José Daniel Betancourt

François Bachoc

Thierry Klein

Déborah Idier

Jérémy Rohmer

Yves Deville

Brgm Yves

Deville Alpestat

funGp: An R Package for Gaussian Process Regression with Scalar and Functional Inputs

Keywords: Gaussian process, metamodeling, functional inputs, computer experiments, R. funGp: Gaussian Process Regression with Scalar and Functional Inputs

published or not. The documents may come L'archive ouverte pluridisciplinaire

Introduction

Gaussian process (GP) models [START_REF] Sacks | Design and Analysis of Computer Experiments[END_REF][START_REF] Oakley | Bayesian Inference for the Uncertainty Distribution of Computer Model Outputs[END_REF] are one of the most popular regression methods thanks to the great flexibility they offer in the representation of complex non-linear input-output relationships, their high prediction power, interpretability, and ability to provide both an interpolation of the data and an uncertainty quantification in the unexplored regions, e.g., [START_REF] Marrel | An Efficient Methodology for Modeling Complex Computer codes with Gaussian Processes[END_REF]. The GP model was first developed in spatial statistics under the name of kriging [START_REF] Cressie | The Origins of Kriging[END_REF]) and rapidly gained attention in the machine learning community where it was classified as a kernel machine [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF]. Over the years, the GP model has become popular in a wide range of applications such as nuclear safety [START_REF] Bachoc | Improvement of Code Behavior in a Design of Experiments by Metamodeling[END_REF], wind power generation [START_REF] Mori | Application of Gaussian Process to Wind Speed Forecasting for Wind Power Generation[END_REF], vehicle design and navigation [START_REF] Chen | Gaussian-Process-Based Real-Time Ground Segmentation for Autonomous Land Vehicles[END_REF], modeling and prediction of natural hazards [START_REF] Rohmer | A Meta-Modelling Strategy to Identify the Critical Offshore Conditions for Coastal Flooding[END_REF][START_REF] Liu | Dimension Reduction for Gaussian Process Emulation: An Application to the Influence of Bathymetry on Tsunami Heights[END_REF], among several others.

Here, a special focus will be given to the use of GP models as metamodeling techniques in the field of design and analysis of computer experiments, where the regression models are used as surrogates of expensive-to-run numerical models (see e.g., [START_REF] Yuan | Ship Energy Consumption Prediction with Gaussian Process Metamodel[END_REF] and [START_REF] Iooss | Advanced Methodology for Uncertainty Propagation in Computer Experiments with Large Number of Inputs[END_REF]). Indeed, in recent years, the use of computer codes for the study of complex systems has become a widespread practice to simulate systems at a lower resource expense owing to lack of observations, in particular regarding the input-output conditions for some natural processes (e.g., volcanic activity, earthquakes, flooding, etc.). Despite the increasing computer power over the last years, computer codes for environmental and industrial applications are often too time-consuming for direct application (e.g., for uncertainty quantification or fast prediction within an early warning system). A possible option to overcome this computational burden is to set up quick-to-evaluate mathematical emulators of those numerical codes [START_REF] Forrester | Engineering Design via Surrogate Modelling: A Practical Guide[END_REF][START_REF] Simpson | Metamodels for Computer-Based Engineering Design: Survey and Recommendations[END_REF], based on a limited collection of model runs within the generic framework of design of computer experiments [START_REF] Santner | The Design and Analysis of Computer Experiments[END_REF]; such emulators being often called surrogate models or metamodels.

As shown in [START_REF] Østergård | A Comparison of six Metamodeling Techniques Applied to Building Performance Simulations[END_REF] through comparison in 13 different metamodeling instances, GP metamodels are often able to outperform other popular methods, such as neural networks [START_REF] Fonseca | Simulation Metamodeling Through Artificial Neural Networks[END_REF], multivariate adaptive regression splines [START_REF] Friedman | Multivariate Adaptive Regression Splines[END_REF] and support vector regression [START_REF] Drucker | Support Vector Regression Machines[END_REF], in terms of prediction accuracy.

In regression, a large amount of research works have addressed the case of scalar-valued inputs and outputs, e.g., [START_REF] Forrester | Engineering Design via Surrogate Modelling: A Practical Guide[END_REF][START_REF] Simpson | Metamodels for Computer-Based Engineering Design: Survey and Recommendations[END_REF][START_REF] Santner | The Design and Analysis of Computer Experiments[END_REF]. However, industrial and environmental applications often deal with complex inputs or outputs, which can be spatial, temporal, spatio-temporal i.e., functional in a more general way. As a motivating real case example, the coastal flood early warning system (FEWS) developed at Gâvres, France [START_REF] Idier | A User-Oriented Local Coastal Flooding Early Warning System Using Metamodelling Techniques[END_REF] predicts scalar output indicators of flooding (like total flooded area, maximum volume of water entering the territory, maximum water depth at a given location, etc.), based on inputs which are multiple scalar and time-varying maritime conditions (e.g., mean sea level, tide, atmospheric storm surge, and wave conditions), i.e., multiple time series (that are here sampled regularly over time). This FEWS is based on an hydrodynamic numerical model, but, to reach computation times compatible with short term forecast, metamodels had to be developed taking into account these inputs and providing the listed outputs.

Although GPs for scalar-valued inputs and outputs have been studied for almost 30 years, solving the problem of metamodeling in the functional framework (as described for the FEWS example) is still a much less developed research area [START_REF] Muehlenstaedt | Computer Experiments with Functional Inputs and Scalar Outputs by a Norm-Based Approach[END_REF]. In principle one could use any GP implementation to fit a model with functional inputs by representing each function as a vector, and then using each element of it as an individual scalar input of the model. However, this might lead to challenging and long hyperparameter optimization processes due to the large number of resulting decision variables. Furthermore, this approach disregards the functional nature of the inputs. To fill these gaps, this paper presents the package funGp in R programming environment [START_REF] Core | R: A Language and Environment for Statistical Computing[END_REF]. It provides the construction of GP regression models of a single scalar output, dealing at the same time with multiple functional and scalar inputs by restricting on the situations where the functional inputs are regularly sampled time series (time series are considered for convenience of exposition; the funGp package can apply to other types of one-dimensional inputs as well). The funGp package offers dimension reduction (DR) methods which allow the projection of functional inputs onto a space of lower dimension while preserving the main statistical or geometric properties of each variable [START_REF] Ramsay | Applied Functional Data Analysis: Methods and Case Studies[END_REF][START_REF] Nanty | Sampling, Metamodeling, and Sensitivity Analysis of Numerical Simulators with Functional Stochastic Inputs[END_REF]. Then, funGp provides the standard functionalities of GP models such as prediction, computation of confidence intervals, and conditional simulation. The second main contribution of funGp is an automatic procedure for the selection of the optimal structural parameters: (i) the state of each input (active or inactive), (ii) the DR method (e.g., PCA, B-splines), (iii) projection dimension and (iv) distance function used for each functional input, and (v) the type of kernel for the model (e.g., Gaussian, Matérn 5/2).

Table 1 provides a comparison between the functionalities of 21 classical open-source packages that either implement GP regression or support scalar-on-function regression with the GP or other types of models. This list includes the benchmark packages listed in the state of the art in functional data analysis in R presented by Febrero-Bande and Oviedo de la Fuente (2012) and later updated in the website https://rpubs.com/moviedo/fda_usc_introduction, and also in the state of the art in software for GP regression presented in [START_REF] Roustant | DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization[END_REF]. To our best knowledge, and as we can see from our classification, funGp is the first open-source software that offers GP regression with scalar and functional inputs together with an automatic optimization method to set up the structural parameters of the model.

The remainder of this paper is structured as follows. In Section 2 we provide the necessary statistical background. Then, in Section 3 we explain the four fundamental functionalities of funGp: creation and diagnostic of GP regression models (Section 3.1), prediction (Section 3.2), simulation (Section 3.3) and model updating (Section 3.4). In Section 4 we show how the structural parameters of a funGp model can be set up manually. Then, in Section 5 we explain how to delegate the automatic structural configuration of the model to funGp. In Section 6 we show how the procedures of model construction and structural configuration can be sped up by means of parallelized implementations available in funGp. Section 7 applies funGp functionalities to a real case in the domain of marine flooding. Finally, Section 8 concludes. A compact overview of the package including a list of its main programming functions is provided in Appendix A.

Assisted GPML [1] MATLAB ✓ GPstuff [2] MATLAB ✓ GPy [3] Python ✓ Scikit-learn [4] Python ✓ ✓ ✓ 1 GPflow [5] Python ✓ NPFDA [6] R ✓ ✓ ✓ 2 splinetree [7] R ✓ RRegrs [8] R ✓ ✓ 3 fda [9] R ✓ ✓ fdaMixed [10] R ✓ fda.usc [11] R ✓ ✓ ✓ 4 fdapace [12] R ✓ ✓ ✓ 5 goffda [13] R ✓ ✓ refund [14] R ✓ ✓ ✓ 5 FDboost [15] R ✓ ✓ flars [16] R ✓ ✓ ✓ 4 growfunctions [17] R ✓ ✓ RobustGaSP [18] R ✓ ✓ 4 DiceKriging [19] R ✓ GPFDA [20] R ✓ ✓ kergp [21] R ✓ ✓ * funGp [22] R ✓ ✓ ✓

Statistical background

Structure of the regression problem

The funGp package considers the approximation of a real-valued function F sys by means of a GP regression model. Throughout the article, we discriminate between three possible settings regarding the inputs of F sys :

(a) When the function is x → F sys (x), with x = x (1) , . . . , x (ds) ⊤ and x (k) ∈ R for k = 1, . . . , d s , we say that the system has d s scalar inputs, we call x (k) for k = 1, . . . , d s a scalar input, and we call x a vector of scalar inputs. For simplicity, we may also refer to x as scalar inputs.

(b) When the function is f → F sys (f), with f = f (1) , . . . , f (d f) ⊤ and f (k) : T k ⊂ R → R
for k = 1, . . . , d f , we say that the system has d f functional inputs, we call f (k) for k = 1, . . . , d f a functional input, and we call f a vector of functional inputs. For simplicity, we may also refer to f as functional inputs. We also denote by F the set of all

f (1) , . . . , f (d f) ⊤ with f (k) : T k ⊂ R → R for k = 1, . . . , d f .
(c) When the function is (x, f) → F sys (x, f), we say that the system has d s scalar inputs and d f functional inputs, and we use the same vocabulary as before for x and f . In addition, we may refer to this setting as the hybrid-input case.

Gaussian process regression

Let us consider in the rest of Section 2 the hybrid-input case, of which the scalar-and functional-input ones are special cases. The goal is to build an approximate model for F sys using a learning set

D = {(x 1 , f 1 , F sys (x 1 , f 1)), . . . , (x n , f n , F sys (x n , f n))}.
The GP model treats the fixed function F sys as a realization of a Gaussian (random) process ξ, specified by its mean and covariance functions µ and C. Here ξ is assumed to be centered (µ = 0) and it is thus specified by its covariance function C:

ξ(•) ∼ GP(0, C(•, •)), (1)
where the kernel C((x, f), (x, f)) = COV(ξ(x, f), ξ(x, f)) evaluates the covariance for any pair of input vectors (x, f), (x, f) ∈ R ds × F . For instance, if (x, f) = (x, f), then C((x, f), (x, f)) is large and corresponds to perfect correlation. Otherwise, the covariance tends to zero as the distance between the two inputs increases.

One of the main benefits of GP models lies in the tractability of conditional distributions, which constitute the core mechanism to perform prediction and simulation. In the GP model, predicting the value of F sys at a set of unobserved input points amounts to conditioning ξ on the learning set D.

Conditional on ξ(x 1 , f 1) = F sys (x 1 , f 1), . . . , ξ(x n , f n) = F sys (x n , f n), ξ is a GP with conditional mean values at (X * , F *) = (x * 1 , . . . , x * n * , f * 1 , . . . , f * n *) given by the vector C((X * , F *), (X, F)) C((X, F), (X, F)) -1 y (2)
and conditional covariance matrix at the same n * points given by

C((X * , F *), (X * , F *))-C((X * , F *), (X, F)) C((X, F), (X, F)) -1 C((X, F), (X * , F *)). (3)
In the expressions above, y = (F sys (x 1 , f 1), . . . ,

F sys (x n , f n)) ⊤ , C((X, F), (X * , F *))
is the n × n * unconditional covariance matrix between the observed values and the values to be predicted, C((X * , F *), (X, F)) = C((X, F), (X * , F *)) ⊤ , C((X, F), (X, F)) is the n × n unconditional covariance matrix of the observed values and C((X * , F *), (X * , F *)) is the n * × n * unconditional covariance matrix of the values to be predicted. These formulas can be found for instance in [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF].

The covariance function C is determined by the structural parameters listed in Section 1 (the state of each scalar and functional input, the DR method, projection dimension and distance function used for each functional input, and the type of kernel function for the model). For a given choice of these structural parameters, C is decomposed as a variance σ 2 times the tensor product of a correlation function for the scalar inputs and a correlation function for the functional inputs:

C((x, f), (x, f)) = σ 2 R(x-x; θ s) R f -f ; θ f ,
where θ s and θ f are the correlation parameters. For any choice of the structural parameters, the covariance parameters σ 2 , θ s and θ f (a.k.a. hyperparameters) are selected by optimization of the likelihood computed on the learning set. We provide further details on the precise form of the covariance function implemented in funGp later in Section 4. Complementary information on our modeling approach can also be found in [START_REF] Betancourt | Gaussian Process Metamodeling of Functional-Input Code for Coastal Flood Hazard Assessment[END_REF].

Optimization of the structural parameters

As explained above, a core feature of funGp is the possibility to optimize the structural parameters of the regression model to achieve better predictive performance. So far, for GP models, most research has exclusively focused on variable selection, meaning the optimization of the state of the input variables [START_REF] Marrel | An Efficient Methodology for Modeling Complex Computer codes with Gaussian Processes[END_REF][START_REF] Lee | Model Selection Algorithm in Gaussian Process Regression for Computer Experiments[END_REF][START_REF] Salem | Gaussian Process-Based Dimension Reduction for Goal-Oriented Sequential Design[END_REF]. This task is typically performed through sensitivity analysis, which seeks to apportion the variation in the output variable to variations in the input variables [START_REF] Saltelli | Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models[END_REF]. By contrast, funGp treats the structural configuration of the model as a combinatorial optimization task, where each decision variable is linked to one structural parameter and the predictive power of the model is used as the objective function. By now, funGp offers structural optimization based on the well known Ant Colony Optimization (ACO) algorithm [START_REF] Dorigo | Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem[END_REF], which has been recognized as one of the most successful research lines in the area of swarm intelligence [START_REF] Bonabeau | Swarm Intelligence: From Natural to Artificial Systems[END_REF] and is always listed among the preferred metaheuristic optimization techniques [START_REF] Blum | Ant Colony Optimization: Introduction and Recent Trends[END_REF]. We validated the ability of our ACObased algorithm to find high performing model configurations in more than a dozen instances. The results obtained in various of those tests can be found in Chapters 3-5 of [START_REF] Betancourt | Functional-Input Metamodeling: An Application to Coastal Flood Early Warning[END_REF]. We describe the functioning of this algorithm more in depth in Section 5.

Base funGp functionalities

In this section, we start by explaining the four fundamental procedures available in funGp: (i) creation and diagnostic of regression models, (ii) prediction of the output at unobserved input points, (iii) simulation of trajectories from the underlying GP linked to any funGp model, and (iv) update of an existing model. The workflow for each of these four functionalities is illustrated through a follow-along example which considers the following analytic black-box function to regress:

G : [0, 1] 2 × F → R, (x, f) → x (1) + 2x (2) + 4 1 0 tf (1) (t) dt + 1 0 f (2) (t) dt, with x = x (1) , x (2) ⊤ the scalar inputs, f = f (1) , f (2) ⊤
the functional inputs, and F the set of pairs of continuous functions from [0, 1] to R. This function corresponds to the first analytic example in [START_REF] Muehlenstaedt | Computer Experiments with Functional Inputs and Scalar Outputs by a Norm-Based Approach[END_REF], and is accessible in funGp through fgp_BB3(). By construction, function G has the first scalar and second functional input of the same importance, whereas the second scalar input and the first functional input are comparably influential but are more important than the first scalar and the second functional input.

Create a funGp model

Let us start by creating a model. To do so, we must first put the input and output data in a suitable format. The scalar inputs should be provided as a matrix or data.frame. The functional inputs should be provided as a list of matrices, one per functional input. When the data set contains inputs of the form x 1 , f 1 , . . . , x n , f n (see Section 2), the scalar input matrix is n × d s , with line ℓ containing the vector x ℓ = (x

(1) ℓ , . . . , x (ds) ℓ
). The functional input list is of size d f . In this list, the matrix corresponding to the j-th functional input has size n × N (j) and its line ℓ contains the vector (f

(j) ℓ (t (j) 1), . . . , f (j) ℓ (t (j) N (j)
)), where t (j) 1 , . . . , t (j) N (j) ∈ T j are the time instants at which the input function f (j) ℓ is measured. Note that the input functions can thus also be thought of as time series inputs. Note also that the time instants should be equispaced, as integrals (see Section 4.4) related to the j-th functional input are numerically implemented as averages over the N (j) time instants.

The output should be provided as an array or single-column matrix. Here, we will use synthetic data based on the analytic case defined above, which involves two scalar inputs and two functional inputs. To generate the scalar input data, we set up a factorial design over [0, 1] 2 . For the functional inputs, we assume that f (1) is measured at 10 time instants, f (2) at 22, and then we sample all the values of each function randomly from the standard uniform U(0, 1). We use an arbitrary number of 25 training points for this example.

** Hyperparameters done!

It should be noted that, above, the function fgpm() does not take any input of type formula, although it provides a fitted regression model. This is in contrast, for instance, with the creation of linear models with the function lm() in R. The reason for this difference is that linear models are parametric and require the user to pre-specify regression functions that are linearly combined for prediction, for instance monomial functions of the inputs. In contrast, centered GPs provide a non-parametric regression model, where the predictions are fully datadriven and not restricted to combinations of user-specified functions. Note that if non-centered GPs were considered, it would be possible to select the mean functions as linear combinations of pre-specified functions, which could be done with a formula input to the function fgpm(). This would correspond to using universal Kriging equations instead of simple Kriging ones (see for instance [START_REF] Roustant | DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization[END_REF] in Section 2. In this case, the predictions would still be non-parametric, but with a parametric component. This may be a topic of future extension of the funGp package.

The output of fgpm() is an object of class "fgpm" representing the fitted model. The next examples in Section 3 will reuse this model to illustrate other functionalities of the package. A first diagnostic procedure of the model can be made by calling R> plot(m1) which will display a calibration plot based on the leave-one-out (LOO) predictions, as shown in Figure 1. For a design with n tr points, LOO consists in building the model n tr times, each using a different set of n tr -1 points for training and computing the prediction at the ignored point. The plot will also display the LOO cross-validated squared correlation coefficient Q 2 loocv as a measure of the external prediction capability of the model:

Q 2 loocv := 1 - ntr i=1 (y i -ŷi,-i) 2 ntr i=1 (y i -ȳ) 2
, with (y i) i=1,...,ntr the vector of observed output values (y i = F sys (x i , f i) in the hybrid-input case), ȳ the average of that vector and ŷi,-i the LOO prediction of y i . Since the classical LOO procedure might be time-expensive, funGp implements the virtual LOO formulas [START_REF] Dubrule | Cross Validation of Kriging in a Unique Neighborhood[END_REF] that require a single model training.

The main features of the model are printed by means of the summary() method:

R> summary(m1) The field Proj. dim relates to the possibility of performing DR (dimension reduction) on the functional inputs. Recall from the introduction that DR allows the projection of a functional input of dimension q onto a space of lower dimension p while preserving the main statistical or geometric properties of the variable. This process typically leads to p ≪ q, which improves the tractability and processing speed of the model. By default, the fgpm() function sets p = 3 for every functional input. However, the user is allowed to pick custom projection dimensions and also not to project some inputs. The projection method used for each input is indicated under the field Basis; at this point, the implemented options are B-splines and PCA. Other methods might be integrated in the near future. The details on the choice of the projection method and dimension are discussed in Sections 4.2 and 4.3, respectively.

Gaussian Process Model____________________________________ * Scalar inputs: 2 * Functional inputs: 2 Input Orig. dim Proj. dim Basis Distance -- F1 10

Predict using a funGp model

Now let us use our model to make predictions. To do so, we must prepare the input data corresponding to the coordinates at which the output is to be estimated. The inputs should have the same format as used for creating the model with the fgpm() function in Section 3.1. The scalar inputs should be provided as a matrix or data.frame and the functional inputs should be provided as a list of matrices, one per functional input. This time, each row of an input matrix must correspond to a prediction point. For the example, we generate prediction points in a similar way as the training points, i.e., the scalar inputs from a factorial design over [0, 1] 2 and the functional values randomly sampled from the U(0, 1) distribution.

R> ## generating input data for prediction R> n.pr <-100 R> sIn.pr <-as.matrix(expand.grid(x1 = seq(0, 1, length = sqrt(n.pr)), + x2 = seq(0, 1, length = sqrt(n.pr)))) R> fIn.pr <-list(f1 = matrix(runif(n.pr * 10), ncol = 10), + f2 = matrix(runif(n.pr * 22), ncol = 22))

Predictions can be requested by passing a funGp model and the prediction points to the predict() function. For instance, we can use the model m1 defined in Section 3.1.

R> m1.preds <-predict(m1, sIn.pr = sIn.pr, fIn.pr = fIn.pr) R> t(data.frame(row.names = names(m1.preds), Length = lengths(m1.preds)))

mean sd lower95 upper95 Length 100 100 100 100

The output of predict() is mainly a list containing the estimated mean, standard deviation, and limits of the 95% confidence intervals for the output at the prediction points. In practice, the estimated mean of a GP model is used as the prediction of the output, while the standard deviation is often interpreted as a measure of the local error of the prediction. Actually the object returned by the predict() method on a funGp object has S3 class "predict.fgpm" inheriting from "list". This allows to use the plot() method for this S3 class.

R> plot(m1.preds)

The resulting plot shows the increasingly sorted mean and corresponding confidence intervals as displayed in Figure 2. This plot can be used as a diagnostic tool for the hyperparameter optimization process. In this regard, overly wide confidence intervals for a large proportion of prediction points or missing confidence intervals for points out of the training set, as shown in Figure 3, might indicate a far-from-optimal solution.

The plot() method can also be used to compare predictions against true output values. For that aim, the vector of "true" output values at the prediction points should be passed in the optional argument sOut.pr, along with the object returned by predict().

R> sOut.pr <-fgp_BB3(sIn.pr, fIn.pr, n.pr) R> plot(m1.preds, sOut.pr = sOut.pr) In this case, a calibration plot will be placed on top of a sorted-output plot as shown in Figure 4. The calibration plot will display the predictive squared correlation coefficient Q 2 hout , corresponding to the classical coefficient of determination R 2 for a test sample [START_REF] Nilsson | Multiway Calibration in 3D QSAR[END_REF]. The ordering in the sorted-output plot will be lead by the true output vector to facilitate the comparison of different models fitting the same data.

By default the predict() function in funGp returns so-called light predictions, which include the predicted mean, standard deviation and limits of the 95% confidence intervals. Some users might be interested in full predictions, which also include the unconditional training-prediction cross-covariance matrix K.tp and the unconditional prediction auto-covariance matrix K.pp, which can be used for verification purposes (see Appendix B). To make full predictions, it suffices to set detail = "full" when calling predict(), as shown below.

R> m1.preds <-predict(m1, sIn.pr = sIn.pr, fIn.pr = fIn.pr, detail = "full") R> t(data.frame(row.names = names(m1.preds), Length = lengths(m1.preds))) mean sd K.tp K.pp lower95 upper95 Length 100 100 2500 10000 100 100

Simulate from a funGp model

Conditional simulations in funGp are requested through simulate(), similarly as predictions are requested through predict(). The scalar inputs should be provided as a matrix or data.frame and the functional inputs should be provided as a list of matrices, one per functional input. Each row of an input matrix is interpreted as a point at which to provide simulations. By default, simulate() will perform so-called light simulations, thus returning a n.rep × n.sm matrix, with n.rep replications at n.sm input points. For this example we use the model m1 created in Section 3.1. In addition, we take the scalar input values from a factorial design over [0, 1] and the functional values randomly from U(0, 1).

R> ## generating input points for simulation R> n.sm <-100 R> sIn.sm <-as.matrix(expand.grid(x1 = seq(0, 1, length = sqrt(n.sm)), + x2 = seq(0, 1, length = sqrt(n.sm)))) R> fIn.sm <-list(f1 = matrix(runif(n.sm * 10), ncol = 10), + f2 = matrix(runif(n.sm * 22), ncol = 22)) R> ## making light simulations R> m1.sims_l <-simulate(m1, nsim = 10, sIn.sm = sIn.sm, fIn.sm = fIn.sm) Simulations in funGp are plotted by the plot() method for the S3 class "simulate.fgpm". In contrast to prediction plots, simulation plots do not have the output sorted in increasing order, but instead in the order given by the simulation coordinates specified by the user. This plot is illustrated in Figure 5.

R> plot(m1.sims_l)

If requested, simulate() will return a list containing the simulated output, predicted mean, standard deviation and limits of the 95% confidence intervals at the specified input coordinates. This corresponds to a full simulation, available through the option detail = "full".

R> m1.sims_f <-simulate(m1, nsim = 10, sIn.sm = sIn.sm, fIn.sm = fIn.sm, + detail = "full") R> t(data.frame(row.names = names(m1.sims_f), Length = lengths(m1.sims_f))) sims mean sd lower95 upper95 Length 1000 100 100 100 100

Full simulations can be plotted similarly as light ones by means of the plot() function.

R> plot(m1.sims_f)

By default, the full simulation plot will include the predicted mean and limits of the confidence intervals (Figure 6). A light plot with just the simulated output values can also be requested for full simulations by setting the argument detail = "light" in the plot() call.

Update of a funGp model

Models created by funGp can be easily modified at any time by means of the update() function, which incorporates the following nine updating operations:

1. Deletion of data points; 2. Substitution of data points; 3. Addition of data points; 4. Substitution of the variance hyperparameter; 5. Substitution of the vector of scalar length-scale hyperparameters; 6. Substitution of the vector of functional length-scale hyperparameters; 7. Re-estimation of the variance hyperparameter; 8. Re-estimation of the vector of scalar length-scale hyperparameters;

Customization of a funGp model

Without delving too deep in the technical details, this section covers the choice of a funGp model through its so-called structural parameters. This set of categorical features (e.g., type of kernel, projection method) can be given different values in order to produce alternative models departing from the same input-output data. The interested reader is referred to [START_REF] Betancourt | Gaussian Process Metamodeling of Functional-Input Code for Coastal Flood Hazard Assessment[END_REF] for a formal and more detailed explanation of the underlying theory.

Kernel family

The selection of a suitable kernel function is something that naturally comes to mind when working with GP models. At this point, funGp offers the possibility to choose among the Gaussian, Matérn 5/2 and Matérn 3/2 kernels. This selection can be specified in the fgpm() call through the argument kertype, which might take a value among "gauss", "matern5_2" and "matern3_2". See for instance the example below for the Gaussian kernel.

Projection method

In earlier sections we mentioned DR, the process of reducing the dimension of the data structures in such a way and extent that the model becomes significantly more tractable while most of its prediction power is retained. A common DR approach used on functional inputs is to project each input onto a space of lower dimension. This method requires the constitution of the basis functions defining the projection space for each input, which may come from diverse families including B-splines [START_REF] Boor | A Practical Guide to Splines[END_REF], PCA [START_REF] Jolliffe | Principal Component Analysis[END_REF] and PLS [START_REF] Papaioannou | PLS-Based Adaptation for Efficient PCE Representation in High Dimensions[END_REF], among the most popular ones. The B-splines and PCA bases are currently implemented in funGp for the projection of functional inputs. This option is accessible in fgpm() through the f_basType argument, which can be set to "B-splines" or "PCA". When multiple functional inputs are handled, a custom basis can be selected for each of them. This is done by passing an array with the selection for each input: If multiple functional inputs are provided, but a single f_basType value is specified, that selection is used for all the inputs. By default, all functional inputs use a B-splines basis.

Projection dimension

This parameter is complementary to the projection method discussed above. Ideally, the projection dimension must be set substantially lower than the original one, but not so low that too much information is lost. The selection for each input can be specified in the fgpm() call through the f_pdims argument. Possible values are all the integer numbers from 0 to the original dimension of each input, with 0 denoting no projection. If multiple functional inputs are used, an array can be used to specify the selection for each. Below is an example where the first input is not projected while the second one is projected onto a space of dimension 7. If multiple functional inputs are passed, but a single f_pdims value is specified, that selection is used for all the inputs. By default, all functional inputs are projected to dimension 3.

R>

Distance for functions

Kernel-based regression models require the computation of the distance between input coordinates in order to estimate the behavior of the output. This is the case of GP models, which use such distances to compute the correlation between pairs of observations. A set of scaling factors called length-scale coefficients are normally used to quantify the rate of change of the output in terms of each input. For scenarios with only scalar inputs, the typical is to use one length-scale parameter per input, which yields the distance

∥x -x∥ L 2 ,θs := ds k=1 x (k) -x(k) 2 θ (k) s 2 , (4
)
with ∥•∥ the L 2 norm for scalars (i.e., the absolute value), and θ s = θ When dealing with functional inputs, the norm ∥•∥ must be replaced by a suitable norm for functions. Two options are currently implemented in funGp, both based on a projection of each functional input of the form:

Π (k) f (k) (t) = p (k) r=1 α (k) r B (k) r (t), (5)
with

f (k) a curve of the k-th functional input, with values f (k) (t), t ∈ T k , B (k) r
the r-th basis function used for its projection, α (k) r the corresponding projection coefficient, and p (k) the projection dimension. Note that p (k) is typically significantly smaller than the number of time instants N (k) (see Section 3) and that when p (k) = N (k) , the function f (k) and its projection coincide at the time instants. Note that with the PCA projection method, the basis functions B does not depend on the choice of p (k) . In contrast, with the B-spline basis functions, for each value of p (k) , there is a specific set of p (k) basis functions (selected to cover the entire domain T k approximately uniformly) and thus in particular

B (k) 1 changes when p (k) is changed, in general.
The first type of distance (that can also be thought of as a semi-norm) implemented for functions considers each curve as a whole element:

f -f G,θ f := d f k=1 T k   p (k) r=1 α (k) r -α(k) r B (k) r (t)   2 dt θ (k) f 2 , (6
)
with f and f two functional input points, T k ⊂ R the domain of f (k) , and

θ f = θ (1) f , . . . , θ (d f) f ⊤
the vector of length-scale parameters for the functional inputs. This distance is identified in the package as L2_bygroup, since it uses a single length-scale parameter for the group of projection terms linked to one functional input. Note that when p (k) = N (k) as discussed above, the integral above is simply the square

L 2 distance [f (k) (t) -f (k) (t)
] 2 dt, thus making (6) similar to (4). Note also that the above integral is numerically handled as an average over the N (k) time instants.

The second type of distance implemented only considers the projection coefficients, and dis-regards the basis functions:

f -f I, θ f := d f k=1 p (k) r=1 α (k) r - α(k) r 2 θ(k) f,r 2 , (7
)
where

θ f = (θ(k) f,r) 1≤r≤p (k)
,1≤k≤d f denotes the vector of functional length-scale coefficients. This distance is identified in the package as L2_byindex since it involves one length-scale parameter per projection index. Using this distance corresponds to a common approach, which is to first perform the projection and then use each projection coefficient as an individual scalar input of the model. Remark that if for each k the basis functions

B (k) 1 , . . . , B (k) p (k) are orthonormal and θ (k) f = θ(k) f,1 = • • • = θ(k) f,p (k)
, then (6) and (7) coincide. Below we show some examples on how to specify the distance for each functional input in the fgpm() call. For these examples we still consider two functional inputs, f (1) and f (2) , with original dimensions 10 and 22, respectively:

R> n.tr <-25 R> sIn <-expand.grid(x1 = seq(0, 1, length = sqrt(n.tr)), + x2 = seq(0, 1, length = sqrt(n.tr))) R> fIn <-list(f1 = matrix(runif(n.tr * 10), ncol = 10), + f2 = matrix(runif(n.tr * 22), ncol = 22)) R> sOut <-fgp_BB3(sIn, fIn, n.tr)

For the first example, f (1) uses the L2_byindex distance and no projection, which yields 10 length-scale coefficients. On the other hand, f (2) uses the L2_bygroup distance, which yields a single length-scale coefficient regardless of the projection dimension. If no projection is requested for some input, both distances use the original data instead of the projection coefficients, and (6) uses the identity as the matrix of discretized basis functions.

Automatic structural configuration

The possibility to set up the structural parameters of the model naturally comes with the non-trivial question of how to choose a good structural configuration, namely: (i) the state of each input (active or inactive), (ii) the DR method (e.g., PCA, B-splines), (iii) projection dimension, (iv) distance function used for each functional input, and (v) the type of kernel for the model (e.g., Gaussian, Matérn 5/2). In this section we introduce the funGp model factory, a boosting feature that enables the automatic selection of structural parameters seeking for optimal predictive performance. This tool is accessible through the fgpm_factory() function, which enables the smart exploration of the solution space composed of all the structural parameter configurations available under fgpm().

Ant Colony based model selection

At this point, funGp performs heuristic optimization of structural parameters supported on ACO-Gp, the Ant Colony based algorithm presented in Betancourt, Bachoc, Klein, and Gamboa (2020a). In ACO-Gp, virtual ants go through a decision network, selecting at each node the value for one structural parameter of the model (Figure 7). Each end-to-end path in the decision network provides a structural configuration, that is a selection of levels of kernel function, projection basis and distance type, listed in Sections 4.1, 4.2 and 4.4, as well as the state of each scalar and functional input in the model (active or inactive). The ACO-Gp algorithm is summarized as follows. Each edge in the decision network (a choice of the next node, see Figure 7) is initialized with a quantity (load) of pheromone. At each iteration, there is a population of individual ants, each of them going independently through the decision network. For each ant, each next edge is selected stochastically, an edge with higher pheromone load being selected with higher probability. Once all the ants have completed their network paths, each of these paths yields a quantitative model quality criterion (Q 2 loocv or Q 2 hout , see below). To complete the iteration, the pheromone load of each edge is updated. The pheromone loads of edges that belong to ant paths with better quality criteria are increased more. At the end of all the iterations, the ACO-Gp algorithm thus provides the list of all the structural configurations corresponding to each ant paths, associated with their quality criteria. The goal of this algorithm is that some of the configurations in the list have exceptionally good quality criteria. The calculations of the edge probabilities and pheromone updates can be tuned with parameters (see below), that enable to select a tradeoff between exploration (the edge probabilities are less dependent on the pheromone loads and the pheromone loads are more similar across edges) and exploitation (the converse).

Note that both ACO-Gp and its implementation within funGp are general enough to allow an easy extension to additional levels of kernel function, projection basis and distance type, to those listed in Sections 4.1, 4.2 and 4.4, in future versions of the package.

Getting started with the funGp model factory

The examples in this section are based on the analytic black-box function H from [0, 1] 5 × F to R, with F the set of pairs of continuous functions f

= (f (1) , f (2)) ⊤ from [0, 1] to R, defined by H(x, f) =a + b 0 + b 1 x (1) + b 2 x (1)2 + b 3 x (2) + b 4 x (3) 2 + cx (2)2 x (5)3 cos x (1) + d sin x (4) + e sin x (4) × 1 0 (1 -t) f (1) (t)dt + h 0 + h 1 x (1) x (5) × 1 0 tf (2) (t)dt, with a = 10, b 0 = -6, b 1 = 5/π, b 2 = -5/4π 2 , b 3 = 1, b 4 = 4, c = 10(1 -1/8π), d = -280π, e = 840π, h 0 = 240π and h 1 = 3π.
This function is adapted from the second analytic example of [START_REF] Muehlenstaedt | Computer Experiments with Functional Inputs and Scalar Outputs by a Norm-Based Approach[END_REF].

It is accessible in funGp through the black-box function fgp_BB7(). Here we generate the scalar and functional input values in a similar way to how we did in the previous sections: The output of fgpm_factory() is an object of class "Xfgpm" containing the optimized functional model (i.e., an object of class "fgpm" as the one delivered by fgpm()), a statistical indicator of its prediction power, the selected structural configuration, a record of all the evaluated models, among various other types of information. For now, we focus on the @model slot storing the optimized regression model. Let us first compare this optimized model with the one produced by fgpm() using its default arguments. This can be done by means of the plot() function introduced in Section 3.1, which receives an fgpm object as argument.

R> ## optimized model R> plot(xm@model, main = "") R> ## model with default fgpm() structural configuration R> m1 <-fgpm(sIn = sIn, fIn = fIn, sOut = sOut) The outputs of the two plot() calls are displayed in Figures 8a and8b, respectively. As can be seen, right away, just by calling fgpm_factory() with its default arguments, we were able to find a model of greater quality than the one obtained with the default fgpm() arguments. Some key points in the light of this first result are:

• While the default structural parameters in fgpm() provide reasonable predictions, they are not tailored to the data set at hand. In that view, the purpose of having fgpm_factory() in the package is to be able to generate high quality structural configurations tailored to any data set that fgpm() could handle.

• The superiority of the model delivered by fgpm_factory() is exclusively fostered by the optimization of the structural parameter configuration, and is unrelated to the mechanism for the optimization of the hyperparameters. Each model evaluated by fgpm_factory() is internally created by a call to fgpm(). Thus, the same mechanism of hyperparameter optimization is used by both functions.

Let us move on with the exploration of the Xfgpm object delivered by fgpm_factory() using the plot() method.

R> plot(xm, which = "diag") R> plot(xm, which = "evol") 600 800 1000 1200 600 800 1000

Model diagnostic by leave-one-out cross-validation

Predicted Observed Q2loocv = 0.939 The plot() method has an argument which allowing to choose between a diagnostic plot and an evolution plot. With the default choice which = "diag" the plot provides information on the absolute and relative quality of the selected model (Figure 9a). The choice which = "evol" illustrates the evolution in quality of the explored models along the optimization (Figure 9b). In the evolution plot, the points below zero usually correspond to models whose hyperparameters were difficult to optimize. This happens sporadically during the log-likelihood optimization for GPs due to the non-linearity of the objective function, and is not an issue that affects exclusively the funGp package.

Fitness of explored models

The quality of the selected model generally increases with the number of iterations completed by the algorithm. By default, the model factory performs 15 iterations. This quantity can be 600 800 1000 1200 600 800 1000

Model diagnostic by leave-one-out cross-validation

Predicted Observed Q2loocv = 0.979 In this case, the algorithm explored a larger number of model configurations and was able to find a model of higher quality than the one obtained with the default 15 iterations (Figure 9).

Fitness of explored models

In the examples above, fgpm_factory() optimized the model structure for Q 2 loocv (see Section 3). Validating against external observations is also possible. This type of optimization can be requested by specifying, through the ind.vl argument, the indices of the data that should be used for validation. For instance, suppose that we have the same data as in the previous example, but we want to use about 85% of the points for training and the remaining ones for validation.

R> ## about 15% of points for validation R> ind. With this call, the model factory trains each model using all the data except for the points specified by ind.vl. Once built, each model is used to predict the output at the points ignored during training, and the predictive squared correlation coefficient Q 2 hout [START_REF] Nilsson | Multiway Calibration in 3D QSAR[END_REF]) is computed. This procedure ensures homogeneity in the comparison, since all the models use the same training and validation sets. To account for the sampling noise, it is possible to define multiple pairs of training-validation sets. This option is requested to the factory by passing a matrix instead of an array through the argument ind.vl. Such a matrix should have a vector of validation indices per column, and as many columns as replicates.

R> ## ~15% of points for validation, 30 replicates R> ind.vl <-replicate(30, sample(seq_len(n.tr), 5)) R> ## calling the funGp factory (~4 minutes) R> xm <-fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, ind.vl = ind.vl) Note that the calibration plot produced by plot() with which = "diag" will always report the Q 2 loocv statistic, regardless of whether this or the Q 2 hout is used for the optimization of the structural parameters. In contrast, the evolution plot produced by this same function will display the statistic used during the optimization. When validation indices are provided, the optimized model stored in the Xfgpm object is one trained with as many points as left once the specified validation points are removed. When multiple validation sets are specified, the optimal model is selected by first identifying the structural configuration with largest average Q 2 hout over all the replicates, and then picking among the corresponding models the one with largest individual Q 2 hout .

Setting up the parameters of the ACO algorithm

Our model selection algorithm relies on a set of parameters typical of any Ant Colony based method (recall the description of the method in Section 5.1). Those parameters control the number of individuals and iterations, degree of exploration, rate of convergence, as well as the learning mechanism in the algorithm. The full list of parameters implemented in the fgpm_factory() function are listed below; those marked with an asterisk (*) are explained more thoroughly in Betancourt et al. (2020a).

Initial pheromone load: at the beginning of the algorithm, each edge in the decision network is assigned a quantity indicating its desirability for the ants.

• tao0: initial pheromone load on links pointing out to the selection of a distance type, a projection basis or a kernel type. Default: 0.1.

• dop.s: factor to control how likely it is to activate a scalar input. It operates on a relation of the type A = dop.s * I, where A is the initial pheromone load of links pointing out to the activation of scalar inputs and I is the initial pheromone load of links pointing out to their inactivation (which is set equal to tao0). Default: 1.

• dop.f: analogous to dop.s for functional inputs. Default: 1.

• delta.f and dispr.f: shape parameters for the regularization function that determines the initial pheromone values on the links connecting the L2_byindex distance with the projection dimension*. Default: 2 and 1.4, respectively.

Local pheromone update: as the ants traverse the decision network, the pheromone load of the used links is reduced to foment diversification in the structural configurations generated.

• rho.l: pheromone evaporation rate*. Default: 0.1.

Global pheromone update: the algorithm works by iterations, each involving a given number of ants. After each iteration, an update process is performed to increase the pheromone load in the links included in the best configurations evaluated so far.

• n.ibest: the algorithm always reinforces the links of the best n.ibest ants of the current iteration; how many ants should be used? Default: 1.

• u.gbest: should the links of the best ant over all the iterations so far be reinforced during the global pheromone update as well? Default: FALSE.

• rho.g: learning reinforcement rate*. Default: 0.1.

Population factors: the extent of the search is primarily driven by the number of iterations and ants per iteration.

• n.iter: number of iterations. Each iteration involves exploration, local pheromone update, constitution of model configurations, evaluation of performance in prediction, and system feedback through global pheromone update (recall Section 5.1). Default: 15. • n.pop: number of ants (structural configurations) per iteration. Default: 10. Bias strength: ants use one of two rules to select their next node at each step. The first rule leads the ant through the link with larger pheromone load; the second rule works based on probabilities which are proportional to the pheromone load on the feasible links. The ants will randomly chose one of the two rules at each time.

• q0: at each step, each ant will opt for rule 1 with probability q0*. Default: 0.95. For larger number of input variables, we recommend to slightly reduce it to e.g., 0.90. This might promote the evaluation of each input in at least some few models.

The default values of ACO-Gp parameters in funGp are based on the setup used by [START_REF] Dorigo | Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem[END_REF] in the introductory paper of the Ant Colony System. Similar values have proved to deliver a good performance for ACO-based algorithms in a variety of applications (see e.g., [START_REF] Li | An Improved Ant Colony Optimization Algorithm for the Multi-Depot Green Vehicle Routing Problem with Multiple Objectives[END_REF] or [START_REF] Singh | ACO-IM: Maximizing Influence in Social Networks Using Ant Colony Optimization[END_REF]. All the parameters listed above can be customized in a fgpm_factory call through the argument setup, which should be a list. Below is an example using arbitrary setup values.

Defining the solution space

By default, fgpm_factory() considers feasible all possible combinations of: inputs state, distance type, projection dimension, basis family, and kernel family. However, the user is allowed to modify the solution space by imposing a system of constraints. This is achieved through the ctraints argument, which should be provided as a list. Below is an example considering the following list of constraints:

• Keep both scalar inputs always active; • Keep f (2) always active; • Only use the L2_byindex distance for f (2) ; • Input f (2) should be projected onto a space of dimension 4; • Input f (1) should be projected onto a space of dimension ≤ 5; • Only use the B-splines projection method for f (1) ; • Only test the Matérn 5/2 and Gaussian kernels.

R> ## custom constraints R> myctr <-list(s_keepOn = c(1, 2), f_keepOn = c(2), + f_disTypes = list("2" = c("L2_byindex")), + f_fixDims = matrix(c(2, 4), ncol = 1), + f_maxDims = matrix(c(1,5), ncol = 1), + f_basTypes = list("1" = c("B-splines")), + kerTypes = c("matern5_2", "gauss")) R> ## calling the funGp factory (~15 seconds) R> xm <-fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, ctraints = myctr)

The consistency of the explored configurations with the specified constraints can be verified through the @log.success@sols slot of the Xfgpm object returned by fgpm_factory(). This slot provides a data.frame with all the configurations successfully built and tested. Their corresponding prediction quality indicators can be obtained from the @log.success@fitness slot of the Xfgpm object (either Q 2 loocv or Q 2 hout , depending on the optimized statistic). This is summarized by the summary() function as follows.

funGp: Gaussian Process Regression with Scalar and Functional Inputs in R R> summary(xm)

Time based stopping condition

In practice, it might be difficult to know in advance how many iterations will be enough to find a good configuration. Hence, fgpm_factory() offers an alternative stopping condition based on processing time. This feature is accessible in fgpm_factory() through the time.lim argument, which should be provided in seconds. The number of iterations was set large enough to avoid a premature stop of the algorithm.

Once the time limit is reached, the algorithm will attempt to stop as soon as possible, however, an ongoing model training process (i.e., the hyperparameter optimization) will never be interrupted. Thus, the actual processing time will often slightly exceed the specified budget.

Further exploring the Xfgpm object

We close this section by discussing in more detail the information contained in the Xfgpm object delivered by fgpm_factory(). Below we provide a list of the slots included in this object.

Optimal structural configuration

• @model: object of class "fgpm" associated to the selected model configuration.

• @structure: data.frame indicating the selected structural configuration.

• @stat and @fitness: type (Q 2 loocv or Q 2 hout) and value of the performance statistic used for the optimization of the structural parameters.

Record of explored models

• @log.success: object of class "antsLog" with the structure, function call and performance statistic of all the models successfully built and tested during the optimization.

• @log.crashes: object of class "antsLog" with the structure and function calls of all the models whose fgpm() function call crashed.

Exploration extent

• @n.solspace: number of feasible structural configurations.

• @n.explored: number of structural configurations successfully built and tested during the optimization.

Further information

• @details: a list containing: (i) the set of heuristic parameters used; and (ii) the series of fitness vectors over the iterations of the heuristic.

• @factoryCall: a reminder of the expression used in the fgpm_factory() call.

The @log.success slot opens the possibility for a variety of interesting analyses that could be performed after the structural configuration. Based on the @log.success@sols component, for instance, which contains a data.frame with the structural parameters used in each explored model, one could seek to identify patterns leading to high quality models. The @log.success@args component contains analogous information, but in a format that allows the easy reconstruction of any explored model. We illustrate this possibility with the following example. We start from the structural optimization using 32 training points. Let us now rebuild the three best models using a larger number of training points. The modelDef() function returns a parsed R code that can be evaluated to rebuild the model corresponding to an index given by the ind formal argument. This code is to be evaluated in an environment containing the required objects sIn, fIn and sOut. By default, eval() uses the global environment. Remark that m1, m2 and m3 are rebuilt from a different data set from the original data set used to obtain them when building xm. In the case where these three models were rebuilt using the same data set as when building xm, the estimated hyperparameters could still take different values than when building xm, since the hyperparameter optimization precedures use random initializations.

The three models m1, m2 and m3 can easily be used to make predictions thanks to the get_active_in() function, which automatically removes the inactive inputs from prediction or simulation data structures based on the fgpm() arguments of the model. To illustrate this, we start by stacking the three rebuilt models and their arguments into two lists.

R> modStack <-list(m1, m2, m3) R> argStack <-xm@log.success@args[1:3] Then, we generate some input points for prediction. Finally, we perform predictions based on the three models with the aid of get_active_in(). The resulting predictions are displayed in Figure 11.

Parallelization in funGp

Both, the fgpm() and fgpm_factory() functions have been equipped with the ability to exploit the availability of parallel environments. Now we explain how to access this feature.

Parallelized hyperparameter optimization

In funGp, the calibration of the hyperparameters of the model is made by likelihood maximization. For GPs, this corresponds to a nonlinear optimization problem, sometimes strongly affected by the selection of the starting points. A common way to deal with this issue is to start the optimization multiple times from different points, which prevents the stagnation at local optima. This option is accessible in fgpm() through the argument n.starts, which should be assigned an integer value corresponding to the number of starting points to use.

Below is an example using 10 starting points. Since each starting point triggers an independent optimization process, the requested task can be performed in parallel. To do so, the user must define a parallel processing cluster and then pass it to fgpm() through the par.clust argument. As a good practice, the cluster must be stopped right after finishing the requested task in order to prevent memory issues.

R>

Parallelized structural optimization

During a call to fgpm_factory(), each time all the ants of one iteration complete a feasible path, the corresponding models are built and evaluated in an independent fashion. Thus, this task can be performed in parallel. The way to request this to fgpm_factory() is identical to how it is requested to fgpm(). The user must define a parallel processing cluster and then pass it to fgpm_factory() through the par.clust argument, as shown below.

R> cl <-parallel::makeCluster(3) R> xm.par <-fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, par.clust = cl) R> parallel::stopCluster(cl)

Flooding real case application

Here we apply the functionalities of funGp to a real case that is related to the problem of setting up a rapid FEWS for coastal flooding at Gâvres, France [START_REF] Idier | A User-Oriented Local Coastal Flooding Early Warning System Using Metamodelling Techniques[END_REF]. The modeling of coastal flooding at the proper resolution (metric) to predict floods in urban areas and account precisely for processes such as wave overtopping is so time consuming (i.e., the computation time is hardly smaller than the real time) that forecasting efforts are greatly hindered. To overcome this difficulty, one solution relies on the construction of metamodels by following the approach described by [START_REF] Betancourt | Gaussian Process Metamodeling of Functional-Input Code for Coastal Flood Hazard Assessment[END_REF]).

We focus here on the prediction of the maximum value of the flooded area over time (denoted Y). See histogram in Figure 12.

R> set.seed(100) R> load("Replication_data/FloodingCase.RData") R> df <-length(Xf) ## Number of functional inputs R> n <-nrow(Xs) R> hist(Y, xlab = "Flooded Area (m^2)", main = "Model outputs") Seven offshore meteo-oceanic forcing conditions depicted in Figure 13 are considered, namely • the tide;

• the surge;

• the significant wave height, denoted H sx and H sy (projected onto the Cartesian x-and y-axis by means of the wave direction);

• the peak period of waves;

• the wind speed at 10m height, denoted U x and U y (projected onto the Cartesian x-and y-axis by means of the wind direction).

Each time series is sampled every 10 minutes (37 time steps) over the time interval (HT -3 hours to HT + 3 hours), with HT referring to high tide.

To ease the analysis, the time-varying offshore meteo-oceanic forcings have been decomposed as A 0 + f n (t) where A 0 is a constant value over time (corresponding to the tide peak, i.e., the We first check the predictive capability of the constructed GP model using leave-one-out cross-validation. Figure 14 compares the observed and predicted Y values and shows a very satisfactory agreement with a Q 2 loocv >0.95.

R> plot(m1)

An alternative option is to check the predictive capability by means of a dataset of independent model results (Figure 15). The predictions can be performed by using the kriging mean plotted together with the prediction intervals at 0.95. Due to the many assumptions (related to the account for 8 scalar and 7 functional inputs) to be made to parameterize the GP model, we apply the ACO-Gp algorithm (with default parameters) to automatically select the structural parameters depending on the predictive performance. Interestingly, the examination of the best five solutions (with Q 2 loocv ranging from 0.952 to 0.964, see Figure 16) indicates that the wind characteristics (scalar inputs denoted X7 and X8, and functional inputs denoted F6 and F7) are not included in the structure of the GP models. These models majoritarily include four time series, namely the tide, H sx , H sy and T p . The next line of code was executed to call the model factory, and it is here commented because its execution time was significant.

R>

R> ## xm <-fgpm_factory(sIn = Xs.train, fIn = Xf.train, sOut = Y.train) R> # plotting the solution R> plot(xm, which = "diag") R> # 6 best solutions R> ## head(xm@log.success@sols, "Q2" = xm@log.success@fitness) R> summary(xm, n = 5)

State of inputs

X1 X2 X3 X4 X5 X6 X7 X8 F1 F2 F3 F4 F5 F6 F7 Kern Q2 1 x x x x x x x x x x mat32 0.964 2 x x x x x x x x x x mat32 0.963 3 x x x x x x x x x mat32 0.961 4 x x x x x x x x x x mat32 0.957 5 x x x x x x x x mat32 0.952 Details for functional inputs F1 D_F1 Dim_F1 Bas_F1 F2 D_F2 Dim_F2 Bas_F2 F3 D_F3 Dim_F3 Bas_F3 1 x grp 29 PCA -----x grp 23 Bspl puts delivered by its main functions: fgpm(), fgpm_factory(), predict() and simulate(). Moreover, parallelization has been incorporated as an efficiency booster for the procedures of model construction and structural optimization. The robustness and stability of funGp has been validated on numerous analytic examples and on the real life early warning application.

We envisage the extension of the package in various directions, including the addition of complementary levels of the structural parameters already available (e.g., other projection methods, distance functions and kernel functions), incorporation of additional structural parameters (e.g., type of transformation function for the output) and implementation of alternative structural optimization methods (e.g., brute-force search and Genetic Algorithms). Our code implementations were made with these potential extensions in mind and thus, the package is architectured under the principle of modularity for easy extension. Further potential extensions, both in terms of methodology and implementation, are possible. It would be valuable to allow for functional outputs and for multi-dimensional functional inputs, for instance two-dimensional maps numerically given by matrices. For multi-dimensional functional inputs, tensor product splines may be considered. As discussed in Section 3, an extension of the funGp package from simple to universal Kriging could be investigated, hence allowing to include a trend in the GP model. Note also that the automatic structural configuration procedure of Section 5 currently aims at returning a "best" structural configuration. Since close-to-optimal predictive performances could be achieved by very different structural configurations, an interesting extension of the funGp package could be to carry out Bayesian model averaging of multiple structural configurations, in the spirit of [START_REF] Zhang | Bayesian Model Averaging for Kriging Regression Structure Selection[END_REF]. Another extension perspective of the funGp package is to allow for covariance computations for functional inputs based on L 2 norms applied directly to the functions rather than their projections, and weighted by functional correlation lengths. This would provide new distances, sharing commonalities with (6), but where θ (k) f would be a function. The funGp package is available from GitHub (https://github.com/djbetancourt-gh/funGp) and CRAN (https://cran.r-project.org/package=funGp). We encourage the community to make contributions in the proposed topics or any other found relevant.

Figure 1 :

 1 Figure 1: Model diagnostic by leave-one-out cross-validation.

Figure 2 :Figure 3 :

 23 Figure 2: Predictions of a funGp model sorted in increasing order.

Figure 4 :

 4 Figure 4: Prediction plot using the plot() method on the object returned by predict().

Figure 5 :

 5 Figure 5: Simulations from a funGp model.

Figure 6 :⋄

 6 Figure 6: Simulations from a funGp model with confidence intervals.

 R> n.tr <-25 R> sIn <-expand.grid(x1 = seq(0, 1, length = sqrt(n.tr)), + x2 = seq(0, 1, length = sqrt(n.tr))) R> fIn <-list(f1 = matrix(runif(n.tr * 10), ncol = 10), + f2 = matrix(runif(n.tr * 22), ncol = 22)) R> sOut <-fgp_BB3(sIn, fIn, n.tr) R> m1 <-fgpm(sIn = sIn, fIn = fIn, sOut = sOut, kerType = "gauss") ** Presampling... ** Optimising hyperparameters... final value -3.688915 converged ** Hyperparameters done! By default, fgpm() uses the Matérn 5/2 function, popular in the machine learning community.

 R> m1 <-fgpm(sIn = sIn, fIn = fIn, sOut = sOut, + f_basType = c("B-splines", "PCA"))

 m1 <-fgpm(sIn = sIn, fIn = fIn, sOut = sOut, f_pdims = c(0

 -scale parameters for the scalar inputs.

 are taken from the N (k) ordered principal component functions, and thus for instance B (k) 1

 R> m1 <-fgpm(sIn = sIn, fIn = fIn, sOut = sOut, f_pdims = c(0a second example, we use the L2_bygroup distance for both inputs, which yields 2 length-scale coefficients, regardless of the projection dimensions. R> m1 <-fgpm(sIn = sIn, fIn = fIn, sOut = sOut, f_pdims = c(0use the L2_byindex distance for both inputs, we use no projection for f (1) and projection dimension 5 for f(2) . This yields a total of 10 + 5 = 15 length-scale coefficients.R> m1 <-fgpm(sIn = sIn, fIn = fIn, sOut = sOut, f_pdims = c(0

Figure 7 :

 7 Figure 7: Decision network used by the ACO-Gp heuristic in funGp. Dist., Dim., and Bas., stand for the distance, projection dimension and projection method (basis family) used for each functional input. The illustration considers d s scalar inputs, d f functional inputs, n d types of distances, n b projection methods and n c kernel functions. The projection dimension 0 denotes no projection. Any end-to-end path over the network provides a candidate model.

 R> set.seed(100) R> n.tr <-32 R> sIn <-expand.grid(x1 = seq(0,1,length = n.tr^(1/5)), + x2 = seq(0,1,length = n.tr^(1/5)), + x3 = seq(0,1,length = n.tr^(1/5)), + x4 = seq(0,1,length = n.tr^(1/5)), + x5 = seq(0,1,length = n.tr^(1/5))) R> fIn <-list(f1 = matrix(runif(n.tr*10), ncol = 10), + f2 = matrix(runif(n.tr*22), ncol = 22)) R> sOut <-fgp_BB7(sIn, fIn, n.tr) ⋄ Getting started In our first example, we make a basic call to the model factory using its default arguments: R> xm <-fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut) # (~10 seconds) ** Initializing decision network... ** Optimizing structural parameters... ** Ants are done ;)

 Model produced by fgpm_factory() using its default arguments.

 Model produced by fgpm() using its default arguments.

Figure 8 :

 8 Figure 8: Calibration plot for optimized and unoptimized structural configurations.

 (a) Absolute and relative quality diagnostic plots delivered by plot() with which = "diag" (default value).

 Model quality evolution plot delivered by plot() with which = "evol".

Figure 9 :

 9 Figure 9: Figures available for the Xfgpm model delivered by fgpm_factory().

Figure 10 :

 10 Figure 10: Improved quality of the optimized model using a larger number of iterations.

 vl <-sample(seq_len(n.tr), 5) R> ## calling the funGp factory (~2 seconds) R> xm <-fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, ind.vl = ind.vl) ** Initializing decision network... ** Optimizing structural parameters... ** Ants are done ;)

 R> ## custom heuristic configuration R> mysup <-list(tao0 = .15, dop.s = 1.2, dop.f = 1.3, delta.f = 4, + dispr.f = 1.1, rho.l = .2, u.gbest = TRUE, n.ibest = 2, + rho.g = .08, n.iter = 30, n.pop = 12, q0 = .85) R> ## calling the funGp factory (~18 seconds) R> xm <-fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, setup = mysup) ** Initializing decision network... ** Optimizing structural parameters... ** Ants are done ;)

 R> mysup <-list(n.iter = 2000) # a sufficiently large number of iterations R> xm <-fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, setup = mysup, + time.lim = 60) ** Initializing decision network... ** Optimizing structural parameters... ** Time limit reached, exploration stopped after 60.01 seconds. ** Ants are done ;)

 R> set.seed(100) R> n.tr <-32 R> sIn <-expand.grid(x1 = seq(0, 1, length = n.tr^(1length = n.tr^(1/5))) R> fIn <-list(f1 = matrix(runif(n.tr * 10), ncol = 10), + f2 = matrix(runif(n.tr * 22), ncol = 22)) R> sOut <-fgp_BB7(sIn, fIn, n.tr) R> xm <-fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut) # (~10 seconds) ** Initializing decision network... ** Optimizing structural parameters... ** Ants are done ;)

 R> n.tr <-243 R> sIn <-expand.grid(x1 = seq(0, 1, length = n.tr^(1/5)), + x2 = seq(0, 1, length = n.tr^(1/5)), + x3 = seq(0, 1, length = n.tr^(1/5)), + x4 = seq(0, 1, length = n.tr^(1/5)), + x5 = seq(0, 1, length = n.tr^(1/5))) R> fIn <-list(f1 = matrix(runif(n.tr * 10), ncol = 10), + f2 = matrix(runif(n.tr * 22), ncol = 22)) R> sOut <-fgp_BB7(sIn, fIn, n.tr) R> m1 <-eval(modelDef(xm, ind = 1))

Figure 11 :

 11 Figure 11: Predictions with models based on the best three structural configurations.

 m1 <-fgpm(sIn = sIn, fIn = fIn, sOut = sOut, n.starts = 10) ** Presampling... ** Optimising hyperparameters... ** Parallel backend register not found. Multistart optimizations done in sequence. ** Hyperparameters done!

Figure 13 :

 13 Figure 13: Functional inputs of the flooding case.

Figure 14 :

 14 Figure 14: Leave-one-out cross validation diagnostic for the flooding application case.

Figure 15 :

 15 Figure 15: Predictions on independent samples for the flooding application case.

Table 1 :

 1

Main open-source statistical tools either implementing the GP model or providing functional-input regression. Convention: (✓ *) the user is allowed to pass a custom kernel, but no explicit treatment of functional inputs is offered; (✓ 1) automatic selection between various types of models (e.g., GP, neural networks), but no optimization of structural parameters; (✓ 2) automatic bandwidth selection for a kernel k nearest neighbors model; (✓ 3) performance statistics for several types of models are provided to help the user select one; (✓ 4) support for variable selection; (✓ 5) automatic selection of the number of principal components in a PCA projection. [1] Rasmussen and Nickisch (2010), [2] Vanhatalo et al. (2012), [3] GPy (2012), [4] Pedregosa et al. (2011), [5] De G. Matthews et al. (2017), [6] Ferraty and Vieu (2006), [7] Neufeld and Heggeseth (2019), [8] Tsiliki et al. (2015), [9] Ramsay et al. (2022), [10] Markussen (2019), [11] Febrero-Bande and Oviedo de la Fuente (2012), [12] Gajardo et al. (2021), [13] García-Portugués and Álvarez Liébana (2021), [14] Goldsmith et al. (2020), [15] Brockhaus and Ruegamer (2018), [16] Cheng and Shi (2016), [17] Savitsky (2016), [18] Gu et al. (2020), [19] Roustant et al. (2012), [20] Shi and Cheng (2014), [21] Deville et al. (2020), [22] Betancourt et al. (2020c).

 m1.preds <-predict(m1, sIn.pr = Xs.test, fIn.pr = Xf.test) R> plot(m1.preds)

			Sorted predictions
			Pred. mean
		3e+05	95% Conf.
	Output	1e+05	
		-1e+05	1	74
			Index

Acknowledgments

The funGp package was conceived within the RISCOPE project, funded by the French Agence Nationale de la Recherche (grant ANR-16-CE04-0011). We thank the ANR for its support. We are also grateful to Fabrice Gamboa (IMT, ANITI) for his helpful recommendations on GP modeling and to Juliette Garcia (ENAC) for her assistance on the stabilization of the Ant Colony algorithm for structural parameter optimization.

Model outputs

Flooded Area (m^2) maximum value of the tide over the considered time interval, and to the temporal average for the other variables), and f n (t) is a time-varying signal after removal of A 0 .

In total the inputs of the GP model include seven f n (t) time series, eight scalar inputs (the seven A 0 scalar inputs as well as one additional scalar input corresponding to the mean sea level msl).

The random selection of the inputs is based on the procedure described by Idier et al. (2021, Sect. 2.5.2). A total number of 174 numerical experiments were performed. To showcase funGp functionalities, we use 100 numerical experiments for the training and 74 for the predictions.

In this example, we set up a GP model with default parameters i.e., a "matern5_2" kernel, a "L2_bygroup" distance to be used for each functional coordinates within the covariance function of the GP, and a projection using B-splines basis functions onto a 3-dimensional space.

Closing discussion

This article introduced the R package funGp, which allows the treatment of regression problems involving multiple scalar and/or functional inputs, and a scalar output, through the fairly general GP model. In addition to being one of the few packages providing functionalinput regression under this type of model, funGp features the ability to automatically set the structural parameters of the model for prediction performance. So far, this is a distinctive characteristic rarely found in current open-source regression software. The package is also equipped with multiple plotting functions that enable the quick inspection of the out-

A. funGp at a glance

The funGp package allows the easy construction of GP regression models with special treatment of functional inputs, an aspect scarcely treated by other R packages. The package is constituted by two major modules which are described in the paragraphs that follow.

⋄ Regression: this module is responsible for the core functionalities of the package: (i) creation and diagnostic of GP regression models, (ii) prediction at unobserved input coordinates, (iii) conditional simulation, and (iv) model updating. These procedures are implemented in the five functions listed in Table 2. All the listed functions are set up with default arguments that allow an effortless first interaction with the package. However, high degree of customization is enabled to let the users get greater control over the outputs and extend the scope of the analysis as they become familiar with the overall functioning of the package. As an example, the fgpm() function allows the customization of the so-called structural parameters and the definition of custom hyperparameters, among other features. ⋄ Structural optimization: the set of functions listed in Table 2 could constitute by themselves a regression package. However, funGp goes further and incorporates the automatic calibration of structural parameters of the model, a functionality widely neglected by other regression tools. Structural optimization enables the efficient exploration of the space of possible model configurations, seeking for optimal predictive performance. Diagnostic plots are provided for a quick evaluation of the selected model and the evolution of the optimization.

The main procedures of this module are implemented in the three functions listed in Table 3.

Function Type Description fgpm_factory() function

Structural optimization of GP models. Outputs an object of S4 class "Xfgpm" containing the optimized model along with records from the optimization process plot() method which = "diag": information on the absolute and relative quality of the selected model plot() method which = "evol": verification plot showing the evolution in the quality of the explored structural configurations along the optimization summary() method Lists the evaluated structural configurations with their prediction performances Table 3: Complementary funGp functionnalities related to the class "Xfgpm" enabling structural optimization.

B. Manual prediction

As explained in Section 3.2, GP predictions are accessible in funGp through the predict() method. However, as a verification/inspection procedure, it is also possible to recreate the different data structures necessary for making the predictions manually based on the equations (2) and (3) of Gaussian conditioning. The recovery of these data structures is explained below, departing from an hypothetical model m1 created with fgpm().

• Vector of observed output values y: this vector is stored at the @sOut slot of the fgpm object associated with the model.

R> y <-m1@sOut

• Unconditional n × n * training-prediction cross-covariance matrix C((X, F), (X * , F *)) and n * × n * prediction auto-covariance matrix C((X * , F *), (X * , F *)): these matrices can be obtained from a full prediction generated by predict(), as shown below.

R> preds <-predict(m1, sIn.pr = sIn.pr, fIn.pr = fIn.pr, detail = "full") R> K.tp <-preds$K.tp R> K.pp <-preds$K.pp

• Unconditional n × n training auto-covariance matrix C((X, F), (X, F)): this matrix can be regenerated from the lower triangular matrix of its LU decomposition, stored at the @preMats$L slot of the model.

R> K.tt <-tcrossprod(m1@preMats$L)

Once the y, K.tp, K.pp and K.tt data structures have been recovered, the predicted output values and corresponding confidence intervals can be reproduced based on Gaussian conditioning as follows.

R> ## predictive mean and variance R> y.pr <-t(K.tp) %*% solve(K.tt) %*% y