Martino Bardi 
email: bardi@math.unipd.it
  
Pierre Cardaliaguet 
email: cardaliaguet@ceremade.dauphine.fr
  
Convergence of some Mean Field Games systems to aggregation and flocking models

For two classes of Mean Field Game systems we study the convergence of solutions as the interest rate in the cost functional becomes very large, modeling agents caring only about a very short time-horizon, and the cost of the control becomes very cheap. The limit in both cases is a single first order integro-partial differential equation for the evolution of the mass density. The first model is a 2nd order MFG system with vanishing viscosity, and the limit is an aggregation equation. The result has an interpretation for models of collective animal behaviour and of crowd dynamics. The second class of problems are 1st order MFGs of acceleration and the limit is the kinetic equation associated to the Cucker-Smale model. The first problem is analyzed by PDE methods, whereas the second is studied by variational methods in the space of probability measures on trajectories. Contents 1 Convergence for classical MFG systems 5 1.1 The convergence results . . . . . . . . . . .

Introduction

The aim of this work is to discuss, in some particular settings, how models involving crowds of rational agents continuous in space-time can degenerate to agent based models as the agents become less and less rational. The models of rational agents used in this paper are the Mean Field Games (MFG), introduced by Lasry and Lions [START_REF] Lasry | Mean field games[END_REF] (see also [START_REF] Huang | Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle[END_REF]). They 1 describe optimal control problems with infinitely many infinitesimal agents who interact through their distribution.

Our results are inspired on one hand by the last part of [START_REF] Bertucci | Some remarks on Mean Field Games[END_REF], in which the authors show how to derive a McKean-Vlasov equation from a mean field game system and, on the other hand, by [START_REF] Degond | Mean field games and model predictive control[END_REF] (see also [START_REF] Barker | From mean field games to the best reply strategy in a stochastic framework[END_REF]) which discusses how multi-agent control problems in which the players have limiting anticipation converge to aggregation models. Let us briefly recall the content of both papers. In [START_REF] Bertucci | Some remarks on Mean Field Games[END_REF], the authors study MFG systems of the form $ & % ´Bt u λ ´ν∆u λ `Hpx, Du λ , m λ ptqq `λu " 0 in R d ˆp0, T q, B t m λ ´ν∆m λ ´divpm λ D p Hpx, Du λ , m λ ptqq " 0 in R d ˆp0, T q, u λ pT, xq " u T pxq, m λ p0q " m 0 in R d .

(1)

Here ν ą 0 is fixed, λ ą 0 is a large parameter which describes the impatience of the players and H " Hpx, p, mq is the Hamiltonian of the problem which includes interaction terms between the players. Under suitable assumptions on the data, [START_REF] Bertucci | Some remarks on Mean Field Games[END_REF] states that, as λ tends to 8 and up to subsequences, u λ , Du λ Ñ 0 and m λ converges to a solution of the McKean-Vlasov equation

"
B t m ´ν∆m ´divpmD p Hpx, 0, mptqq " 0 in R d ˆp0, T q, mp0q " m 0 in R d .

Possible variants and extensions (to MFG models with relative running costs and to higher order approximation) are also discussed in [START_REF] Bertucci | Some remarks on Mean Field Games[END_REF].

Although [START_REF] Degond | Mean field games and model predictive control[END_REF] shares some common features with [START_REF] Bertucci | Some remarks on Mean Field Games[END_REF], it is quite different. It proposes a deterministic model in which, as in [START_REF] Bertucci | Some remarks on Mean Field Games[END_REF], the agents have little rationality, in the sense that they anticipate only on a short horizon (here through time discretization). On the other hand, and this is in contrast with [START_REF] Bertucci | Some remarks on Mean Field Games[END_REF], the agents are supposed to pay little for their move. The paper [START_REF] Degond | Mean field games and model predictive control[END_REF] explains, at least at a heuristic level, that the optimal feedback control of each agent should converge to the gradient descent of the running cost, which the authors call "Best Reply Strategy". They also discuss the limit of the distribution of agents as their number goes to infinity and the related 1st order McKean-Vlasov equation.

In the present paper we consider a continuous time variant of the model in [START_REF] Degond | Mean field games and model predictive control[END_REF] which contains its two main features: the fact that the players minimize a cost on a very short horizon, that we model as in [START_REF] Bertucci | Some remarks on Mean Field Games[END_REF] by a large discount factor, and the fact that they pay little for their moves. To fit also better with aggregation or kinetic models, we work with problems with a vanishing viscosity (ν " ν λ Ñ 0 `as λ Ñ `8) and in infinite horizon. In particular, our result makes rigorous the approach of [START_REF] Degond | Mean field games and model predictive control[END_REF].

We prove two convergence results. In the first one, our model (in its simplest version) takes the form

$ ' & ' % ´Bt u λ ´νλ ∆u λ `λu λ `λ 2 |Du λ | 2 " F px, m λ ptqq in R d ˆp0, `8q B t m λ ´νλ ∆m λ ´divpm λ λDu λ q " 0 in R d ˆp0, `8q m λ p0q " m 0 , in R d , u λ bounded. (2) 
Under some natural assumptions on F (typically, continuous on R d ˆP2 pR d q and uniformly Lipschitz continuous and semi-concave in the space variable), we show that, as λ tends to infinity (meaning that players become more and more myopic and that their control is increasingly cheap) and along subsequences, m λ converges to a solution m of the aggregation model

" B t m ´divpmD x F px, mqq " 0 in R d ˆp0, `8q mp0q " m 0 , in R d . (3) 
Moreover, the optimal feedback ´λDu λ for the generic agent in the MFG converges a.e. to the vector field ´Dx F p¨, mq, giving the gradient descent of the running cost corresponding to the limit distribution of agents m. To compare with [START_REF] Bertucci | Some remarks on Mean Field Games[END_REF], let us note that, in the case where Hpx, p, mq " 1 2 |p| 2 ´F px, mq, the limit of ( 1) is a simple diffusion equation, while in our setting this limit is non trivial.

The limit equation in [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF] covers most examples of the so-called Aggregation Equation B t m `div ˆm ˆRd Kpx ´yqmpyq dy ˙" 0, because the kernel of the convolution is usually the gradient of a potential, K " ´Dk. This equation describes the collective behavior of various animal populations, its derivation and the choice of the kernel are based on phenomenological considerations, see, e.g., [START_REF] Topaz | A nonlocal continuum model for biological aggregation[END_REF][START_REF] Bernoff | Nonlocal aggregation models: a primer of swarm equilibria[END_REF] and the references therein. In Subsection 1.3 we show that the examples of Aggregation Equation most studied in the mathematical biology literature fit the assumptions of our convergence theorem, as well as some known models of crowd dyanmics. Therefore our result gives a further justification of such models within the framework of dynamic games with a large number of players.

Our second result concerns (first order) MFG of acceleration [START_REF] Achdou | Deterministic mean field games with control on the acceleration[END_REF][START_REF] Cannarsa | Mild and weak solutions of Mean Field Games problem for linear control systems[END_REF], formally written in the form

$ ' & ' % ´Bt u λ `λu λ ´v ¨Dx u λ `λ 2 |D v u λ | 2 " F px, v, m λ ptqq in p0, `8q ˆR2d B t m λ `v ¨Dx m λ ´div v pm λ λD v u λ q " 0 in p0, `8q ˆR2d m λ p0q " m 0 , in R 2d . (4) 
for which we prove the convergence to kinetic equations of the form

" B t m `v ¨Dx m ´div v pmD v F px, v, mqq " 0 in p0, `8q ˆR2d , mp0q " m 0 , in R 2d , (5) 
as λ Ñ `8. To fix the ideas we work in the case where the coupling term F corresponds to the Cucker-Smale model:

F px, v, mptqq " k ˚mpx, v, tq " ˆR2d kpx ´y, v ´v˚q mpy, v ˚, tqdydv ˚,
where kpx, vq " |v| 2 pα `|x| 2 q β , α ą 0, β ě 0 and v represents the velocity of the generic agent. Note that, in contrast with the first result, the coupling function F is no longer globally Lipschitz continuous: as we explain below, this is a source of major issues and it obliges us to change completely the analysis.

Let us briefly explain the mechanism of proofs and the differences with the existing literature. In [START_REF] Bertucci | Some remarks on Mean Field Games[END_REF], the rough idea is that u λ converges to 0 and therefore Du λ converges to 0 as well. In addition, the fact that the diffusion is nondegenerate (ν ą 0) provides C 2`α,1`α{2 bounds on u λ and m λ , thanks to which one can pass to the limit.

For our first result, (Theorem 1.1, on the convergence of (2) to ( 3)), we have to use a different argument. The key idea is that λu λ behaves like F px, m λ q, because λ ´1F px, m λ q is almost a solution to [START_REF] Ambrosio | Gradient flows: in metric spaces and in the space of probability measures[END_REF]. Therefore λDu λ is close to DF px, m λ q, which explains the limit equation (3). Compared to [START_REF] Bertucci | Some remarks on Mean Field Games[END_REF], an additional difficulty comes from the lack of (uniform in λ) smoothness of the solutions, since we have no diffusion term in the limit equation. In particular, the product m λ λDu λ has to be handled with care, since m λ could degenerate as a measure while Du λ could become singular. We overcome this issue by proving a uniform semi-concavity of λu λ , which provides at the same time the L 1 loc convergence of λDu λ and, thanks to an argument going back to [START_REF] Lasry | Mean field games[END_REF] (see also [START_REF] Cardaliaguet | Learning in mean field games: the fictitious play[END_REF]) a (locally in time) uniform L 8 bound on the density of m λ , and hence a weak-* convergence of m λ .

For the second result (Theorem 2.2, on the convergence of (4) to ( 5)), the fact that the coupling function F growths in a quadratic way with respect to the (moment of) the measure prevents us from using fixed point techniques (as in [START_REF] Achdou | Deterministic mean field games with control on the acceleration[END_REF][START_REF] Cannarsa | Mild and weak solutions of Mean Field Games problem for linear control systems[END_REF]) to show the existence of a solution to the MFG system (4) and to obtain estimates on the solution (this would also be the case in the presence of a viscous term). This obliges us to give up the PDE approach of the previous set-up and to use variational techniques, first suggested for MFG problems in [START_REF] Lasry | Mean field games[END_REF] and largely developed since then: see, for instance, among many other contributions, [START_REF] Benamou | Variational mean field games[END_REF][START_REF] Cardaliaguet | Weak solutions for first order mean field games with local coupling[END_REF][START_REF] Cardaliaguet | Mean field games systems of first order[END_REF][START_REF] Cardaliaguet | First order mean field games with density constraints: pressure equals price[END_REF][START_REF] Orrieri | A variational approach to the mean field planning problem[END_REF]. For that very same reason, we have to work with a finite horizon problem and with initial measure having a compact support. In contrast with the first result, we do not prove the convergence of all the solutions of the MFG system, but only for the ones which minimize the energy written formally as

ˆT 0 e ´λt ˆR2d p 1 2λ |αpx, v, tq| 2 `ˆR 2d kpx ´x˚, v ´v˚q mpdx ˚, dv ˚, tqqmpdx, dv, tqdt (6) 
where B t m `v ¨Dx m `div v pmαq " 0. We formulate this problem in the space of probability measures on curves pγ, 9 γq, and the main technique of proof consists in obtaining estimates on the solution based on the dynamic programming principle in such space. This is reminiscent of ideas developed in [START_REF] Rossi | Weighted Energy-Dissipation principle for gradient flows in metric spaces[END_REF] that we discuss below. Such an approach naturally involves weak solution of the MFG system and does not require the initial measure m 0 to be absolutely continuous. In this case the natural notion of solution for the limit equation ( 27) is the measure-valued solution developed in [START_REF] Canizo | A well-posedness theory in measures for some kinetic models of collective motion[END_REF] for [START_REF] Benamou | Variational mean field games[END_REF].

We could also have developed this second approach for the first type of results (i.e., the convergence of (2) to (3)), assuming that the coupling function F derives from an energy (the so-called potential mean field games):

F px, mq " δF δm pm, xq
(see [START_REF] Ambrosio | Gradient flows: in metric spaces and in the space of probability measures[END_REF] for the notion of derivative). Then it is known [START_REF] Lasry | Mean field games[END_REF] that minimizers pm λ , α λ q of the problem inf "ˆ`8

0 e ´λt ˆˆR d 1 2 |α| 2 dx `λFpmptqq ˙dt, B t m `divpmαq " 0, mp0q " m 0 * , (7) 
are solutions to the MFG system (2) (with ν λ " 0 and if F is smooth enough) in the sense that there exists u λ such that pu λ , m λ q solves (2) and α λ " ´λDu λ . The convergence of minimizers, as λ Ñ `8, is studied in the nice paper [START_REF] Rossi | Weighted Energy-Dissipation principle for gradient flows in metric spaces[END_REF], where this convergence is called "Weighted Energy-Dissipation": the authors prove that, under suitable assumptions on the function F (which allow for singular coupling functions), minimizers converge to a solution of the gradient flow associated to F, i.e., at least at a formal level, to a solution of (3). Let us note that, in contrast with our setting, the solution of the limit equation can be singular and that [START_REF] Rossi | Weighted Energy-Dissipation principle for gradient flows in metric spaces[END_REF] works in general metric spaces. It would be interesting to understand the precise interpretation of the results of [START_REF] Rossi | Weighted Energy-Dissipation principle for gradient flows in metric spaces[END_REF] in terms of limits of MFGs, but this exceeds the scope of the present paper. Note however that our second result (i.e., the convergence of (4) to (5)) does not fit in the framework of [START_REF] Canizo | A well-posedness theory in measures for some kinetic models of collective motion[END_REF]. Indeed, the key idea of [START_REF] Canizo | A well-posedness theory in measures for some kinetic models of collective motion[END_REF] is that m λ is a gradient flow for the value function associated with Problem [START_REF] Bertozzi | Characterization of radially symmetric finite time blowup in multidimensional aggregation equations[END_REF]; as this value function converges to F, pm λ q has to converge to the gradient flow for F, which is precisely m; this gradient flow structure is completely lost in our framework of MFG of acceleration (4): we have therefore to design a different approach.

Notation

For any p ě 1 we denote by P p pR d q (or, in short P p ) the set of Borel probability measures with finite p´order moment M p :

M p pmq :" ˆRd |x| p mpdxq.

The sets P p pR d q are endowed with the corresponding Wasserstein distance. Given a positive constant κ, we denote by M p,κ pR d q the set of measures m P P p pR d q absolutely continuous with respect to the Lebesgue measure and with a density bounded by κ. We set M p pR d q :" Ť κą0 M p,κ pR d q. In Section 2 we will also use, for m P P 2 pR d ˆRd q, M 2,v pmq :" ˆR2d |v| 2 mpdx, dvq.
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Convergence for classical MFG systems

In this section we consider MFG systems of the form

$ & % ´Bt u λ ´νλ ∆u λ `λu λ `λ´1 HpλDu λ , xq " F px, m λ ptqq in R d ˆp0, `8q B t m λ ´νλ ∆m λ ´divpm λ D p HpλDu λ , xqq " 0 in R d ˆp0, `8q m λ p0q " m 0 , in R d , (8) 
where λ ą 0, ν λ ą 0 and ν λ Ñ 0 as λ Ñ `8. Our aim is to prove the convergence (up to a subsequence) of m λ as λ Ñ `8 to a solution m of

" B t m ´divpmD p HpD x F px, mptqq, xqq " 0 in R d ˆp0, `8q, mp0q " m 0 , in R d . (9) 
and to show also that λu λ px, tq Ñ F px, mptqq loc. uniformly, λDu λ px, tq Ñ D x F px, mptqq a.e.

The convergence results

We work under the following conditions: we assume that the initial measure m 0 satisfies m 0 P P 2 pR d q is absolutely continuous with a bounded density. [START_REF] Canizo | A well-posedness theory in measures for some kinetic models of collective motion[END_REF] The kind of costs we are interested in are non-local and regularizing. A possible assumptions on F is that F : R d ˆM1 pR d q Ñ R is continuous in a suitable topology, has a linear growth and is Lipschitz continuous and semi-concave in x. More precisely, we suppose the existence of a constant C o ě 1 such that:

For any κ ą 0, the restrictions of F and D x F to R d ˆM1,κ pR d q are continuous in both variables for the topology of R d ˆP1 pR d q, (11)

|F px, mq| ď C o p1 `|x|q, |F px, mq ´F py, mq| ď C o |x ´y|, (12) 
F px `h, mq `F px ´h, mq ´2F px, mq ď C o |h| 2 , @ m P M 1 pR d q, (13) 
(recall that M p,κ pR d q and M p pR d q are defined in the introduction). We assume that H : R d ˆRd Ñ R is convex with respect to the first variable and satisfies, 

´Co ď Hpp, xq ď C o p1 `|p| 2 q, D 2 pp Hpp, xq ě C ´1 o I d , (14) 
Note that, if H is smooth, then conditions ( 15), ( 16) and ( 17) can be equivalently rewritten as

|D x Hpp, xq| `|D px Hpp, xq| ď C o p1 `|p|q, |D p Hpp, xq| ď C o p1 `|p|q, D 2 
xx Hpp, xq ě ´Co p1 `|p|q. Theorem 1.1. Assume (10), ( 11), ( 12), ( 13), ( 14), ( 15), ( 16) and [START_REF] Cardaliaguet | First order mean field games with density constraints: pressure equals price[END_REF]. Let pu λ , m λ q be a solution to [START_REF] Bertucci | Some remarks on Mean Field Games[END_REF]. Then pm λ q is relatively compact in C 0 pr0, T s, P 1 pR d qq and is bounded in L 8 pR d ˆr0, T sq for any T ą 0. Moreover, the limit m, as λ n Ñ `8, of any converging subsequence pm λn q in C 0 pr0, T s, P 1 pR d qq is a solution of (9) in the sense of distributions and λ n u λn px, tq Ñ F px, mptqq locally uniformly and λ n Du λn px, tq Ñ DF px, mptqq a.e.

The existence of a solution to (8) under the assumptions above can be established by standard arguments, using the estimates in Section 1.2 below, Remark 1.4. A typical example of a Hamiltonian satisfying our assumptions in

Hpx, pq " ´vpxq ¨p `1 2 |p| 2 ,
where the vector field v : R d Ñ R d is bounded and with bounded first and second order derivatives.

Remark 1.1. In the case of deterministic MFGs, ν λ " 0 for all λ, the solution pu λ , m λ q is not smooth and the proof of convergence by PDE methods is harder. We can prove a result analogous to Theorem 1.1 under the additional assumption that }F p¨, mq} C 2 ď C for all m P M 1 pR d q, and the support of m 0 is compact, using the methods of [START_REF] Cardaliaguet | [END_REF]. In this case we can also prove that m λ ptq has a support uniformly bounded for t P r0, T s: a result of this kind is proved in Section 2 for the MFGs of acceleration. Then we expect uniqueness in the limit equation: see the next remark.

Remark 1.2. In addition to the assumptions of Theorem 1.1 suppose that the vector field G appearing in the limit equation ( 9), Gpx, mq :" ´Dp HpD x F px, mq, xq, is such that, for

all m P M 1 pR d q, x Þ Ñ Gpx, mq is C 1 and |Gpx, mq ´Gpy, mq| ď C 1 |x ´y| , }Gp¨, mq ´Gp¨, mq} 8 ď C 1 d 1 pm, mq ,
where d 1 is the 1-Wasserstein distance. Then it is proved in [START_REF] Piccoli | Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes[END_REF] that there is a unique solution m of ( 9) with compact support in x. Therefore, under these additional conditions, the whole family m λ converges to m as λ Ñ `8, as in the problem of Section 2. For instance, the support of m is compact in x in deterministic MFGs, if m 0 has compact support, see the preceding remark.

Remark 1.3. The case of ν λ Ñ ν 8 ą 0 can be treated as in the proof of Theorem 1.1 and leads in the limit to the viscous Fokker-Planck equation

B t m ´ν8 ∆m ´divpmD p HpD x F px, mptqq, xqq " 0 in R d ˆp0, `8q.

Proof of Theorem 1.1

In this part, assumptions (10), ( 11), ( 12), ( 13), ( 14), ( 15), ( 16) and ( 17) are in force. We start with some estimates for a solution to (8).

Proposition 1.2. Let pu λ , m λ q be a solution of [START_REF] Bertucci | Some remarks on Mean Field Games[END_REF]. Then |u λ px, tq| ď λ ´1 Cp1 `|x|q for some constant C independent of λ ě 1 `4d `16C 2 0 such that ν λ ď 1.

Proof. We note that w ˘px, tq :" ˘λ´1 Cp1 `|x| 2 q 1{2 is a supersolution (for +) and a subsolution (for -) of ( 8) for a suitable C. Let us determine C such that w " ´λ´1 Cp1 `|x| 2 q 1{2 is a subsolution, the other case being easier. By the growth assumptions ( 12) and ( 14), and for ν λ ď 1,

´Bt w ´νλ ∆w `λw `λ´1 HpλDw, xq ´F px, m λ ptqqď Cdν λ λp1 `|x| 2 q 1{2 ´Cp1 `|x| 2 q 1{2 `1 λ H ˆ´Cx p1 `|x| 2 q 1{2 , x ˙´F px, m λ ptqq ď Cd λ ´C 2 p1 `|x|q `C0 λ ˆ1 `C2 |x| 2 p1 `|x| 2 q ˙`C 0 p1 `|x|q.
If we choose C " 4C 0 the right hand side can be bounded above by

4C 0 d λ ´C0 `C0 1 `16C 2 0 λ ď 0 if λ ě 1 `4d `16C 2 0 .
Proposition 1.3. Let pu λ , m λ q be a solution of [START_REF] Bertucci | Some remarks on Mean Field Games[END_REF].

Then }Du λ } 8 ď 4λ ´1C o for λ ě 2C o .
Proof. We use an a priori estimate, proving that, if u λ is Lipschitz continuous and if H and px, tq Ñ F px, m λ ptqq are smooth, then u λ satisfies the required estimate. One can then complete the proof easily, approximating the HJ equation by HJ equations with smooth and globally Lipschitz continuous Hamiltonians and right-hand sides and passing to the limit. We omit this last part which is standard and proceed with the argument. Given a direction ξ P R d with |ξ| ď 1, let w :" Du λ ¨ξ. Then w satisfies

´Bt w ´νλ ∆w `λw `Dp HpλDu λ , xq ¨Dw `λ´1 D ξ HpλDu λ , xq " D ξ F px, mptqq.
In view of assumptions ( 12) and ( 15) we have therefore ´Bt w ´νλ ∆w `λw `Dp HpλDu λ , xq ¨Dw ´Co λ ´1p1 `λ}Du λ } 8 q ď C o .

So by the maximum principle we have

Du λ ¨ξ " w ď λ ´1C o p1 `λ´1 `}Du λ } 8 q.
Taking the supremum over |ξ| ď 1, gives the result for λ larger than 2C o .

Proposition 1.4. Let pu λ , m λ q be a solution of [START_REF] Bertucci | Some remarks on Mean Field Games[END_REF]. Then D 2 u λ ď λ ´1 C, where C does not depend on λ ě 2C o .

Proof. Here again we focus on a priori estimates for smooth data. where the constant C does not depend on λ and |ξ| ď 1. We conclude again by the maximum principle.

Proposition 1.5. Let pu λ , m λ q be a solution of [START_REF] Bertucci | Some remarks on Mean Field Games[END_REF]. For any T ą 0, the family pm λ q satisfies sup λě2Co sup tPr0,T s ˆRd

|x| 2 m λ px, tqdx ă `8,
is relatively compact in C 0 pr0, T s, P 1 q and bounded in L 8 pR d ˆr0, T sq.

Proof. We do the proof again for smooth data. For the bound on the second order moment of m λ ptq on r0, T s we recall that m λ ptq is the law LpX t q of the solution X t of the SDE dX t " ´Dp HpλDu λ pX t q, X t qdt `?2ν λ dW t , LpX 0 q " m 0 , where W t is a standard Brownian motion. Since the vector field D p HpλDu λ , xq is uniformly bounded by Proposition 1.3, we have

Er|X t | 2 s ď CpEr|X 0 | 2 s `1qe Ct . Then M 2 pm λ ptqq " ˆRd |x| 2 m λ px, tqdx " E|X t | 2 ď CpM 2 pm 0 q `1qe CT , @t ď T.
For the L 8 bound on m λ , we rewrite the equation of m λ as

B t m λ ´νλ ∆m λ ´mλ Tr `Dpp HpλDu λ , xqD 2 u λ `Dpx HpλDu λ , xq Dm λ ¨Dp HpDu λ , xq " 0 in R d ˆp0, `8q
where, by convexity of H, ( where C does not depend on λ. Therefore, by the maximum principle again, the L 8 norm of m λ has at most an exponential growth in time, uniform with respect to λ.

Proof of Theorem 1.1. By Proposition 1.5, pm λ q is relatively compact in C 0 pr0, T s, P 1 pR d qq and is bounded in L 8 pR d ˆr0, T sq for any T ą 0. Let pm λn q be a converging subsequence in C 0 pr0, T s, P 1 q for any T ą 0. Then pm λn q converges to m in L 8 ´weak-* on R d ˆr0, T s for any T ą 0. In particular, by our continuity assumption on F in [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF], the maps px, tq Ñ F px, m λn ptqq and px, tq Ñ D x F px, m λn ptqq converge locally uniformly to the maps px, tq Ñ F px, mptqq and px, tq Ñ D x F px, mptqq respectively. As u λ solves (8), w λ :" λu λ solves

´λ´1 B t w λ ´λ´1 ν λ ∆w λ `wλ `λ´1 HpDw λ , xq " F px, m λ ptqq in R d ˆp0, `8q.
Hence the half-relaxed limits w ˚and w ˚of pw λ q (which are locally uniformly bounded in view of Proposition 1.2) are respectively sub-and super-solutions of the trivial equation

w " F px, mptqq in R d ˆp0, `8q.
This proves the locally uniform convergence of pλ n u λn q to F px, mq.

Next we use Theorem 3.3.3 in [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF]. By Proposition 1.2 pλu λ q is uniformly locally bounded, and by Proposition 1.4 it is uniformly semi-concave in space (locally in time). Then any sequence pλ n u λn q has a subsequence such that pλ n Du λn q converges to D x F px, mq a.e. and therefore also in L 1 loc pR d ˆr0, `8qq. One easily derives from this that m solves (9) in the sense of distribution.

Remark 1.4. The existence of a solution pu λ , m λ q of the system (8) can be proved by approximating with solutions of the following system with finite time-horizon

$ & % ´Bt u T ´νλ ∆u T `λu T `λ´1 HpλDu T , xq " F px, m T ptqq in R d ˆp0, T q B t m T ´νλ ∆m T l ´divpm T D p HpλDu T , xqq " 0 in R d ˆp0, T q u T pT q " 0, m T p0q " m 0 , in R d . (18) 
The existence of a solution pu T , m T q for fixed λ ą 0 follows from standard argument (see for instance Lions' course of Nov. 12, 2010 [START_REF] Lions | Cours au Collège de France[END_REF]). The estimates of Propositions 1.2, 1.3, 1.4, and 1.5 hold for pu T , m T q with the same proof (using comparison principles for Cauchy problems with constant terminal data). Then there is enough compactness to pass to the limit as T Ñ `8, as in the proof of Theorem 1.1, and see that the limit satisfies (8).

Examples

In this section we present several examples of coupling functions F of the form

F px, mq " k ˚mpx, tq " ˆRd kpx ´yqmpdyq, (19) 
where the convolution kernel k can take different forms and is at least globally Lipschitz continuous.

Hppq " |p| 2 {2 ´vpxq ¨p, with the vector field v bounded together with its first and second derivatives. Then (20) Note that the condition (11) is satisfied. In addition, we suppose that k is bounded, which implies condition [START_REF] Cannarsa | Mild and weak solutions of Mean Field Games problem for linear control systems[END_REF], and the semi-concavity of k, which ensure condition [START_REF] Cardaliaguet | [END_REF]. Under these assumptions Theorem 1.1 holds. Next we review some special cases that arise in applications.

The aggregation equation

The special case of (20) with v " 0 is often called the aggregation equation. For suitable choices of the kernel k it models the collective behaviour of groups of animals, see, e.g., [START_REF] Bodnar | An integro-differential equation arising as a limit of individual cell-based models[END_REF][START_REF] Topaz | A nonlocal continuum model for biological aggregation[END_REF] and the references therein. Most kernels used in the aggregation models are of the form kpxq " φp|x|q with φ smooth but φ 1 p0q not necessarily 0, so k can be not differentiable in the origin. However, most of them satisfy the assumptions above.

Example 1.1. The kernel kpxq " αe ´a|x| , a ą 0,

considered in [START_REF] Bodnar | An integro-differential equation arising as a limit of individual cell-based models[END_REF][START_REF] Topaz | A nonlocal continuum model for biological aggregation[END_REF] (see also the references therein), is bounded, globally Lipschitz continuous, and semiconcave if α ą 0. Note that the case α ą 0 describes repulsion among individuals at all distances, because kpxq " φp|x|q and φ 1 prq ă 0 implies repulsion. The case α ă 0, describing attraction, does not fit into our theory because k " |x| near 0, so it is not semiconcave, which is consistent with the fact that solutions of the aggregation equation ( 20) are known to blow up in finite time for suitable initial data (at least in dimension d " 1, see [START_REF] Bodnar | An integro-differential equation arising as a limit of individual cell-based models[END_REF]).

Example 1.2. The kernel kpxq " ´|x|e ´a|x| , a ą 0,

considered in [START_REF] Bodnar | An integro-differential equation arising as a limit of individual cell-based models[END_REF] is also bounded, globally Lipschitz continuous and semiconcave because k " ´|x| near 0. Note that this kernel describes repulsion at small distance and attraction at distance |x| ą 1{a. Our theory is consistent with the global existence of solutions of the aggregation equation [START_REF] Cristiani | Multiscale modeling of pedestrian dynamics[END_REF] in this case, at least for d " 1, proved in [START_REF] Bodnar | An integro-differential equation arising as a limit of individual cell-based models[END_REF].

Example 1.3. To model repulsion at short distance and attraction at medium range, decaying at infinite, a commonly used kernel is the so-called Morse potential

kpxq " e ´|x| ´Ge ´|x|{L ,

0 ă G ă 1, L ą 1, (23) 
see [START_REF] Bernoff | Nonlocal aggregation models: a primer of swarm equilibria[END_REF] and the references therein. It is again bounded and globally Lipschitz continuous. It is also semiconcave because k " 1 ´G `|x|pG{L ´1q near 0, and G{L ´1 ă 0.

Models of crowd dynamics

There is a large and fast growing literature on models of the interactions among pedestrians, see the survey in the book [START_REF] Cristiani | Multiscale modeling of pedestrian dynamics[END_REF]. They split into first order models, where the velocity of the pedestrian is a prescribed function of the density of individuals and position, and second order models, where the acceleration is prescribed. In the next Section 2 we study second order models, focusing on the celebrated Cucker-Smale model of flocking, see Remark 2.4 for more references on crowd dynamics. A first order model fitting in the assumptions of the present section is the one proposed in [START_REF] Cristiani | Multiscale modeling of granular flows with application to crowd dynamics[END_REF], where the velocity of each agent at position x and time t is of the form vpxq´Qrmptqspxq, v being the desired velocity of the pedestrian, and the other term Q accounting for the interaction with the other agents. If we assume that Q does not depend on the angular focus of the walker in position x, then the model in [START_REF] Cristiani | Multiscale modeling of granular flows with application to crowd dynamics[END_REF] can be written as

Qrmptqspxq " ˆRd

Dkpx ´yqmpy, tqdy, kpxq " φp|x|q with φ P Lippr0, `8qq, decreasing in p0, rq, increasing in pr, Rq, and constant in rR, `8q, so with a behavior similar to the Morse kernel [START_REF] Huang | Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle[END_REF] and to [START_REF] Fasshauer | Meshfree Approximations Methods with Matlab[END_REF]. If we take φ P C 2 pp0, `8qq with φ 2 bounded, then F given by ( 19) satifies the assumptions of Theorem 1.1.

On uniqueness of solutions

If we assume in addition that k P C 2 pR d q with D 2 k bounded, then the limit equation ( 20) has a unique solution with compact support in space, as observed in Remark 1.2. This occurs, for instance, in Section 1.3.2 if φ P C 2 pr0, `8qq and φ 1 p0q " φ 2 p0q " 0 (recall that kpxq " φp|x|q). Uniqueness is also known for the aggregation equation with kernels like those of Section 1.3.1: see [START_REF] Bodnar | An integro-differential equation arising as a limit of individual cell-based models[END_REF][START_REF] Carrillo | Uniqueness of bounded solutions to aggregation equations by optimal transport methods[END_REF] and the references therein. However, we expect uniqueness of solutions to the Mean-Field Game system (2) with F given by ( 19) only for the exponential kernel [START_REF] Degond | Mean field games and model predictive control[END_REF], and not in all other models where there is attraction among individuals in some range of densities. In fact, the uniqueness of solutions in Mean Field Games is strongly connected with a property of mononicity of F discovered by Lasry and Lions [START_REF] Lasry | Mean field games[END_REF]. For coupling functions of the form [START_REF] Cristiani | Multiscale modeling of granular flows with application to crowd dynamics[END_REF] such monotonicity is equivalent to the property that k is a positive semidefinite kernel, namely, ˆRd ˆRd kpx ´yqvpyqvpxq dydx ě 0 @ v.

This property is deeply studied and has several characterizations. If kpx ´yq " ψp|x ´y| 2 q with ψ P C 8 pp0, `8qq and continuous in 0, then it is known that k is a positive semidefinite kernel if and only if ψ is completely monotone, namely, ψ 1 ď 0 and all other derivatives have alternating signs [START_REF] Fasshauer | Meshfree Approximations Methods with Matlab[END_REF]. In all examples describing attraction it occurs that φ 1 , and therefore ψ 1 , is instead positive in some range. Then the MFG is not expected to have a unique solution and our result also says that the distance among the possibly multiple solutions of the MFG system tends to 0 as λ becomes large.

2 Convergence for some MFGs of acceleration towards the Cucker-Smale model

For λ ą 0 and 0 ă T ă `8, we now consider the MFG systems of acceleration, which is written in a formal way as:

$ ' & ' % ´Bt u λ `λu λ ´v ¨Dx u λ `λ 2 |D v u λ | 2 " F px, v, m λ ptqq in R 2d ˆp0, T q B t m λ `v ¨Dx m λ ´div v pm λ λD v u λ q " 0 in R 2d ˆp0, `8q m λ p0q " m 0 , u λ px, v, T q " 0 in R 2d . (24) 
Here the space variables are denoted by px, vq, with px, vq P R d ˆRd . System (24) models a Nash equilibrium of a game in which the (small) players, given the flow pm λ ptqq of probability measures on R 2d , try to minimize over γ the quantity ˆT 0 e ´λt ˆ1 2λ |: γptq| 2 `F pγptq, 9 γptq, m λ ptqq ˙dt, while the flow pm λ ptqq is the evolution of the positions and the velocities of the players when they play in an optimal way. We assume that the coupling function F is a cost associated to the Cucker-Smale model:

F px, v, mptqq " k ˚mpx, v, tq " ˆR2d kpx ´y, v ´v˚q mpy, v ˚, tqdydv ˚, kpx, vq " |v| 2 gpxq , (25) 
where g : R d Ñ R is bounded below by a positive constant, is even, smooth and such that |Dg|{g is globally bounded. For instance, gpxq " pα `|x| 2 q β , α ą 0, β ě 0.

In this case D v kpx, vq " 2v gpxq and so

D v F px, v, mptqq " pD v kq ˚mpx, v, tq " ˆR2d 2 pv ´v˚q gpx ´yq mpy, v ˚, tqdydv ˚.
The aim of this section is to show that m λ Ñ m as λ Ñ `8, where m solves the continuous version of the Cucker-Smale model:

" B t m `v ¨Dx m ´div v pmD v F px, v, mqq " 0 in R 2d ˆp0, `8q, mp0q " m 0 , in R 2d . ( 27 
)

The convergence result

Throughout this section, we assume that m 0 and F satisfy the following conditions:

m 0 P PpR 2d q has a compact support, ( 28 
)
and F is given by [START_REF] Lions | Cours au Collège de France[END_REF] where g : R d Ñ R is bounded below by a positive constant,

is even, smooth, and |Dg|{g is globally bounded.

Let us start by describing what we mean by a weak (variational) solution of the MFG problem. Let Γ " C 1 pr0, T s, R d q endowed with usual C 1 norm and PpΓq be the set of Borel probability measures on Γ. We consider, for η P PpΓq, J λ pηq "

ˆΓ

ˆT The link between the equilibrium condition ( 30) and the MFG system ( 24) is the following: if we set

u λ px, v, sq " inf pγpsq, 9
γpsqq"px,vq ˆT s e ´λpt´sq p 1 2λ |: γptq| 2 `F pγptq, 9 γptq, m ηλ ptqqqdt, then the pair pu λ , m ηλ q is (at least formally) a weak solution of ( 24), in the sense that u λ is a viscosity solution to the first equation in ( 24) while m ηλ is a solution in the sense of distribution of the second equation in [START_REF] Lasry | Mean field games[END_REF]. Existence of a solution to the equilibrium condition [START_REF] Topaz | A nonlocal continuum model for biological aggregation[END_REF] for more general MFG systems is obtained in [START_REF] Cannarsa | Mild and weak solutions of Mean Field Games problem for linear control systems[END_REF], however under a much more restrictive growth condition on F . In addition, [START_REF] Achdou | Deterministic mean field games with control on the acceleration[END_REF][START_REF] Cannarsa | Mild and weak solutions of Mean Field Games problem for linear control systems[END_REF] show that there exists a weak solution to the MFG system of acceleration [START_REF] Lasry | Mean field games[END_REF]. We postpone the (quite classical) proof of Lemma 2.1 to the next section and proceed with the notion of solution for the kinetic equation [START_REF] Piccoli | Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes[END_REF]. Following [START_REF] Canizo | A well-posedness theory in measures for some kinetic models of collective motion[END_REF], we say a map m P C 0 pr0, T s, P 2 pR d qq is a measure-valued solution to [START_REF] Piccoli | Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes[END_REF] if mptq " P x,v ptq7m 0 where P x,v ptq " pP x,v 1 ptq, P x,v 2 ptqq P R d ˆRd solves the ODE

$ & % d dt P x,v 1 ptq " P x,v 2 ptq, d dt P x,v 2 
ptq " ´Dv F pP x,v 1 ptq, P x,v 2 ptq, mptqq, P x,v p0q " px, vq.

(31)

In [START_REF] Canizo | A well-posedness theory in measures for some kinetic models of collective motion[END_REF], the authors propose several conditions under which such a measure-valued solution exists and is unique. This include the case of the Cucker-Smale model studied here, under the assumption that m 0 has a compact support.

Our main result is the following:

Theorem 2.2. Let ηλ be a minimizer of J λ under the constraint ẽ0 7η λ " m 0 . Then pm ηλ q converges as λ Ñ `8 to the unique measure-valued solution to [START_REF] Piccoli | Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes[END_REF] in C 0 loc pr0, T q, P 2 pR 2d qq. Remark 2.1. Note that we do not prove the convergence of all the equilibria pη λ q of (30), but only for the minimizers of J λ . The reason is that we were not able to obtain enough estimates for the other equilibria.

Proof of the convergence result

Before starting the proof, let us note that, by our assumptions, there is a constant C 0 ą 0 such that

g ě C ´1 0 , 0 ď F ď C 0 p1 `|v| 2 `M2,v pmqq, where M 2,v pmq :" ˆR2d |v| 2 mpdx, dvq. (32) |D x F px, v, mq| ď C 0 F px, v, mq, |D v F px, v, mq| ď C 0 F 1{2 px, v, mq. (33) 
Indeed,

|D x F px, v, mq| ď ˆR2d |Dgpx ´x˚q | |v ´v˚| 2 pgpx ´x˚q q 2 mpdx ˚, dv ˚q ď }Dg{g} 8 F px, v, mq,
while, as g ě c (for some c ą 0),

|D v F px, v, mq| ď ˆR2d 2|v ´v˚| gpx ´x˚q mpdx ˚, dv ˚q ď ´ˆR 2d |v ´v˚| 2 gpx ´x˚q mpdx ˚, dv ˚q¯1 {2 ´ˆR 2d 4 gpx ´x˚q mpdx ˚, dv ˚q¯1 {2 ď 2c ´1{2 F 1{2 px, v, mq.
Throughout the proof (and unless specified otherwise), C denotes a constant which may vary from line to line and depends only on T , d, m 0 and the constant C 0 in (32) and ( 33).

Let us now explain the existence of a minimizer for J λ .

Proof of Lemma 2.1. Let ε ą 0 and η ε be ε´optimal in Problem [START_REF] Topaz | A nonlocal continuum model for biological aggregation[END_REF]. We define η P PpΓq by ˆΓ φpγqηpdγq " ˆR2d φpt Ñ x `tvqm 0 pdx, dvq @φ P C 0 b pΓq.

Let π 2 : R 2d Ñ R d defined by π 2 px, vq " v. Then π 2 7m η ptq " π 2 7m 0 for any t P r0, T s because, for any φ P C 0 b pR d q, ˆRd φpvqπ 2 7m η pdv, tq " ˆΓ φp 9 γptqqηpdγq "

ˆR2d φp d dt pt Ñ x `tvqqm 0 pdx, dvq " ˆRd φpvqπ 2 7m 0 pdvq.
Hence, by ε´optimality of η ε ,

J λ pη ε q ď ε `Jλ pηq " ε `ˆΓ ˆT 0 e ´λt Fpm η ptqqdt,
where, for any t ě 0, and as π 2 7m η ptq " π 2 7m 0 ,

Fpm η ptqq ď C 0 ˆR2d |v´v ˚|2 m η px, v, tqm η px ˚, v ˚, tq ď 2C 0 ˆR2d |v| 2 m η px, v, tq " 2C 0 M 2,v pm 0 q.
This shows that

J λ pη ε q ď ε `2λ ´1C 0 M 2,v pm 0 q.
As F is nonnegative, this implies that

ˆΓ ˆT 0 e ´λt 1 2λ |: γptq| 2 dtη ε pdγq ď J λ pη ε q ď ε `2λ ´1C 0 M 2,v pm 0 q.
As m 0 has a compact support (say contained in B R0 ) and the set tγ P Γ, |pγp0q, 9 γp0qq| ď R 0 , ˆT 0 e ´λt |: γptq| 2 dt ď Cu is compact in Γ for any C, we conclude that the family pη ε q is tight. By lower semi-continuity of J λ we can then conclude that there exists a minimizer ηλ of J λ under the (closed) constraint ẽ0 7η λ " m 0 . Note for later use that, in view of the above estimates, ˆΓ ˆT 0 e ´λt 1 2λ |: γptq| 2 dtη λ pdγq ď 2λ ´1C 0 M 2,v pm 0 q, so that, as m 0 has a compact support,

sup tPr0,T s M 2,v pm ηλ ptqq ď C λ , (34) 
for some constant C λ depending on m 0 , C 0 and λ.

Next we show equality [START_REF] Topaz | A nonlocal continuum model for biological aggregation[END_REF]. Let γ 0 belong to the support of ηλ and set px 0 , v 0 q " pγ 0 p0q, 9 γ 0 p0qq. Fix γ 1 P H 2 pr0, T s, R d q with pγ 1 p0q, 9 γ 1 p0qq " px 0 , v 0 q. For ε, δ ą 0, let E ε " tγ P Γ, }γ ´γ0 } C 1 ď εu, mε " ẽt 7pη λ tE ε q and define η ε,δ as the Borel measure on Γ by ˆΓ φpγqη ε,δ pdγq " ˆEc

ε φpγqη λ pdγq`p1´δq ˆEε φpγqη λ pdγq`δ ˆR2d φpγ 1 `px´x 0 `tpv´v 0 qqq mε pdx, dv, 0q
for any φ P C 0 b pΓq. Let mε ptq be the Borel measure on R 2d defined by ˆR2d φpx, vq mε pdx, dv, tq " ˆR2d φpγ 1 ptq`x´x 0 , 9 γ 1 ptq`v´v 0 q mε pdx, dv, 0q, @φ P C 0 b pR 2d q.

We note that

m η ε,δ ptq " m ηλ ptq `δp mε ptq ´m ε ptqq, m η ε,δ p0q " m 0 . (35) 
Hence, testing the optimality of ηλ for J λ against η ε,δ and using the definition of η ε,δ , we obtain We divide by δ ą 0 and let δ Ñ 0 to obtain, using the definition of F :

δ ˆEε ˆT 0 e ´λt 1
ˆEε ˆT 0 e ´λt 1 2λ |: γptq| 2 dtη λ pdγq ď p ˆR2d mε pdx, dv, 0qqp ˆT 0 e ´λt 1 2λ |: γ 1 ptq| 2 dtq `ˆT 0 e ´λt ˆR2d F px, v, m ηλ ptqqp mε pdx, dv, tq ´m ε pdx, dv, tqqdt.
Rearranging, we find by the definition of mε and mε : ˆEε ˆT 0 e ´λt p 1 2λ |: γptq| 2 `F pγptq, 9 γptq, m ηλ ptqqqdt ηλ pdγq (36)

ď ˆR2d ˆT 0 e ´λt p 1 2λ |: γ 1 ptq| 2 `F pγ 1 ptq `x ´x0 , 9 γ 1 ptq `v ´v0 , m ηλ ptqqqdt mε pdx, dv, 0q (37) 
Fix κ ą 0 small. By lower-semicontinuity on Γ of the functional

γ Ñ ˆT 0 e ´λt p 1 2λ |: γptq| 2 `F pγptq, 9 γptq, m ηλ ptqqqdt,
we have, for any ε ą 0 small enough, that, for any γ P E ε , ˆT 0 e ´λt p 1 2λ |: γ 0 ptq| 2 `F pγ 0 ptq, 9 γ 0 ptq, m ηλ ptqqqdt ď ˆT 0 e ´λt p 1 2λ |: γptq| 2 `F pγptq, 9 γptq, m ηλ ptqqqdt `κ.

On the other hand, by the regularity of F in (33) and the bound on M 2,v pm ηλ ptqq in (34), we have, for |px, vq| ď ε and ε P p0, 1q, ˆT 0 e ´λt F pγ 1 ptq `x ´x0 , 9 γ 1 ptq `v ´v0 , m ηλ ptqqdt ď ˆT 0 e ´λt F pγ 1 ptq, 9 γ 1 ptq, m ηλ ptqqdt `Cpγ 1 , λqε.

Plugging the inequalities above into (36) gives

ηλ pE ε q ´ˆT 0 e ´λt p 1 2λ |: γ 0 ptq| 2 `F pγ 0 ptq, 9 γ 0 ptq, m ηλ ptqqqdt `κď p ˆR2d mε pdx, dv, 0qq ´ˆT 0 e ´λt p 1 2λ |: γ 1 ptq| 2 `F pγ 1 ptq, 9 γ 1 ptq, m ηλ ptqqqdt `Cpγ 1 , λqε ¯.
As ηλ pE ε q " p ´R2d mε pdx, dv, 0qq, we can divide the inequality above by this quantity (which is positive since γ 0 is in the support of ηλ ) and then let ε Ñ 0, κ Ñ 0 to obtain ˆT 0 e ´λt p 1 2λ |: γ 0 ptq| 2 `F pγ 0 ptq, 9 γ 0 ptq, m ηλ ptqqqdt ď ˆT 0 e ´λt p 1 2λ |: γ 1 ptq| 2 `F pγ 1 ptq, 9 γ 1 ptq, m ηλ ptqqqdt, which gives [START_REF] Topaz | A nonlocal continuum model for biological aggregation[END_REF].

From now on we fix ηλ a minimizer of J λ under the constraint ẽ0 7η λ " m 0 and set

u λ px, v, sq " inf γPH 2 ,pγpsq, 9
γpsqq"px,vq ˆT s e ´λpt´sq p 1 2λ |: γptq| 2 `F pγptq, 9 γptq, m ηλ ptqqqdt.

We now note that this value function is bounded:

Lemma 2.3. We have J λ pη λ q ď 2C 0 λ ´1M 2,v pm 0 q, (38) 
and, for any 0 ď s ď t ď T , M 2,v pm ηλ ptqq " ˆR2d |v| 2 m ηλ pdx, dv, tq ď 2p1 `4C 0 λ ´1e λpt´sq qM 2,v pm ηλ psqq (39) and 0 ď u λ px, v, sq ď Cλ ´1p1 `|v| 2 `M2,v pm ηλ psqqq.

Remark 2.2. We use here the fact that we work in a finite horizon problem to obtain the last inequality from (39): see the end of the proof.

Proof. The key point of the proof consists in refining the estimate (34) obtained in the proof of Lemma 2.1. For this we need to introduce a few notations. Given s P r0, T q, let Γ s " C 1 prs, T s, R d q and, for η P PpΓ s q, J λ,s pηq " ˆΓs ˆT s e ´λpt´sq 1 2λ |: γptq| 2 dtηpdγq `ˆT s e ´λpt´sq Fpm η ptqqdt, By dynamic programming principle (see Lemma 2.4 below), the restriction ηλ,s of ηλ defined by ˆΓs φpγqη λ,s pdγq " ˆΓ φpγ | rs,T s qη λ pdγq @φ P C 0 b pΓ s q, is a minimizer of η Ñ J λ,s pηq under the constraint ẽs 7η " ẽs 7η λ . Defining η P PpΓ s q by ˆΓs φpγqηpdγq " ˆR2d φpt Ñ x `tvqm ηλ pdx, dv, sq @φ P C 0 b pΓ s q, we obtain J λ,s pη λ,s q ď J λ pηq "

ˆΓ

ˆT s e ´λpt´sq Fpm η ptqqdt, where, as in the proof of Lemma 2.1, for any t ě s,

Fpm η ptqq ď C 0 ˆR2d |v ´v˚| 2 m η px, v, tqm η px ˚, v ˚, tq ď 2C 0 M 2,v pm ηλ psqq.
This shows that J λ,s pη λ,s q ď 2λ ´1C 0 M |v| 2 m ηλ pdx, dv, sq `4e λpt´sq J λ,s pη λ,s q ď 2p1 `4C 0 λ ´1e λpt´sq qM 2,v pm ηλ psqq.

This proves (39). Finally, using γptq " x `pt ´sqv as a test function for u λ px, v, sq, we have:

u λ px, v, sq ď ˆT s e ´λpt´sq F px `pt ´sqv, v, m ηλ ptqqdt ď ˆT s e ´λpt´sq C 0 p1 `|v| 2 `M2,v pm ηλ ptqqqdt,
which gives the result thanks to (39). Note that if we were working with an infinite horizon problem, the right-hand side of the inequality above could be unbounded.

Lemma 2.4. Under the notation of the proof of Lemma 2.3 and for any s P r0, T q, ηλ,s is a minimizer of η Ñ J λ,s pηq under the constraint ẽs 7η " ẽs 7η λ .

Proof. Let us set, for m P PpR 2d q and s P r0, T q, V λ pm, sq " inftJ λ,s pηq, η P PpΓ s q, ẽs 7η " mu.

We claim that In order to define the concatenation η 1 ^η2 , we disintegrate η 1 (respectively η 2 ) with respect to the measure m. We have

V λ pm 0 , 0q " inf ηPPpΓq,
η 1 pdγq " ˆR2d η 1,x,v pdγqmpdx, dvq presp. η 2 pdγq " ˆR2d η 2,x,v pdγqmpdx, dvqq,
where for m´a.e. px, vq and for pη 1,x,v `η2,x,v q´a.e. γ, one has pγpsq, 9 γpsqq " px, vq. We then define η 1 ^η2 P PpΓq by ˆΓ φpγqpη 1 ^η2 qpdγq " ˆR2d ˆΓˆΓs φpγ 1 ^γ2 qη |: γ 2 pτ q| 2 η 2 pdγ 2 q `Fpm η2 pτ qqqdτ.

The rest of the proof of (41) follows then the usual arguments of dynamic programming.

As u λ is the value function of an optimal control problem with smooth (in space) coefficients, it is locally Lipschitz continuous. We now evaluate its derivative with respect to v: Lemma 2.5. For any ε ą 0, λ ě ε ´1, we have

|D v u λ px, v, sq| ď C 1 pλ ´1{2 u 1{2 λ px, v, sq `εu λ px, v, sqq
for a.e. px, v, sq P R 2d ˆr0, T ´εs, where C 1 " C 0 `4.

Proof. Let ε ą 0, px, v, sq be a point of differentiability of u λ with s P r0, T ´εs. Let z ε : r0, `8q Ñ R be defined by z ε ptq " t ´2t 2 ε `t3 ε 2 on r0, εs and z ε ptq " 0 on rε, `8q. Then z ε p0q " z ε pεq " 9 z ε pεq " 0, 9 z ε p0q " 1 and z ε P H 2 pr0, `8qq. Therefore, if γ is optimal for u λ px, v, sq, we have, for any h P R d and using t Ñ γptq `zε pt ´sqh as a competitor in v λ px, v `h, sq: 

u λ px, v `h,
|D v u λ px, v, sq| ď ˆs`ε s e ´λpt´sq ´1 λ | : γptq| |: z ε pt ´sq| `|D x F | |z ε pt ´sq| `|D v F | | 9 z ε pt ´sq| ¯dt,
where, from now on, F , D x F and D v F have for argument pγptq, 9 γptq, m ηλ ptqq. Recalling (33) and the expression of z ε we get

|D v u λ px, v, sq| ď λ ´1p ˆs`ε s e ´λpt´sq | : γptq| 2 dtq 1{2 p ˆs`ε s e ´λpt´sq |: z ε pt ´sq| 2 dtq 1{2 `C0 ε ˆs`ε s e ´λpt´sq F dt `C0 ˆs`ε s e ´λpt´sq F 1{2 dt ď 1 λ ˆ16 ε 2 1 ´e´λε λ ˙1{2 u 1{2 λ px, v, sq `C0 εu λ px, v, sq `C0 λ ´1{2 u 1{2 λ px, v, sq.
So, if λ ě ε ´1, we obtain

|D v u λ px, v, sq| ď pC 0 `4qλ ´1{2 u 1{2 λ px, v, sq `C0 εu λ px, v, sq.
Lemma 2.6. Let γ be optimal for u λ px, v, 0q. Then we have, for any t P r0, T ´εs,

| : γptq| ď 2C 1 ´λ1{2 u 1{2 λ pγptq, 9 γptq, tq `ελu λ pγptq, 9 γptq, tq ¯,
where C 1 is the constant in Lemma 2.5.

Remark 2.3. In fact we expect that : γptq " ´λD v u λ pγptq, 9 γptq, tq for any t P p0, T s, which would imply the lemma (without the "2" in the right-hand side) thanks to Lemma 2.5. This equality is known to hold in several frameworks [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF][START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF], but we are not aware of a reference for our precise setting. The estimate in Lemma 2.6, much simpler to prove, suffices however for our purpose.

Proof. As γ is a minimizer of a calculus of variation problem with smooth coefficients and with quadratic growth, it is known that γ satisfies the Euler-Lagrange equation Recalling that pγ h ptq, 9 γ h ptqq " pγptq, 9 γptqq gives the result.

Lemma 2.7. There exists ε 0 ą 0 and a constant C ą 0 such that, for any ε P p0, ε 0 s, any λ ě ε ´1_1 and any t P r0, T ´εs, the support of m ηλ ptq is contained in B C and } : γ} L 8 pr0,T ´εsq ď C for ηλ ´a.e. γ.

In particular, pη λ q is tight and the family pm ηλ ptqq is relatively compact in C 0 pr0, T s, P 2 pR 2d qq.

Proof. We have, by Lemmata 2.3 and 2.6, for any ε ą 0 and λ ě ε ´1, and for ηλ ´a.e. γ and a.e. t P r0, T ´εs,

| : γptq| ď 2C 1 pλ 1{2 u 1{2 λ pγptq, 9 γptq, tq `λεu λ pγptq, 9 γptq, tqq ď Cp1 `| 9 γptq| `M 1{2 2,v pm ηλ ptqqq `Cεp1 `| 9 γptq| 2 `M2,v pm ηλ ptqqq. (43) 
Let us set R λ ptq " inftr ą 0, Sptpm ηλ ptqq Ă R d ˆBr u.

We note that R λ is upper semi-continuous. We now show that R λ is finite on a maximal time interval r0, τ λ q, with τ λ ą 0, with either τ λ " T ´ε or lim tÑτ λ R λ ptq " `8. For the proof of this fact, λ is fixed and all constants depend on λ unless specified otherwise. By (39) and (43), we have, for 0 ď s ď t ď T ´ε and ηλ ´a.e. So one can find ε 0 , σ ą 0 depending only on K such that, for all ε P p0, ε 0 s, | 9 γptq| ď φptq ď R λ psq `1 , @t P rs, s `σs, for any γ P H 2 satisfying (44) and | 9 γpsq| ď R λ psq. As, by definition of R λ , m ηλ psq has a support contained in R d ˆBR λ psq , this shows that m ηλ ptq has a support contained in R d ˆBR λ psq`1 for any t P rt, t `σs. In particular, as m 0 has a compact support, R λ p0q is finite and thus R λ ptq is finite at least on a small time interval r0, σs for some σ ą 0. We denote by r0, τ λ q the maximal time interval on which R λ is finite. Let us assume that τ λ ă T ´ε. Let t n Ñ τ λ . If pR λ pt n qq remains bounded by a constant M , then by the above argument R λ is bounded by M `1 on rτ λ , τ λ `σs for some σ ą 0 (depending on M ), which contradicts the definition of τ λ . Hence lim tÑτ λ R λ ptq " `8. So we have proved that R λ is finite on a maximal time interval r0, τ λ q, with τ λ ą 0, with either τ λ " T ´ε or lim tÑτ λ R λ ptq " `8.

By definition of m ηλ ptq, for any δ ą 0 and t P r0, τ λ q there exists γ P Γ in the support of ηλ such that | 9 γptq| ě R λ ptq ´δ. Thus As δ is arbitrary, this proves that R λ ptq ď R 0 `C ˆt 0 p1 `Rλ psq `εR 2 λ psqqds @t P r0, τ λ q.

Arguing as above we get R λ ptq ď Φ ´1 ε ´Φε pR 0 q `Ct ¯.

For all ε ą 0 small enough (but independent of λ) and λ ě ε ´1 _ 1, we have therefore that R λ is bounded by a constant C independent of λ on r0, τ λ q. Thus τ λ " T ´ε and R λ is bounded by C on r0, T ´εs. This estimate gives immediately the bound on | 9 γ| and therefore, by (43), the bound on | : γ| for ηλ ´a.e. γ. As m 0 has a compact support, this also implies that the m λ ptq have a support contained in a ball B C , where C is independent of λ and t. In addition the sequence ηλ is tight.

Finally, we have, for any 0 ď s ď t ď T ´ε, As the pm ηλ ptqq have a support which is uniformly bounded, this shows that it is a relatively compact sequence in C 0 pr0, T s, P 2 pR d qq.

We are now ready to prove the main result:

Proof of Theorem 2.2. In view of Lemma 2.7, pη λ q is tight and we can consider a subsequence pη λn q which converges weakly to some η in PpΓq. Then pm ηλn ptqq converges in C 0 pr0, T s, P 2 pR 2d qq to m " ẽt 7η. Our aim is to prove that m is a measure valued solution to the kinetic equation [START_REF] Piccoli | Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes[END_REF]. For this we identify the lim suppSptpη λn qq. Let us recall that, by Lemma 2.1, for ηλ ´a.e. γλ , γλ minimizes problem [START_REF] Topaz | A nonlocal continuum model for biological aggregation[END_REF] By Lemma 2.7 pγ λ q is relatively compact in Γ, and for any sequence λ n Ñ `8 we can extract a subsequence such that γλn Ñ γ P Γ and m ηλn Ñ m P C 0 pr0, T s, P 2 pR 2d qq. Therefore ˆT 0 ´´9 γptq ¨9 zptq `Dv F pγptq, 9 γptq, mptqq ¨zptq ¯dt " 0, @z P C 8 c pp0, T q, R d q,

  and Proposition 1.4 on the one hand, and by (15) and Proposition 1.3 on the other hand, we have Tr `Dpp HpλDu λ , xqD 2 u λ ˘ď C and Tr pD px HpλDu λ , xqq ď C,

Dp

  HpD x F px, mqq " ˆRd Dkpx ´yqmpdyq ´vpxq, and the limit equation (9) becomes $ & % B t m `div pmpv ´Qrmsqq " 0 in R d ˆp0, `8q, Qrmspx, tq " ˆRd Dkpx ´yqmpy, tqdy, mp0q " m 0 , in R d .

R λ ptq ´δ ď | 9 γptq|

 9 As pγptq, 9γptqq belongs to the support of m ηλ ptq for any t, we get by (43) and the definition of R λ : R λ ptq ´δ ď | 9

d 1

 1 pm ηλ psq, m ηλ ptqq " ˆΓp|γptq ´γpsq| 2 `| 9 γptq ´9 γpsq| 2 q 1{2 ηλ pdγq ď Cpt ´sq 1{2 ˆΓ´ˆt s | : γpτ q| 2 dτ¯1{2ηλ pdγq ď Cpt ´sq 1{2 .

  Since F is semiconcave in x (13), the right hand side D 2 ξξ F is bounded above by C 0 . The uniform bound on λDu λ proved in Proposition 1.3 and the assumption (15) imply 2D p,ξ HpλDu λ , xq ¨Dw ě ´2C 0 p1 `λ|Du λ |q|Du λ | ě ´C1 . ´1D ξξ HpλDu λ , xq ě ´C0 p1 `λ|Du λ |q ě ´C2 . Since H is convex in p, D 2 pp H ě 0 and we infer that z satisfies ´Bt z ´νλ ∆z `λz `Dp HpλDu λ , xq ¨Dz ď C,

	The same bound and the assumption (17) imply
	λ

Given a direction ξ P R d with |ξ| ď 1, let w :" Du λ ¨ξ and z :" D 2 u λ ξ ¨ξ. Then ´Bt z ´νλ ∆z `λz `Dp HpλDu λ , xq ¨Dz `2D p,ξ HpλDu λ , xq ¨Dw `λD pp HpλDu λ , xqDw ¨Dw `λ´1 D ξξ HpλDu λ , xq " D 2 ξξ F px, m λ ptqq.

  For any λ ą 0, there exists at least a minimizer ηλ of J λ under the constraint ẽ0 7η λ " m 0 . It is a weak solution of the MFG problem of acceleration, in the sense that, for ηλ ´a.e. γ P Γ,

				0	e ´λt 1 2λ	|: γptq| 2 dtηpdγq	0 `ˆT	e ´λt Fpm η ptqqdt,
	where m η ptq " ẽt 7η (with ẽt : Γ Ñ R 2d , ẽt pγq " pγptq, 9 γptqq) and
	Fpmq "	1 2 ˆR4d	kpx ´x˚, v ´v˚q mpdx, dvqmpdx ˚, dv ˚q	@m P PpR 2d q.
	Lemma 2.1. ˆT 0 e ´λt p	1 2λ " γPH 2 , pγp0q, 9 | : γptq| 2 `F pγptq, 9 γptq, m ηλ ptqqqdt inf γp0qq"pγp0q, 9 γp0qq ˆT 0 e ´λt p	1 2λ	|: γptq| 2 `F pγptq, 9 γptq, m ηλ ptqqqdt.	(30)

  2,v pm ηλ psqq (40) and inequality (38) holds if we choose s " 0.Next we note that M 2,v pm ηλ ptqq is finite: we have, for ηλ ´a.e. γ, and any 0 ď s ď t ď T ,

		| 9 γptq ´9 γpsq| ď	´ˆt	e ´λpτ ´sq | : γpτ q| 2 dτ	¯1{2 ´ˆt	e λpτ ´sq dτ	¯1{2	,
				s				s
	so that (by the elementary inequality a 2 ´2b 2 ď 2|a ´b| 2 ),
		| 9 γptq| 2 ď 2| 9 γpsq| 2 `2λ ´1e λpt´sq	´ˆt	e ´λpτ ´sq | : γpτ q| 2 dτ	¯.
						s
	Integrating with respect to ηλ,s gives, using (40) in the last inequality,
	ˆR2d	|v| 2 m ηλ pdx, dv, tq " ˆΓ | 9 γptq| 2 ηλ pdγq "	ˆΓs	| 9 γptq| 2 ηλ,s pdγq
		ď 2	ˆΓs ˆR2d | 9 γpsq| 2 ηλ,s pdγq `2λ ´1e λpt´sq	ˆΓs ˆT s	e ´λpτ ´sq | : γpτ q| 2 dτ ηλ,s pdγq
		ď 2					

  γpτ q| 2 ηpdγq `Fpm η pτ qqqdτ `e´λs V λ pm η psq, sq γpτ q| 2 ηλ pdγq `Fpm ηλ pτ qqqdτ `e´λs V λ pm ηλ psq, sq, (41) which proves the lemma. The proof of (41) is a straightforward application of the usual techniques of dynamic programming, the only point being to be able to concatenate at time s two measures η 1 P PpΓq and η 2 P PpΓ s q such that m :" ẽs 7η 1 " ẽs 7η 2 . For this, let us denote by γ 1 ^γ2 (for γ 1 P Γ and γ 2 P Γ s such that pγ 1 psq, 9 γ 1 psqq " pγ 2 psq, 9 γ 2 psqq) the map in Γ such that γ 1 ^γ2 ptq " " γ 1 ptq if t P r0, ss, γ 2 ptq if t P rs, T s.

	ẽ07η"m0 ˆs 0 |: " e ´λτ p ˆΓ 1 2λ ˆs 0 e ´λτ p ˆΓ 1 2λ |:

  1,x,v pdγ 1 qη 2,x,v pdγ 2 qmpdx, dvq @φ P C 0 b pΓq.By construction we have m η1^η2 ptq " m η1 ptq if t P r0, ss, m η1^η2 ptq " m η2 ptq if t P rs, T s and

	ˆT 0	e ´λτ p " ˆs 0 ˆΓ 1 2λ e ´λτ p |: γpτ q| 2 pη 1 ^η2 qpdγq `Fpm η1^η2 pτ qqqdτ ˆΓ 1 |: γ 1 pτ q| 2 η 1 pdγ 1 q `Fpm η1 pτ qqqdτ 2λ `e´λs ˆT s ˆΓs 1 e ´λpτ ´sq p 2λ

  F ¨pz ε pt ´sqhq `Dv F ¨p 9 z ε pt ´sqhqqdτ ¯dt where for simplicity we have omitted the argument pγptq `τ z ε pt ´sqh, 9 γptq `τ 9 z ε pt śqh, m ηλ ptqqq after D x F and D v F . Dividing by |h| and letting h Ñ 0 shows that

				sq			
	ď	ˆT s	e ´λpt´sq p	1 2λ	| : γptq `: z ε pt ´sqh| 2 `F pγptq `zε pt ´sqh, 9 γptq `9 z ε pt ´sqh, m ηλ ptqqqdt
	ď u λ px, vq	`ˆs`ε s	e ´λpt´sq	´1 λ	: γptq ¨p: z ε pt ´sqhq	`1 2λ	|: z ε pt ´sq| 2 |h| 2
					`ˆ1	pD x
						0	

  F pγ λ ptq, 9 γλ ptq, m ηλ ptqq ˘´e ´λt D x F pγ λ ptq, 9 γλ ptq, m ηλ ptqq.Therefore γ is actually of class H 4 and, in particular, C 3 .For h ą 0 small, let γ h psq " γptq `ps ´tq 9 γptq. By dynamic programming principle and the optimality of γ we have: ´λps´tq F pγ h psq, 9 γ h psq, m ηλ psqqqds `e´λh u λ pγ h pt `hq, 9 γ h pt `hq, t `hq.Note that, by C 3 regularity of γ, |γpt `hq ´γh pt `hq| ď C γ h 2 (where, here and below, C γ depends here on γ and on λ). So, as u λ is locally Lipschitz continuous and 9 γ h pt `hq " 9 γptq, we get u λ pγ h pt `hq, 9 γ h pt `hq, t `hq ´uλ pγpt `hq, 9 γpt `hq, t `hq ď u λ pγpt `hq, 9 γptq, t `hq ´uλ pγpt `hq, 9 γpt `hq, t `hq `Cγ h 2 . Still by C 3 regularity we also have | 9 γpt `hq ´9 γptq ´: γptqh| ď C γ h 2 . Now the bound on D v u λ of Lemma 2.5 yields (setting px, vq " pγptq, 9 γptqq)

	d 2 dt 2 pλ ´1e ´λt : γλ ptqq " γptq, tq " ˆt`h t e ´λps´tq p ď ˆt`h `e´λt D v u λ pγptq, 9 d dt 1 2λ | : γpsq| 2 `F pγpsq, 9 γpsq, m ηλ psqqqds `e´λh u λ pγpt `hq, 9 γpt `hq, t `hq (42)

t e u λ pγ h pt `hq, 9 γ h pt `hq, t `hq ´uλ pγpt `hq, 9 γpt `hq, t `hq ď C 1 pλ ´1{2 u 1{2 λ px, v, tq `εu λ px, v, tqq| : γptq|h `Cγ h 2 . Plugging this inequality into (42) gives, after dividing by h and letting h Ñ 0, 1 2λ | : γptq| 2 `F pγptq, 9 γptq, m ηλ ptqq ď F pγ h ptq, 9 γ h ptq, m ηλ ptqq `C1 pλ ´1{2 u 1{2 λ px, v, tq `εu λ px, v, tqq| : γptq|.

  Then, as M 2,v pm ηλ psqq ď CR 2 λ psq for some constant C depending on dimension only, So, if R λ psq is finite for some s and λ ě 1, ε ď 1, one can find K depending only on R λ psq and the constant C in (44) such that

	γ, 1{2 2,v pm ηλ psqqqq γptq| `λ´1{2 e λpt´sq{2 R λ psqqq γptq| `λ´1{2 e λpt´sq{2 M γptq| ď Cp1 `| 9 | : `Cεp1 `| 9 `Cεp1 `| 9 γptq| 2 `λ´1 e λpt´sq R 2 λ psqq. | 9 γptq| ď | 9 γpsq| `K ˆt 0 p1 `| 9 γpτ q| `ε| 9 γpτ q| 2 qdτ. Then we can compare | 9 γptq| with the solution of the ODE 9 φ " Kp1 `φ `εφ 2 q, φpsq " | 9 γpsq|, which is given by φptq " Φ ´1 ε ´Φε p| 9 γpsq|q `Kpt ´sq ¯, γptq| | : γptq| ď Cp1 `| 9 where Φ ε prq " ˆr 0 1 1 `τ `ετ 2 dτ.	(44)

2 

`λ´1 e λpt´sq M 2,v pm ηλ psqqq.

  . Hence by the Euler equation we have that γλ is of class H 4 and for a.e. t P r0, T s, d 2 dt 2 pλ ´1e ´λt : γλ ptqq " d dt `e´λt D v F pγ λ ptq, 9 γλ ptq, m ηλ ptqq ˘´e ´λt D x F pγ λ ptq, 9 γλ ptq, m ηλ ptqq.We integrate this equation by parts against a test function z P C 8 c pp0, T q, R d q to get ˆT 0 ´´9 γλ ptq ¨9 zptq `Dv F pγ λ ptq, 9 γλ ptq, m ηλ ptqq ¨zptq ¯dt zptq `2 9 γλ ptq ¨: zptq ´Dv F pγ λ ptq, 9 γλ ptq, m ηλ ptqq ¨9 zptq ´Dx F pγ λ ptq, 9 γλ ptq, m ηλ ptqq ¨zptq ¯dt.

	´1´´λ ´1 D " λ γpivq λ ptq `2; γλ ptq `d dt ´1 ˆT 0 ´λ´1 9 γλ ptq ¨;

We rewrite this equality as

: γλ ptq `Dv F pγ λ ptq, 9

γλ ptq, m ηλ ptqq " λ v F pγ λ ptq, 9 γλ ptq, m ηλ ptqq ´Dx F pγ λ ptq, 9 γλ ptq, m ηλ ptqq ¯.

which means that it is a solution to : γptq " ´Dv F pγptq, 9 γptq, mptqq.

In other words, pγptq, 9 γptqq " P x,v ptq, where P is defined by (31) and px, vq " pγp0q, 9 γp0qq. By Lemma 2.7 we can also extract a further subsequence such that ηλn á η P PpΓq. As the support of η consists of solutions to (31) and ẽ0 7η " m 0 , we have η "

Hence m is the measure-valued solution to [START_REF] Piccoli | Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes[END_REF]. Following [START_REF] Canizo | A well-posedness theory in measures for some kinetic models of collective motion[END_REF] this solution is unique. We have proved therefore that any converging subsequence of the relatively compact familiy pm ηλ q has for limit the unique solution m to ( 27): the entire sequence converges.

Remark 2.4. The Cucker-Smale model is usually associated to the collective animal behaviour, such as flocking of birds or swarming of insects. However, similar models where the acceleration of the agents is prescribed have been proposed for describing the dynamics of crowds of pedestrians, and some of them fit in our results. We refer to the book [START_REF] Cristiani | Multiscale modeling of pedestrian dynamics[END_REF], in particular the section on mesoscopic or kinetic models, and to the recent survey paper [START_REF] Piccoli | Measure-theoretic models for crowd dynamics in "Crowd Dynamics Volume 1 -Theory, Models, and Safety Problems[END_REF], where they are called social forces models.