines) fails in vicinity of
ν0, because the computation point is too far from the EP, but accurately follows the reference computation
in the veering area even if the computation point is outside of the Puiseux radius of convergence. Finally,
the analytic auxiliary function reconstruction (dashed lines) combines benefits of both other approximations
and well fits the eigenvalue loci for a wide range of ν including the veering area related to the pair (λ2, λ3).

When ν spans the whole complex-plane, the eigenvalue problem become non-Hermitian, the results are
given in Fig. 10(c). This figure presents the error isolines at 1% of the Taylor (blue), Puiseux (red) and
analytic auxiliary function (black) approximations of λ2 and λ3 with respect to a direct computation of the
eigenvalue problem (1). The theoretical radius of convergence of each approximation, bounded by the EPs
positions, are also overprinted. In each cases, the theoretical prediction of the convergence disk is in good
agreements with the numerical simulation and slightly underestimate the actual radius of convergence.

As expected from previous section, the Taylor approximation is centered on ν0 and bounded by the EP ν∗23
associated to the veering phenomenon between (λ2, λ3). The validity domain of the Puiseux approximation
is centered on the EP ν∗23 and is bounded by the complex conjugate EP ν∗23. The auxiliary function
reconstruction is centered on ν0 and bounded by the EP ν∗12 = −0.3918 + 0.2185i corresponding to the
merging of λ2 and an other eigenvalue of the problem, here λ1. It should be kept in mind that this theoretical
radius is not known until applying the EP localization algorithm to the pair of eigenvalue (λ1, λ2). However,
it can be estimated using the estimator ρroots(Th) proposed in Eq. (9). In practice, merging involved
contiguous eigenvalue thus if a group of K eigenvalues λi, , λi+K have to be reconstructed, most of the EPs
can be located and exact theoretical radius can be obtained for the analytic auxiliary function reconstruction
approach excepted for those involving λi and λi+K .

In order to characterize the random eigenfrequencies of the 3-DoF system, the analytic auxiliary function
approximation can be used to generate the realizations of the random eigenfrequencies from the realizations
of the input parameter within the intervales ν(θ) ∈ [−.25, 1.5] with one computation. Note that the negative
part of this interval has no physical meaning for the stiffness of standard materials but may be usefull in the
other context, e.g. for metamaterial design. Considering a simple two-sigma criterion as in section 4.3 and
assuming a symmetric distribution of ν(θ) centered on ν0, the coefficient of variation of the input random
parameter ν(θ) which can be handle by the proposed approximation without significant accuracy loss is
about δν = σν

E[ν] = 0.875. Which is higher than variability classically handled by low order perturbation
methods.

As a partial conclusion, far from the veering zone, the direct eigenvalue Taylor expansion Tλi and the
analytic auxiliary functions scheme behave well, but for robustness the analytic auxiliary functions should
be preferred, because the a priori knowledge of the veering zone is difficult to know.

5.2. Computation point in a veering area
The second case compares the three proposed approximations computed at point ν0 = 1 which is close

to the real part of the EP ν∗23 and therefore inside a veering area of (λ2, λ3). Fig. 10(b) illustrates the
eigenvalue loci and the different representation for real values of ν. It can be noticed that the Taylor and
Puiseux approximations (respectively solid lines and dash-dotted lines) are limited to a small domain in
the veering zone since Im ν∗ → 0. On the other hand, the analytic auxiliary function representation well
fits the direct computation on a wide range of ν including the veering area. Fig. 10(d) presents the error
isolines at 1% of the Taylor (blue), Puiseux (red) and analytic auxiliary function (black) approximations of
λ2 and λ3 when ν varies in the complex-plane. This error is computed using direct eigenvalue computation
as a reference. It can be noticed that the theoretical radius of convergence of the reconstruction based on
analytic auxiliary function remains centered on ν0 and bounded by the EP ν∗12 between λ2 and λ1. Here,
its radius of convergence is larger than in the previous case, illustrated in Fig. 10(a), because ν0 is farther
from ν∗12. This approximation thus provides an accurate representation of the eigenvalues pair (λ2, λ3) for
ν ∈ [−0.25, 2.25]. Thus, the analytic auxiliary functions approximation allows to consider an input random
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Figure 10: Comparison of eigenvalue loci reconstructions with Taylor (blue), Puiseux (red) and Analytic auxiliary functions
(black) approximations for strong veering configuration k3 = 1.5. When ν spans the real axis with ν0 = 0.5 (a) and ν0 = 1.0
(b). When ν spans the complex plane, reconstruction error isolines at 1% for the different approximations when computation
point is ν0 = 0.5 (c) and ν0 = 1.0 (d). The dash line denotes theoretical converge radius. In all cases N = 10.

variable centered on ν0 with coefficient of variation equal to δν = 0.625 to characterize the pair of considered
random eigenfrequencies.

To conclude, close to the veering zone, the analytic auxiliary functions scheme should be preferred if the
complex conjugate of the EP is present.

5.3. Approximations overview
The pro and cons of each tested representation are conveniently summarized here:

Eigenvalue Taylor expansion around ν0, Tλi : This is the most common approach, which is efficient as
long as the veering is weak because its radius of convergence is limited by the presence of the EP. Using
higher order expansion may be computationally efficient if direct method [39] are used to compute the
derivative of few selected eigenvalues. This approach can be easily extended to multivariate case.

Eigenvalue Puiseux expansion around the EP ν∗, Pλi : This approach exploits the local behavior in
the vincinity of the EP and is the only one able to reconstruct the good branch structure of the
eigenvalue Riemann surfaces which is crucial for tracking branches. The convergence of Pλi is limited
by the presence of additional EP involving (λ+, λ−) like ν∗ in the tested example. This limitation
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mainly concerns Hermitian problems with strong veering but leads to good reconstruction when EP
are well separated as in [36].

Analytic auxiliary functions Taylor expansion around ν0, Aλi : This approach is the more robust
and its radius of convergence is limited by the presence of the EPs involving one eigenvalue from the
pair (λ+, λ−) and another one. If there is no veering, validity range will be similar to Tλi , but when
veering is visible, this approach is recommended. It seems possible to extend it to multivariate case
as long as the EP are isolated.

5.4. Proposed algorithm
Based on the preceding results, this section presents a general algorithm to efficiently reconstruct the

eigenvalue loci using the analytic auxiliary function approximation from a local computation at ν0. This
algorithm, detailed in Algo. 1, can be used to generate the realizations of the random eigenfrequencies of
the structure and to characterize their pdf. When compared with standard perturbation methods, the main
advantages of the proposed approach are a larger validity domain and an estimation a priori of the radius of
convergence which allows to make the best use of available computational resources. These enhancements
are possible by removing the EP branch point singularity by considering a pair of eigenvalues simultaneously.

This allows to significantly reduce the computational cost in comparison with a Monte-Carlo simulation
considering the entire structure model. This algorithm could also be particularly relevant for many other ap-
plications based on parametric eigenvalue problems (rotating machinery, waveguide attenuation, instability
problems as squeal or flutter).

The input data of this algorithm are the two first statistical moments of the random input parameter,
the operator associated to the eigenvalue problem and its derivatives with respect to the input parameter
ν, a safety factor ξ and a tolerance tol. The statistical moments of the input parameter allows to estimate
a priori the required validity domain of the eigenvalue approximation.

For a given pair of eigenvalues, the analytic auxiliary function representation is bounded by the existence
of EPs relative to an eigenvalue of the pair and an other eigenvalue of the problem. However, these bounding
EPs cannot be located precisely without computing the nth derivatives of the closest eigenvalues of the
considered eigenvalues pair. A cheaper solution is to estimate the radius of convergence of Th and Tg using
Eq. (9). As this estimator overestimates the convergence radius, we introduce the safety factor ξ. It has
been shown from Tab. 1 that ξ is about 1

3 when the Taylor expansion order N is between 6-8 and about
1
2 when N is between to 10-12. As illustrated section 4.4, when the veering phenomenon is significant and
the computation point is close to the real part of the EP, the reconstruction of the eigenvalue loci could be
polluted by round off error. The tolerance tol allows to avoid this drawback by truncating the Taylor series
when its coefficient exceed the tolerance value.

To monitor a pair of eigenvalues, the first step is to solve the generalized eigenvalue problem (1). Then,
the eigenvalues derivatives are obtained by solving an augmented linear system for each eigenvalue. With
a direct solver, the matrix is factorized once then forward and backward substitution are used to solve the
linear system for multiple RHS. This approach is scalable and can be easily extended to sparse matrices
encounter commonly in structural dynamics [36]. For big size problems, say 105 to 106 dofs, these steps
represent almost the total computational time, because the computation of the RHS from Eq. (7) is generally
faster. Indeed, for sparse matrices, the matrix-vector product present in the RHS scale as the number of
non zeros of the matrix and remains fast compared to the matrix factorization. This last case has been
tested in Ref. [36]. It has been shown that the equivalent time to compute the 10th first derivatives of a pair
of eigenvalues is equivalent to solve 2 to 4 the eigenvalue problems depending of the problem size.

In situations where the operator derivatives are not available, which is often the case when using with
black-box FEM solvers, numerical differentiation using finite differences can be used. If the operator is a
linear function of the parameter, only the first derivative is requiered in the recurence formula (7) and a
non-intrusive version of the method can be achieve. Similar approach has been used for instance in [25].

The proposed approach has been implemented in a dedicated open source python library available at
github.com/nennigb/EasterEig. The three dof system test case, guideline example of this paper, is provided
in the example folder.
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Algorithm 1 Eigenvalue reconstruction algorithm.
Input: Two first moments of the random input parameter E[ν] = ν0 = µ and σν , L(ν0) and its derivative,

ξ ∈ [0.25, 0.5], tol=100
Output: Reconstruction of the pair (λ+, λ−) for ν ∈ [νmin, νmax] .e.g. the interval [µ− 2σν ;µ+ 2σν ]

1: Compute the first Nλ eigenvalues of the problem (1) .Solve 1 eigenvalue problem N ×N
2: Choose a pair (λ+, λ−) of close eigenvalues of interest
3: Compute the N th derivatives of the pair (λ+, λ−) with (6) .Solve 2 linear systems (N + 1)2 with

multiple RHS
4: Compute Tg and Th Taylor series from (15a) and (15b)
5: Truncate Tg and Th if coefficients exceed tol
6: Estimate the radius of convergence of Th with roots zn .Find the eigenvalues of Companion matrix
N ×N

7: if ν in the circle (ν0, ξ · ρrootsN (Th)) then .All the interval can be map
8: Reconstruct the pair (λ+, λ−) with (18)
9: else .Only a part of the interval can be map

10: Reconstruct partially the pair (λ+, λ−) with (18)
11: Select a new point ν0 outside the circle (ν0, ξ · ρrootsN (Th)) and go to step 1
12: end if

6. Conclusion

This paper presents a method to reconstruct the eigenvalue loci of a structure with a random parameter
based on higher order derivative of the eigenvalues. Such derivatives are obtained using the bordered matrix
formalism [39] and allow i) to switch between several representations of the eigenvalues to get analytic
continuation; ii) to estimate the radius of convergence of each eigenvalue representation.

The difficulties encountered in the eigenvalue reconstruction are closely related to the existence of a
branch point singularities in the parameter complex-plane referred to as Exceptional Points (EP) [20]. For
Hermitian problem involving real parameter, the veering is known to be a consequence of the existence of
EP close to the real axis [31].

This paper investigates three eigenvalues representations through Taylor series, Puiseux series and using
a combination of analytic auxiliary functions. It is known that using classical perturbation methods to
characterize random eigenfrequencies, ie the eigenvalue Taylor series, behave poorly in presence of veering
and the effect of EP on the Taylor series radius of convergence is clearly identified. To locate the EP and to
compute the higher order coefficient of Puiseux series, the method proposed by Nennig and Perrey-Debain
[36] is used. The Puiseux series appear as a good approximation in the vicinity of the EP and successfully
describe the modal branches and their topological structure.

As the Puiseux series is centered on the EP, this representation handles a larger variation of the parameter
than Taylor series when the computation point is inside a veering area. The relative gain between the two
approximations approaches is quantified. Nevertheless, for the application considered in this paper, the
presence of an EP for the complex conjugated value of the parameter limit the radius of convergence of the
Puiseux. Indeed, the more the veering is pronounced, the more the pair of EPs will be close to the real axis
(Im(ν∗, ν∗)→ 0), and the radius of convergence of the Puiseux series will be limited.

Finally, this work reveals that the analytic auxiliary functions approach provides the largest radius of
convergence since these functions are bounded by the existence of EP associated to other eigenvalues of
the problem. This representation is robust and allows to significantly reduce the computational cost in
comparison with a Monte-Carlo simulation considering the entire structure model.

This work is restricted to a single parameter. More sophisticated approaches are needed to handle
multiparamtric perturbations [42, 50] and implicit parameters. Future works will focus on these extansions.

The proposed method could also be particularly relevant for many other applications based on parametric
eigenvalue problems like rotating machinery, waveguide dispersion curves computation or to locate instability
as squeal or flutter.
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Appendix A. Successive derivative for Hermitian matrix

For Hermitian problem, if the parameter ν remains real, the system (6) and the RHS (7) can be modified
to retain the symmetry of the initial matrices. Remarking that ∂λL = −M, the normalization condition
given in Eq. (5) can be replaced by the more usual M-norm for generalized eigenvalue problem

Φt
iMΦi = 1, (A.1)

and derived thanks to the Liebnitz’ rule(
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=
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Here, δn−1
2 ,k

is the Kronecker symbol and is equal to one only when (n − 1)/2 is equal to k and b c is the

floor function. The last simplification take into account the symmetry to simplify the summation. This
yield the symmetric linear system[
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where
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As mention in sec. 2, we consider that the Mass matrix is deterministic to simplify the expression of the
RHS. This approach can be view as a generalization of [51] to high order derivative and can take advantage
of Cholesky direct solver and symmetric storage in comparison to LU factorization. The price to pay is i) a
more costly recurrence relation and ii) the constraint of keeping ν real. This alternative becomes interesting
for big size problem, where CPU time is mainly driven by the matrix factorization.

Appendix B. Puiseux series coefficient computation details

Once an approximation of ν∗ has been found, the computation of the Puiseux series coefficients can be
done in two steps. First, the even terms of the Puiseux expansion at ν∗ are obtained by matching the Taylor
series Tg, obtained around the point ν0,

Tg(ν) =

N∑
n=0

bn(ν − ν0)n =

N∑
n=0

bn

n∑
k=0

(
n

k

)
(−ν0)n−kνk, (B.1)

and the series T ′g obtained by the substitution of the truncated Puiseux series (11) in Eq. (12), until the
order N

T ′g(ν) =

N∑
n=0

2a2n(ν − ν∗)n =

N∑
n=0

2a2n

n∑
k=0

(
n

k

)
(−ν∗)n−kνk. (B.2)
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Equating each power of ν allows to produce a set of equations which can be written as a linear system

2P(ν∗)ae = P(ν0)b. (B.3)

It relates the unknown even coefficients of the Puiseux series gathered in the vector ae to those of the Taylor
series collected in b. Each term of the upper triangular matrix P(ξ) is given by

(P(ξ))kn =


(
n

k

)
(−ξ)n−k, if n ≥ k

0, otherwise.
(B.4)

Note the matrix is of size 2bN2 c which corresponds to the highest order involved.
Finally, the odd terms of the Puiseux series are obtained in a similar manner using the truncated Taylor

series Th. It is convenient to operate the change of variable ν′ = ν − ν∗ so we can write

Th(ν) =

N∑
n=0

cn(ν′ − (ν0 − ν∗))n =
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n=0
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After substitution of the Puiseux series (11) in Eq. (13) and using the multinomial theroem, we get

h(ν) = 4
(
a1ν
′ 12 + a3ν

′ 32 + . . .
)2

= 4
∑

k=0,1,2,...

ν′k
∑
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an a2k−n. (B.6)

Equating each power of ν′ gives explicitly the first coefficient

a1 = ±1

2

√
(P(ν0 − ν∗)c)1, (B.7)

where the sign refers to one of two branches of the Puiseux series given in Eq. (11). The others coefficients
are obtained iteratively as

a2k−1 =
1

8a1

(P(ν0 − ν∗)c)k − 4
∑

n=3,5,...,2k−3

an a2k−n

 , k = 2, 3, . . . . (B.8)
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