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Abstract

This article introduces funGp, an R package which handles regression problems in-
volving multiple scalar and/or functional inputs, and a scalar output, through the Gaus-
sian process model. This is particularly of interest for the design and analysis of com-
puter experiments with expensive-to-evaluate numerical codes that take as inputs reg-
ularly sampled time series. Rather than imposing any particular parametric input-
output relationship in advance (e.g., linear, polynomial), Gaussian process models ex-
tract this information directly from the data. The package offers built-in dimension
reduction, which helps to simplify the representation of the functional inputs and ob-
tain lighter models. It also implements an Ant Colony based optimization algorithm
which supports the calibration of multiple structural characteristics of the model such
as the state of each input (active or inactive) and the type of kernel function, while
seeking for greater prediction power. The implemented methods are tested and ap-
plied to a real case in the domain of marine flooding. The funGp package is download-
able from GitHub (https://github.com/djbetancourt-gh/funGp) and CRAN (https:
//cran.r-project.org/package=funGp).
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What does funGp bring to the table?

• Flexible modeling of functional-input regression problems
A narrow class of R packages address regression with functional inputs (e.g., time series).
The vast majority of those packages rely on models limited by strong assump- tions
on the relationship between inputs and outputs (e.g., Linear, Generalized Linear or
Generalized Additive Models). The few ones that suppress these limitations through
more general models (e.g., Kernel Smoothing) often require the output to be a function
defined over the same domain as the functional inputs, which is frequently not the case
and leaves the scalar-output problem unresolved. funGp tackles regression problems
involving scalar and/or functional inputs and a scalar output through the fairly general
Gaussian process model. This is a non-parametric type of model which removes any
need to set a particular input-output parametric relationship in advance, and learns
this information directly from the data.

• Built-in dimension reduction
A common practice when working with functional data is to start by making a projec-
tion of it onto a space of lower dimension, a procedure known as dimension reduction
(DR). This allows to reduce the complexity of the model while preserving the main
statistical or geometric characteristics of the functions. funGp is self-contained in the
sense that it does not depend on other packages to perform DR on the functional in-
puts. At this point, we provide projection onto B-splines or PCA bases. The package
was designed to enable a straightforward extension to other bases in further versions.

• Heuristic model selection
The possibilities offered by a package often translate into alternative model structures.
Just to give an example, most packages that support Gaussian process models allow to
select the kernel function from a set of standard families (e.g., Gaussian, Matérn 5/2,
Matérn 3/2). However, decision support is rarely offered in order to select a suitable
configuration for the problem at hand. We acknowledge the potential impact of such
a decision in the performance of the model Betancourt, Bachoc, Klein, Idier, Pedreros,
and Rohmer (2020b); Lataniotis, Marelli, and Sudret (2020) and also the practical
difficulties that arise from offering possibilities without decision support. Thus, funGp
was equipped with a model selection functionality that allows the user to automatically
search for a good combination of the so-called structural parameters of the model. At
this point, an Ant-Colony-based algorithm is implemented to perform this task.

• All-level-user-friendly
We aim funGp to be a helpful tool for users within a wide range of knowledge in
mathematics or statistics. Thus, we have made an effort to make simple and intuitive
the way the package work. Most of the arguments in the functions have been provided
default values so that the user can start experimenting with them at its own pace. Once
you get ready, you will be able to start playing with the nugget effect, basis type, kernel
type, multi-start option, parallelization and even the parameters of the heuristic for
model selection. However, to have your first model built by funGp, the only thing you
need to provide is your data.
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1. Introduction

Gaussian process (GP) models (Sacks, Welch, Mitchell, and Wynn 1989; Oakley and O’Hagan
2002) are one of the most popular regression methods thanks to the great flexibility they offer
in the representation of complex non-linear input-output relationships, their high prediction
power, interpretability, and ability to provide both an interpolation of the data and an uncer-
tainty quantification in the unexplored regions, e.g., Marrel, Iooss, Van Dorpe, and Volkova
(2008). The GP model was first developed in spatial statistics under the name of kriging
(Cressie 1990) and rapidly gained attention in the machine learning community where it
was classified as a kernel machine (Rasmussen and Williams 2006). Over the years, the GP
model has become popular in a wide range of applications such as nuclear safety (Bachoc,
Ammar, and Martinez 2016), wind power generation (Mori and Kurata 2008), vehicle design
and navigation (Chen, Dai, Wang, and Liu 2014), modeling and prediction of natural hazards
(Rohmer and Idier 2012; Liu and Guillas 2017), among several others.
Here, a special focus will be given to the use of GP models as metamodeling techniques in
the field of design and analysis of computer experiments, where the regression models are
used as surrogates of expensive-to-run numerical models (see e.g., Yuan and Nian (2018) and
Iooss and Marrel (2019)). Indeed, in recent years, the use of computer codes for the study of
complex systems has become a widespread practice to simulate systems at a lower resource
expense owing to lack of observations, in particular regarding the input-output conditions for
some natural processes (e.g., volcanic activity, earthquakes, flooding, etc.). Despite the in-
creasing computer power over the last years, computer codes for environmental and industrial
applications are often too time-consuming for direct application (e.g., for uncertainty quan-
tification or fast prediction within an early warning system). A possible option to overcome
this computational burden is to set up quick-to-evaluate mathematical emulators of those
numerical codes (Forrester, Sobester, and Keane 2008; Simpson, Poplinski, Koch, and Allen
2001), based on a limited collection of model runs within the generic framework of design of
computer experiments (Santner, Williams, Notz, and Williams 2003); such emulators being
often called surrogate models or metamodels.
As shown in Østergård, Jensen, and Maagaard (2018) through comparison in 13 different
metamodeling instances, GP metamodels are often able to outperform other popular methods,
such as neural networks (Fonseca, Navaresse, and Moynihan 2003), multivariate adaptive
regression splines (Friedman 1991) and support vector regression (Drucker, Burges, Kaufman,
Smola, and Vapnik 1997), in terms of prediction accuracy.
In regression, a large amount of research works have addressed the case of scalar-valued
inputs and outputs, e.g., (Forrester et al. 2008; Simpson et al. 2001; Santner et al. 2003).
However, industrial and environmental applications often deal with complex inputs or outputs,
which can be spatial, temporal, spatio-temporal i.e., functional in a more general way. As a
motivating real case example, the coastal flood early warning system (FEWS) developed at
Gâvres, France (Idier, Aurouet, Bachoc, Baills, Betancourt, Gamboa, Klein, López-Lopera,
Pedreros, Rohmer, and Thibault 2021) predicts scalar output indicators of flooding (like total
flooded area, maximum volume of water entering the territory, maximum water depth at a
given location, etc.), based on inputs which are multiple scalar and time-varying maritime
conditions (e.g., mean sea level, tide, atmospheric storm surge, and wave conditions), i.e.,
multiple time series (that are here sampled regularly over time). This FEWS is based on an
hydrodynamic numerical model, but, to reach computation times compatible with short term
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forecast, metamodels had to be developed taking into account these inputs and providing the
listed outputs.

Although GPs for scalar-valued inputs and outputs have been studied for almost 30 years,
solving the problem of metamodeling in the functional framework (as described for the FEWS
example) is still a much less developed research area (Muehlenstaedt, Fruth, and Roustant
2017). In principle one could use any GP implementation to fit a model with functional inputs
by representing each function as a vector, and then using each element of it as an individual
scalar input of the model. However, this might lead to challenging and long hyperparameter
optimization processes due to the large number of resulting decision variables. Furthermore,
this approach disregards the functional nature of the inputs. To fill these gaps, this paper
presents the package funGp in R programming environment (R Core Team 2020). It provides
the construction of GP regression models of a single scalar output, dealing at the same
time with multiple functional and scalar inputs by restricting on the situations where the
functional inputs are regularly sampled time series (time series are considered for convenience
of exposition; the funGp package can apply to other types of one-dimensional inputs as well).
The funGp package offers dimension reduction (DR) methods which allow the projection of
functional inputs onto a space of lower dimension while preserving the main statistical or
geometric properties of each variable (Ramsay and Silverman 2007; Nanty, Helbert, Marrel,
Pérot, and Prieur 2016). Then, funGp provides the standard functionalities of GP models
such as prediction, computation of confidence intervals, and conditional simulation. The
second main contribution of funGp is an automatic procedure for the selection of the optimal
structural parameters: (i) the state of each input (active or inactive), (ii) the DR method
(e.g., PCA, B-splines), (iii) projection dimension and (iv) distance function used for each
functional input, and (v) the type of kernel for the model (e.g., Gaussian, Matérn 5/2).

Table 1 provides a comparison between the functionalities of 21 classical open-source packages
that either implement GP regression or support scalar-on-function regression with the GP or
other types of models. This list includes the benchmark packages listed in the state of the art
in functional data analysis in R presented by Febrero-Bande and Oviedo de la Fuente (2012)
and later updated in the website https://rpubs.com/moviedo/fda_usc_introduction, and
also in the state of the art in software for GP regression presented in Roustant, Ginsbourger,
and Deville (2012). To our best knowledge, and as we can see from our classification, funGp
is the first open-source software that offers GP regression with scalar and functional inputs
together with an automatic optimization method to set up the structural parameters of the
model.

The remainder of this paper is structured as follows. In Section 2 we provide the necessary
statistical background. Then, in Section 3 we explain the four fundamental functionalities of
funGp: creation and diagnostic of GP regression models (Section 3.1), prediction (Section 3.2),
simulation (Section 3.3) and model updating (Section 3.4). In Section 4 we show how the
structural parameters of a funGp model can be set up manually. Then, in Section 5 we explain
how to delegate the automatic structural configuration of the model to funGp. In Section 6
we show how the procedures of model construction and structural configuration can be sped
up by means of parallelized implementations available in funGp. Section 7 applies funGp
functionalities to a real case in the domain of marine flooding. Finally, Section 8 concludes.
A compact overview of the package including a list of its main programming functions is
provided in Appendix A.

https://rpubs.com/moviedo/fda_usc_introduction
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Software/tool Ref. Platform Model Functional
inputs

Structural configuration
GP Other Automatic Assisted

GPML [1] MATLAB ✓

GPstuff [2] MATLAB ✓

GPy [3] Python ✓

Scikit-learn [4] Python ✓ ✓ ✓1

GPflow [5] Python ✓

NPFDA [6] R ✓ ✓ ✓2

splinetree [7] R ✓

RRegrs [8] R ✓ ✓3

fda [9] R ✓ ✓

fdaMixed [10] R ✓

fda.usc [11] R ✓ ✓ ✓4

fdapace [12] R ✓ ✓ ✓5

goffda [13] R ✓ ✓

refund [14] R ✓ ✓ ✓5

FDboost [15] R ✓ ✓

flars [16] R ✓ ✓ ✓4

growfunctions [17] R ✓ ✓

RobustGaSP [18] R ✓ ✓4

DiceKriging [19] R ✓

GPFDA [20] R ✓ ✓

kergp [21] R ✓ ✓∗

funGp [22] R ✓ ✓ ✓

Table 1: Main open-source statistical tools either implementing the GP model or providing
functional-input regression. Convention: (✓∗) the user is allowed to pass a custom kernel, but
no explicit treatment of functional inputs is offered; (✓1) automatic selection between various
types of models (e.g., GP, neural networks), but no optimization of structural parameters;
(✓2) automatic bandwidth selection for a kernel k nearest neighbors model; (✓3) performance
statistics for several types of models are provided to help the user select one; (✓4) support
for variable selection; (✓5) automatic selection of the number of principal components in a
PCA projection. [1] Rasmussen and Nickisch (2010), [2] Vanhatalo et al. (2012), [3] GPy (2012),
[4] Pedregosa et al. (2011), [5] De G. Matthews et al. (2017), [6] Ferraty and Vieu (2006), [7] Neufeld and
Heggeseth (2019), [8] Tsiliki et al. (2015), [9] Ramsay et al. (2022), [10] Markussen (2019), [11] Febrero-
Bande and Oviedo de la Fuente (2012), [12] Gajardo et al. (2021), [13] García-Portugués and Álvarez
Liébana (2021), [14] Goldsmith et al. (2020), [15] Brockhaus and Ruegamer (2018), [16] Cheng and
Shi (2016), [17] Savitsky (2016), [18] Gu et al. (2020), [19] Roustant et al. (2012), [20] Shi and Cheng
(2014), [21] Deville et al. (2020), [22] Betancourt et al. (2020c).

2. Statistical background

2.1. Structure of the regression problem

The funGp package considers the approximation of a real-valued function Fsys by means of a
GP regression model. Throughout the article, we discriminate between three possible settings
regarding the inputs of Fsys:

(a) When the function is x 7→ Fsys (x), with x =
(
x(1), . . . , x(ds)

)⊤
and x(k) ∈ R for
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k = 1, . . . , ds, we say that the system has ds scalar inputs, we call x(k) for k = 1, . . . , ds

a scalar input, and we call x a vector of scalar inputs. For simplicity, we may also refer
to x as scalar inputs.

(b) When the function is f 7→ Fsys (f), with f =
(
f (1), . . . , f (df )

)⊤
and f (k) : Tk ⊂ R → R

for k = 1, . . . , df , we say that the system has df functional inputs, we call f (k) for
k = 1, . . . , df a functional input, and we call f a vector of functional inputs. For sim-
plicity, we may also refer to f as functional inputs. We also denote by F the set of all(
f (1), . . . , f (df )

)⊤
with f (k) : Tk ⊂ R → R for k = 1, . . . , df .

(c) When the function is (x, f) 7→ Fsys (x, f), we say that the system has ds scalar inputs
and df functional inputs, and we use the same vocabulary as before for x and f . In
addition, we may refer to this setting as the hybrid-input case.

2.2. Gaussian process regression

Let us consider in the rest of Section 2 the hybrid-input case, of which the scalar- and
functional-input ones are special cases. The goal is to build an approximate model for Fsys
using a learning set D = {(x1, f1, Fsys(x1, f1)), . . . , (xn, fn, Fsys(xn, fn))}. The GP model
treats the fixed function Fsys as a realization of a Gaussian (random) process ξ, specified by
its mean and covariance functions µ and C. Here ξ is assumed to be centered (µ = 0) and it
is thus specified by its covariance function C:

ξ(·) ∼ GP(0, C(·, ·)), (1)

where the kernel C((x, f), (x̃, f̃)) = COV(ξ(x, f), ξ(x̃, f̃)) evaluates the covariance for any
pair of input vectors (x, f), (x̃, f̃) ∈ Rds × F . For instance, if (x, f) = (x̃, f̃), then
C((x, f), (x̃, f̃)) is large and corresponds to perfect correlation. Otherwise, the covariance
tends to zero as the distance between the two inputs increases.
One of the main benefits of GP models lies in the tractability of conditional distributions,
which constitute the core mechanism to perform prediction and simulation. In the GP model,
predicting the value of Fsys at a set of unobserved input points amounts to conditioning ξ on
the learning set D. Conditional on ξ(x1, f1) = Fsys(x1, f1), . . . , ξ(xn, fn) = Fsys(xn, fn), ξ is
a GP with conditional mean values at (X∗, F∗) = (x∗1, . . . , x∗n∗ , f∗1, . . . , f∗n∗) given by the
vector

C((X∗, F∗), (X, F )) C((X, F ), (X, F ))−1 y (2)

and conditional covariance matrix at the same n∗ points given by

C((X∗, F∗), (X∗, F∗))−C((X∗, F∗), (X, F )) C((X, F ), (X, F ))−1 C((X, F ), (X∗, F∗)). (3)

In the expressions above, y = (Fsys(x1, f1), . . . , Fsys(xn, fn))⊤, C((X, F ), (X∗, F∗)) is the
n × n∗ unconditional covariance matrix between the observed values and the values to be
predicted, C((X∗, F∗), (X, F )) = C((X, F ), (X∗, F∗))⊤, C((X, F ), (X, F )) is the n × n un-
conditional covariance matrix of the observed values and C((X∗, F∗), (X∗, F∗)) is the n∗ × n∗
unconditional covariance matrix of the values to be predicted. These formulas can be found
for instance in Rasmussen and Williams (2006).
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The covariance function C is determined by the structural parameters listed in Section 1 (the
state of each scalar and functional input, the DR method, projection dimension and distance
function used for each functional input, and the type of kernel function for the model). For
a given choice of these structural parameters, C is decomposed as a variance σ2 times the
tensor product of a correlation function for the scalar inputs and a correlation function for
the functional inputs:

C((x, f), (x̃, f̃)) = σ2 R(x−x̃; θs) R
(
f −f̃ ; θf

)
,

where θs and θf are the correlation parameters. For any choice of the structural parameters,
the covariance parameters σ2, θs and θf (a.k.a. hyperparameters) are selected by optimization
of the likelihood computed on the learning set. We provide further details on the precise
form of the covariance function implemented in funGp later in Section 4. Complementary
information on our modeling approach can also be found in Betancourt et al. (2020b).

2.3. Optimization of the structural parameters

As explained above, a core feature of funGp is the possibility to optimize the structural
parameters of the regression model to achieve better predictive performance. So far, for GP
models, most research has exclusively focused on variable selection, meaning the optimization
of the state of the input variables (Marrel et al. 2008; Lee and Park 2017; Ben Salem, Bachoc,
Roustant, Gamboa, and Tomaso 2019). This task is typically performed through sensitivity
analysis, which seeks to apportion the variation in the output variable to variations in the
input variables (Saltelli, Tarantola, Campolongo, and Ratto 2004). By contrast, funGp treats
the structural configuration of the model as a combinatorial optimization task, where each
decision variable is linked to one structural parameter and the predictive power of the model
is used as the objective function. By now, funGp offers structural optimization based on
the well known Ant Colony Optimization (ACO) algorithm (Dorigo and Gambardella 1997),
which has been recognized as one of the most successful research lines in the area of swarm
intelligence (Bonabeau, Dorigo, and Theraulaz 1999) and is always listed among the preferred
metaheuristic optimization techniques (Blum 2005). We validated the ability of our ACO-
based algorithm to find high performing model configurations in more than a dozen instances.
The results obtained in various of those tests can be found in Chapters 3-5 of Betancourt
(2020). We describe the functioning of this algorithm more in depth in Section 5.

3. Base funGp functionalities
In this section, we start by explaining the four fundamental procedures available in funGp:
(i) creation and diagnostic of regression models, (ii) prediction of the output at unobserved
input points, (iii) simulation of trajectories from the underlying GP linked to any funGp model,
and (iv) update of an existing model. The workflow for each of these four functionalities is
illustrated through a follow-along example which considers the following analytic black-box
function to regress:

G : [0, 1]2 × F → R,

(x, f) 7→ x(1) + 2x(2) + 4
∫ 1

0
tf (1)(t) dt +

∫ 1

0
f (2)(t) dt,
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with x =
(
x(1), x(2)

)⊤
the scalar inputs, f =

(
f (1), f (2)

)⊤
the functional inputs, and F

the set of pairs of continuous functions from [0, 1] to R. This function corresponds to the
first analytic example in Muehlenstaedt et al. (2017), and is accessible in funGp through
fgp_BB3(). By construction, function G has the first scalar and second functional input
of the same importance, whereas the second scalar input and the first functional input are
comparably influential but are more important than the first scalar and the second functional
input.

3.1. Create a funGp model

Let us start by creating a model. To do so, we must first put the input and output data in
a suitable format. The scalar inputs should be provided as a matrix or data.frame. The
functional inputs should be provided as a list of matrices, one per functional input. When
the data set contains inputs of the form x1, f1, . . . , xn, fn (see Section 2), the scalar input
matrix is n×ds, with line ℓ containing the vector xℓ = (x(1)

ℓ , . . . , x
(ds)
ℓ ). The functional input

list is of size df . In this list, the matrix corresponding to the j-th functional input has size
n×N (j) and its line ℓ contains the vector (f (j)

ℓ (t(j)
1 ), . . . , f

(j)
ℓ (t(j)

N(j))), where t
(j)
1 , . . . , t

(j)
N(j) ∈ Tj

are the time instants at which the input function f
(j)
ℓ is measured. Note that the input

functions can thus also be thought of as time series inputs. Note also that the time instants
should be equispaced, as integrals (see Section 4.4) related to the j-th functional input are
numerically implemented as averages over the N (j) time instants.
The output should be provided as an array or single-column matrix. Here, we will use
synthetic data based on the analytic case defined above, which involves two scalar inputs and
two functional inputs. To generate the scalar input data, we set up a factorial design over
[0, 1]2. For the functional inputs, we assume that f (1) is measured at 10 time instants, f (2) at
22, and then we sample all the values of each function randomly from the standard uniform
U(0, 1). We use an arbitrary number of 25 training points for this example.

R> library("funGp")
R> ## generating input and output data for training
R> set.seed(100)
R> n.tr <- 25
R> sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)),
+ x2 = seq(0,1,length = sqrt(n.tr)))
R> fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10),
+ f2 = matrix(runif(n.tr*22), ncol = 22))
R> sOut <- fgp_BB3(sIn, fIn, n.tr)
R> ## creating a funGp model
R> m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)

** Presampling...

** Optimising hyperparameters...

final value 2.841058
converged



9

1.5 2.0 2.5 3.0 3.5 4.0 4.5

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

Model diagnostic by leave−one−out cross−validation

Observed

P
re

di
ct

ed
Q2loocv = 0.989

Figure 1: Model diagnostic by leave-one-out cross-validation.

** Hyperparameters done!

It should be noted that, above, the function fgpm() does not take any input of type formula,
although it provides a fitted regression model. This is in contrast, for instance, with the
creation of linear models with the function lm() in R. The reason for this difference is that
linear models are parametric and require the user to pre-specify regression functions that are
linearly combined for prediction, for instance monomial functions of the inputs. In contrast,
centered GPs provide a non-parametric regression model, where the predictions are fully data-
driven and not restricted to combinations of user-specified functions. Note that if non-centered
GPs were considered, it would be possible to select the mean functions as linear combinations
of pre-specified functions, which could be done with a formula input to the function fgpm().
This would correspond to using universal Kriging equations instead of simple Kriging ones
(see for instance Roustant et al. 2012) in Section 2. In this case, the predictions would still be
non-parametric, but with a parametric component. This may be a topic of future extension
of the funGp package.
The output of fgpm() is an object of class "fgpm" representing the fitted model. The next
examples in Section 3 will reuse this model to illustrate other functionalities of the package.
A first diagnostic procedure of the model can be made by calling

R> plot(m1)

which will display a calibration plot based on the leave-one-out (LOO) predictions, as shown
in Figure 1. For a design with ntr points, LOO consists in building the model ntr times, each
using a different set of ntr −1 points for training and computing the prediction at the ignored
point. The plot will also display the LOO cross-validated squared correlation coefficient Q2

loocv
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as a measure of the external prediction capability of the model:

Q2
loocv := 1 −

ntr∑
i=1

(yi − ŷi,−i)2

ntr∑
i=1

(yi − ȳ)2
,

with (yi)i=1,...,ntr the vector of observed output values (yi = Fsys(xi, fi) in the hybrid-input
case), ȳ the average of that vector and ŷi,−i the LOO prediction of yi. Since the classical LOO
procedure might be time-expensive, funGp implements the virtual LOO formulas (Dubrule
1983) that require a single model training.
The main features of the model are printed by means of the summary() method:

R> summary(m1)

Gaussian Process Model____________________________________
* Scalar inputs: 2
* Functional inputs: 2

Input Orig. dim Proj. dim Basis Distance
------- ----------- ----------- ----------- ------------

F1 10 3 B-splines L2_bygroup
F2 22 3 B-splines L2_bygroup

* Total data points: 25
* Trained with: 25
* Kernel type: matern5_2
* Hyperparameters:

-> variance: 1.6404
-> length-scale:

ls(X1): 2.0000
ls(X2): 2.0000
ls(F1): 2.5804
ls(F2): 3.0370

__________________________________________________________

The field Proj. dim relates to the possibility of performing DR (dimension reduction) on the
functional inputs. Recall from the introduction that DR allows the projection of a functional
input of dimension q onto a space of lower dimension p while preserving the main statistical
or geometric properties of the variable. This process typically leads to p ≪ q, which improves
the tractability and processing speed of the model. By default, the fgpm() function sets p = 3
for every functional input. However, the user is allowed to pick custom projection dimensions
and also not to project some inputs. The projection method used for each input is indicated
under the field Basis; at this point, the implemented options are B-splines and PCA. Other
methods might be integrated in the near future. The details on the choice of the projection
method and dimension are discussed in Sections 4.2 and 4.3, respectively.
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3.2. Predict using a funGp model

Now let us use our model to make predictions. To do so, we must prepare the input data
corresponding to the coordinates at which the output is to be estimated. The inputs should
have the same format as used for creating the model with the fgpm() function in Section 3.1.
The scalar inputs should be provided as a matrix or data.frame and the functional inputs
should be provided as a list of matrices, one per functional input. This time, each row of an
input matrix must correspond to a prediction point. For the example, we generate prediction
points in a similar way as the training points, i.e., the scalar inputs from a factorial design
over [0, 1]2 and the functional values randomly sampled from the U(0, 1) distribution.

R> ## generating input data for prediction
R> n.pr <- 100
R> sIn.pr <- as.matrix(expand.grid(x1 = seq(0, 1, length = sqrt(n.pr)),
+ x2 = seq(0, 1, length = sqrt(n.pr))))
R> fIn.pr <- list(f1 = matrix(runif(n.pr * 10), ncol = 10),
+ f2 = matrix(runif(n.pr * 22), ncol = 22))

Predictions can be requested by passing a funGp model and the prediction points to the
predict() function. For instance, we can use the model m1 defined in Section 3.1.

R> m1.preds <- predict(m1, sIn.pr = sIn.pr, fIn.pr = fIn.pr)
R> t(data.frame(row.names = names(m1.preds), Length = lengths(m1.preds)))

mean sd lower95 upper95
Length 100 100 100 100

The output of predict() is mainly a list containing the estimated mean, standard deviation,
and limits of the 95% confidence intervals for the output at the prediction points. In practice,
the estimated mean of a GP model is used as the prediction of the output, while the standard
deviation is often interpreted as a measure of the local error of the prediction. Actually the
object returned by the predict() method on a funGp object has S3 class "predict.fgpm"
inheriting from "list". This allows to use the plot() method for this S3 class.

R> plot(m1.preds)

The resulting plot shows the increasingly sorted mean and corresponding confidence intervals
as displayed in Figure 2. This plot can be used as a diagnostic tool for the hyperparameter
optimization process. In this regard, overly wide confidence intervals for a large proportion of
prediction points or missing confidence intervals for points out of the training set, as shown
in Figure 3, might indicate a far-from-optimal solution.
The plot() method can also be used to compare predictions against true output values. For
that aim, the vector of “true” output values at the prediction points should be passed in the
optional argument sOut.pr, along with the object returned by predict().

R> sOut.pr <- fgp_BB3(sIn.pr, fIn.pr, n.pr)
R> plot(m1.preds, sOut.pr = sOut.pr)
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Figure 2: Predictions of a funGp model sorted in increasing order.
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Figure 3: Signs of difficulties during the hyperparameter optimization. Left: the confidence
intervals are too wide. Right: some confidence intervals are too thin.

In this case, a calibration plot will be placed on top of a sorted-output plot as shown in
Figure 4. The calibration plot will display the predictive squared correlation coefficient Q2

hout,
corresponding to the classical coefficient of determination R2 for a test sample (Nilsson,
de Jong, and Smilde 1997). The ordering in the sorted-output plot will be lead by the true
output vector to facilitate the comparison of different models fitting the same data.
By default the predict() function in funGp returns so-called light predictions, which include
the predicted mean, standard deviation and limits of the 95% confidence intervals. Some users
might be interested in full predictions, which also include the unconditional training-prediction
cross-covariance matrix K.tp and the unconditional prediction auto-covariance matrix K.pp,
which can be used for verification purposes (see Appendix B). To make full predictions, it
suffices to set detail = "full" when calling predict(), as shown below.

R> m1.preds <- predict(m1, sIn.pr = sIn.pr, fIn.pr = fIn.pr, detail = "full")
R> t(data.frame(row.names = names(m1.preds), Length = lengths(m1.preds)))

mean sd K.tp K.pp lower95 upper95
Length 100 100 2500 10000 100 100

3.3. Simulate from a funGp model

Conditional simulations in funGp are requested through simulate(), similarly as predictions
are requested through predict(). The scalar inputs should be provided as a matrix or
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Figure 4: Prediction plot using the plot() method on the object returned by predict().

data.frame and the functional inputs should be provided as a list of matrices, one per
functional input. Each row of an input matrix is interpreted as a point at which to provide
simulations. By default, simulate() will perform so-called light simulations, thus returning
a n.rep × n.sm matrix, with n.rep replications at n.sm input points. For this example we
use the model m1 created in Section 3.1. In addition, we take the scalar input values from a
factorial design over [0, 1] and the functional values randomly from U(0, 1).

R> ## generating input points for simulation
R> n.sm <- 100
R> sIn.sm <- as.matrix(expand.grid(x1 = seq(0, 1, length = sqrt(n.sm)),
+ x2 = seq(0, 1, length = sqrt(n.sm))))
R> fIn.sm <- list(f1 = matrix(runif(n.sm * 10), ncol = 10),
+ f2 = matrix(runif(n.sm * 22), ncol = 22))
R> ## making light simulations
R> m1.sims_l <- simulate(m1, nsim = 10, sIn.sm = sIn.sm, fIn.sm = fIn.sm)

Simulations in funGp are plotted by the plot() method for the S3 class "simulate.fgpm".
In contrast to prediction plots, simulation plots do not have the output sorted in increasing
order, but instead in the order given by the simulation coordinates specified by the user. This
plot is illustrated in Figure 5.

R> plot(m1.sims_l)

If requested, simulate() will return a list containing the simulated output, predicted mean,
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Figure 5: Simulations from a funGp model.

standard deviation and limits of the 95% confidence intervals at the specified input coordi-
nates. This corresponds to a full simulation, available through the option detail = "full".

R> m1.sims_f <- simulate(m1, nsim = 10, sIn.sm = sIn.sm, fIn.sm = fIn.sm,
+ detail = "full")
R> t(data.frame(row.names = names(m1.sims_f), Length = lengths(m1.sims_f)))

sims mean sd lower95 upper95
Length 1000 100 100 100 100

Full simulations can be plotted similarly as light ones by means of the plot() function.

R> plot(m1.sims_f)

By default, the full simulation plot will include the predicted mean and limits of the confidence
intervals (Figure 6). A light plot with just the simulated output values can also be requested
for full simulations by setting the argument detail = "light" in the plot() call.

3.4. Update of a funGp model

Models created by funGp can be easily modified at any time by means of the update()
function, which incorporates the following nine updating operations:

1. Deletion of data points;
2. Substitution of data points;
3. Addition of data points;
4. Substitution of the variance hyperparameter;
5. Substitution of the vector of scalar length-scale hyperparameters;
6. Substitution of the vector of functional length-scale hyperparameters;
7. Re-estimation of the variance hyperparameter;
8. Re-estimation of the vector of scalar length-scale hyperparameters;
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Figure 6: Simulations from a funGp model with confidence intervals.

9. Re-estimation of the vector of functional length-scale hyperparameters.

Through update(), funGp exploits the work done for the construction of the original model,
making the updating process much faster than building a new model from zero. The request
of updates is illustrated below through examples based on the model m1 created in Section 3.1.

⋄ Deletion and addition of data points

R> ## deleting two points
R> ind.dl <- sample(1:m1@n.tot, 2)
R> m1up <- update(m1, ind.dl = ind.dl)

--------------
Update summary
--------------
* Complete tasks:

- data deletion

R> ## adding five points
R> n.nw <- 5
R> sIn.nw <- matrix(runif(n.nw * m1@ds), nrow = n.nw)
R> fIn.nw <- list(f1 = matrix(runif(n.nw * 10), ncol = 10),
+ f2 = matrix(runif(n.nw * 22), ncol = 22))
R> sOut.nw <- fgp_BB3(sIn.nw, fIn.nw, n.nw)
R> m1up <- update(m1, sIn.nw = sIn.nw, fIn.nw = fIn.nw, sOut.nw = sOut.nw)

--------------
Update summary
--------------
* Complete tasks:

- data addition
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A more extensive study shows us that the computation time cost is largely decreased when
using the update() function. With 25 additional points, it is reduced by 50%, with 100, it
is reduced by nearly 80%.

⋄ Substitution of data points

R> ## generating substitute input data for update
R> n.sb <- 2
R> sIn.sb <- matrix(runif(n.sb * m1@ds), nrow = n.sb)
R> fIn.sb <- list(f1 = matrix(runif(n.sb * 10), ncol = 10),
+ f2 = matrix(runif(n.sb * 22), ncol = 22))
R> ## generating substituting output data for updating
R> sOut.sb <- fgp_BB3(sIn.sb, fIn.sb, n.sb)
R> ## generating indices for substitution
R> ind.sb <- sample(1:(m1@n.tot), n.sb)
R> ## updating all, the scalar inputs, functional inputs and the output
R> m1up <- update(m1, sIn.sb = sIn.sb, fIn.sb = fIn.sb, sOut.sb = sOut.sb,
+ ind.sb = ind.sb)

--------------
Update summary
--------------
* Complete tasks:

- data substitution

Substituting points only from some of the data structures is also possible.

R> m1up1 <- update(m1, sIn.sb = sIn.sb, ind.sb = ind.sb) # scalar inputs

--------------
Update summary
--------------
* Complete tasks:

- data substitution

R> m1up2 <- update(m1, sOut.sb = sOut.sb, ind.sb = ind.sb) # the output

--------------
Update summary
--------------
* Complete tasks:

- data substitution

⋄ Substitution of hyperparameters

R> ## defining hyperparameters for substitution
R> var.sb <- 3
R> ls_s.sb <- c(2.44, 1.15)
R> ls_f.sb <- c(5.83, 4.12)
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R> ## updating the model
R> m1up <- update(m1, var.sb = var.sb, ls_s.sb = ls_s.sb, ls_f.sb = ls_f.sb)

--------------
Update summary
--------------
* Complete tasks:

- var substitution
- scalar length-scale substitution
- functional length-scale substitution

Substituting only one of the three data structures is possible as well.

R> m1up <- update(m1, var.sb = var.sb) # the variance

--------------
Update summary
--------------
* Complete tasks:

- var substitution

R> m1up <- update(m1, ls_f.sb = ls_f.sb) # functional length-scale

--------------
Update summary
--------------
* Complete tasks:

- functional length-scale substitution

⋄ Re-estimation of hyperparameters

R> m1up <- update(m1, var.re = TRUE) # the variance

** Computing optimal variance...

--------------
Update summary
--------------
* Complete tasks:

- var re-estimation

R> m1up <- update(m1, ls_s.re = TRUE) # scalar length-scale parameters

** Presampling...

** Optimising hyperparameters...

final value 2.841058
converged
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** Hyperparameters done!

--------------
Update summary
--------------
* Complete tasks:

- scalar length-scale re-estimation

R> m1up <- update(m1, ls_s.re = TRUE, ls_f.re = TRUE) # all length-scale

** Presampling...
** Optimising hyperparameters...

final value 2.841058
converged

** Hyperparameters done!

--------------
Update summary
--------------
* Complete tasks:

- scalar length-scale re-estimation
- functional length-scale re-estimation

R> m1up <- update(m1, var.re = TRUE, ls_s.re = TRUE,
+ ls_f.re = TRUE) # all hyperparameters

** Presampling...
** Optimising hyperparameters...

final value 2.841058
converged

** Hyperparameters done!

--------------
Update summary
--------------
* Complete tasks:

- var re-estimation
- scalar length-scale re-estimation
- functional length-scale re-estimation

It is possible to request multiple update tasks in a single call to update(). When doing so,
tasks will be performed in the following order:

data deletion/substitution → data addition → hyperparameter substitution/re-estimation
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4. Customization of a funGp model
Without delving too deep in the technical details, this section covers the choice of a funGp
model through its so-called structural parameters. This set of categorical features (e.g., type of
kernel, projection method) can be given different values in order to produce alternative models
departing from the same input-output data. The interested reader is referred to Betancourt
et al. (2020b) for a formal and more detailed explanation of the underlying theory.

4.1. Kernel family

The selection of a suitable kernel function is something that naturally comes to mind when
working with GP models. At this point, funGp offers the possibility to choose among the
Gaussian, Matérn 5/2 and Matérn 3/2 kernels. This selection can be specified in the fgpm()
call through the argument kertype, which might take a value among "gauss", "matern5_2"
and "matern3_2". See for instance the example below for the Gaussian kernel.

R> n.tr <- 25
R> sIn <- expand.grid(x1 = seq(0, 1, length = sqrt(n.tr)),
+ x2 = seq(0, 1, length = sqrt(n.tr)))
R> fIn <- list(f1 = matrix(runif(n.tr * 10), ncol = 10),
+ f2 = matrix(runif(n.tr * 22), ncol = 22))
R> sOut <- fgp_BB3(sIn, fIn, n.tr)
R> m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut, kerType = "gauss")

** Presampling...

** Optimising hyperparameters...

final value -3.688915
converged

** Hyperparameters done!

By default, fgpm() uses the Matérn 5/2 function, popular in the machine learning community.

4.2. Projection method

In earlier sections we mentioned DR, the process of reducing the dimension of the data
structures in such a way and extent that the model becomes significantly more tractable
while most of its prediction power is retained. A common DR approach used on functional
inputs is to project each input onto a space of lower dimension. This method requires the
constitution of the basis functions defining the projection space for each input, which may
come from diverse families including B-splines (De Boor 1978), PCA (Jolliffe 2002) and PLS
(Papaioannou, Ehre, and Straub 2019), among the most popular ones. The B-splines and PCA
bases are currently implemented in funGp for the projection of functional inputs. This option
is accessible in fgpm() through the f_basType argument, which can be set to "B-splines"
or "PCA". When multiple functional inputs are handled, a custom basis can be selected for
each of them. This is done by passing an array with the selection for each input:
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R> m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut,
+ f_basType = c("B-splines", "PCA"))

** Presampling...

** Optimising hyperparameters...

final value 2.164196
converged

** Hyperparameters done!

If multiple functional inputs are provided, but a single f_basType value is specified, that
selection is used for all the inputs. By default, all functional inputs use a B-splines basis.

4.3. Projection dimension

This parameter is complementary to the projection method discussed above. Ideally, the
projection dimension must be set substantially lower than the original one, but not so low
that too much information is lost. The selection for each input can be specified in the fgpm()
call through the f_pdims argument. Possible values are all the integer numbers from 0 to the
original dimension of each input, with 0 denoting no projection. If multiple functional inputs
are used, an array can be used to specify the selection for each. Below is an example where
the first input is not projected while the second one is projected onto a space of dimension 7.

R> m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut, f_pdims = c(0, 7))

** Presampling...

** Optimising hyperparameters...

final value 13.032659
converged

** Hyperparameters done!

If multiple functional inputs are passed, but a single f_pdims value is specified, that selection
is used for all the inputs. By default, all functional inputs are projected to dimension 3.

4.4. Distance for functions

Kernel-based regression models require the computation of the distance between input coor-
dinates in order to estimate the behavior of the output. This is the case of GP models, which
use such distances to compute the correlation between pairs of observations. A set of scaling
factors called length-scale coefficients are normally used to quantify the rate of change of the
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output in terms of each input. For scenarios with only scalar inputs, the typical is to use one
length-scale parameter per input, which yields the distance

∥x − x̃∥L2,θs
:=

√√√√√√ ds∑
k=1

∥∥∥x(k) − x̃(k)
∥∥∥2

(
θ

(k)
s

)2 , (4)

with ∥·∥ the L2 norm for scalars (i.e., the absolute value), and θs =
(
θ

(1)
s , . . . , θ

(ds)
s

)⊤
the

vector of length-scale parameters for the scalar inputs.
When dealing with functional inputs, the norm ∥·∥ must be replaced by a suitable norm for
functions. Two options are currently implemented in funGp, both based on a projection of
each functional input of the form:

Π(k)(f (k))(t) =
p(k)∑
r=1

α(k)
r B(k)

r (t), (5)

with f (k) a curve of the k-th functional input, with values f (k)(t), t ∈ Tk, B
(k)
r the r-th

basis function used for its projection, α
(k)
r the corresponding projection coefficient, and p(k)

the projection dimension. Note that p(k) is typically significantly smaller than the number
of time instants N (k) (see Section 3) and that when p(k) = N (k), the function f (k) and its
projection coincide at the time instants. Note that with the PCA projection method, the basis
functions B

(k)
1 , . . . , B

(k)
p(k) are taken from the N (k) ordered principal component functions, and

thus for instance B
(k)
1 does not depend on the choice of p(k). In contrast, with the B-spline

basis functions, for each value of p(k), there is a specific set of p(k) basis functions (selected
to cover the entire domain Tk approximately uniformly) and thus in particular B

(k)
1 changes

when p(k) is changed, in general.
The first type of distance (that can also be thought of as a semi-norm) implemented for
functions considers each curve as a whole element:
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with f and f̃ two functional input points, Tk ⊂ R the domain of f (k), and θf =
(
θ

(1)
f , . . . , θ

(df )
f

)⊤

the vector of length-scale parameters for the functional inputs. This distance is identified in
the package as L2_bygroup, since it uses a single length-scale parameter for the group of
projection terms linked to one functional input. Note that when p(k) = N (k) as discussed
above, the integral above is simply the square L2 distance

∫
[f (k)(t) − f̃ (k)(t)]2dt, thus making

(6) similar to (4). Note also that the above integral is numerically handled as an average over
the N (k) time instants.
The second type of distance implemented only considers the projection coefficients, and dis-
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regards the basis functions:

∥∥f − f̃
∥∥

I,θ̇f
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where θ̇f = (θ̇(k)
f,r )1≤r≤p(k),1≤k≤df

denotes the vector of functional length-scale coefficients. This
distance is identified in the package as L2_byindex since it involves one length-scale parameter
per projection index. Using this distance corresponds to a common approach, which is to first
perform the projection and then use each projection coefficient as an individual scalar input
of the model. Remark that if for each k the basis functions B

(k)
1 , . . . , B

(k)
p(k) are orthonormal

and θ
(k)
f = θ̇

(k)
f,1 = · · · = θ̇

(k)
f,p(k) , then (6) and (7) coincide.

Below we show some examples on how to specify the distance for each functional input in the
fgpm() call. For these examples we still consider two functional inputs, f (1) and f (2), with
original dimensions 10 and 22, respectively:

R> n.tr <- 25
R> sIn <- expand.grid(x1 = seq(0, 1, length = sqrt(n.tr)),
+ x2 = seq(0, 1, length = sqrt(n.tr)))
R> fIn <- list(f1 = matrix(runif(n.tr * 10), ncol = 10),
+ f2 = matrix(runif(n.tr * 22), ncol = 22))
R> sOut <- fgp_BB3(sIn, fIn, n.tr)

For the first example, f (1) uses the L2_byindex distance and no projection, which yields 10
length-scale coefficients. On the other hand, f (2) uses the L2_bygroup distance, which yields
a single length-scale coefficient regardless of the projection dimension.

R> m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut, f_pdims = c(0, 5),
+ f_disType = c("L2_byindex", "L2_bygroup"))

** Presampling...

** Optimising hyperparameters...

final value 26.082583
converged

** Hyperparameters done!

Now, in a second example, we use the L2_bygroup distance for both inputs, which yields 2
length-scale coefficients, regardless of the projection dimensions.

R> m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut, f_pdims = c(0, 5),
+ f_disType = "L2_bygroup")

** Presampling...
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** Optimising hyperparameters...

final value 13.759879
converged

** Hyperparameters done!

Finally, we use the L2_byindex distance for both inputs, we use no projection for f (1) and
projection dimension 5 for f (2). This yields a total of 10 + 5 = 15 length-scale coefficients.

R> m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut, f_pdims = c(0, 5),
+ f_disType = "L2_byindex")

** Presampling...

** Optimising hyperparameters...

final value 28.570786
converged

** Hyperparameters done!

If no projection is requested for some input, both distances use the original data instead of the
projection coefficients, and (6) uses the identity as the matrix of discretized basis functions.

5. Automatic structural configuration
The possibility to set up the structural parameters of the model naturally comes with the
non-trivial question of how to choose a good structural configuration, namely: (i) the state
of each input (active or inactive), (ii) the DR method (e.g., PCA, B-splines), (iii) projection
dimension, (iv) distance function used for each functional input, and (v) the type of kernel for
the model (e.g., Gaussian, Matérn 5/2). In this section we introduce the funGp model factory,
a boosting feature that enables the automatic selection of structural parameters seeking for
optimal predictive performance. This tool is accessible through the fgpm_factory() function,
which enables the smart exploration of the solution space composed of all the structural
parameter configurations available under fgpm().

5.1. Ant Colony based model selection

At this point, funGp performs heuristic optimization of structural parameters supported
on ACO-Gp, the Ant Colony based algorithm presented in Betancourt, Bachoc, Klein, and
Gamboa (2020a). In ACO-Gp, virtual ants go through a decision network, selecting at each
node the value for one structural parameter of the model (Figure 7). Each end-to-end path in
the decision network provides a structural configuration, that is a selection of levels of kernel
function, projection basis and distance type, listed in Sections 4.1, 4.2 and 4.4, as well as the
state of each scalar and functional input in the model (active or inactive).
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Figure 7: Decision network used by the ACO-Gp heuristic in funGp. Dist., Dim., and Bas.,
stand for the distance, projection dimension and projection method (basis family) used for
each functional input. The illustration considers ds scalar inputs, df functional inputs, nd

types of distances, nb projection methods and nc kernel functions. The projection dimension
0 denotes no projection. Any end-to-end path over the network provides a candidate model.

The ACO-Gp algorithm is summarized as follows. Each edge in the decision network (a
choice of the next node, see Figure 7) is initialized with a quantity (load) of pheromone. At
each iteration, there is a population of individual ants, each of them going independently
through the decision network. For each ant, each next edge is selected stochastically, an
edge with higher pheromone load being selected with higher probability. Once all the ants
have completed their network paths, each of these paths yields a quantitative model quality
criterion (Q2

loocv or Q2
hout, see below). To complete the iteration, the pheromone load of each

edge is updated. The pheromone loads of edges that belong to ant paths with better quality
criteria are increased more. At the end of all the iterations, the ACO-Gp algorithm thus
provides the list of all the structural configurations corresponding to each ant paths, associated
with their quality criteria. The goal of this algorithm is that some of the configurations in the
list have exceptionally good quality criteria. The calculations of the edge probabilities and
pheromone updates can be tuned with parameters (see below), that enable to select a tradeoff
between exploration (the edge probabilities are less dependent on the pheromone loads and
the pheromone loads are more similar across edges) and exploitation (the converse).

Note that both ACO-Gp and its implementation within funGp are general enough to allow
an easy extension to additional levels of kernel function, projection basis and distance type,
to those listed in Sections 4.1, 4.2 and 4.4, in future versions of the package.

5.2. Getting started with the funGp model factory

The examples in this section are based on the analytic black-box function H from [0, 1]5 × F
to R, with F the set of pairs of continuous functions f = (f (1), f (2))⊤ from [0, 1] to R, defined
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by

H(x, f) =a +
[
b0 + b1x(1) + b2x(1)2 + b3x(2) + b4x(3)

]2
+ cx(2)2x(5)3 cos x(1) + d sin x(4)

+ e sin x(4) ×
∫ 1

0
(1 − t) f (1)(t)dt +

[
h0 + h1x(1)x(5)

]
×

∫ 1

0
tf (2)(t)dt,

with a = 10, b0 = −6, b1 = 5/π, b2 = −5/4π2, b3 = 1, b4 = 4, c = 10(1 − 1/8π), d = −280π,
e = 840π, h0 = 240π and h1 = 3π.
This function is adapted from the second analytic example of Muehlenstaedt et al. (2017).
It is accessible in funGp through the black-box function fgp_BB7(). Here we generate the
scalar and functional input values in a similar way to how we did in the previous sections:

R> set.seed(100)
R> n.tr <- 32
R> sIn <- expand.grid(x1 = seq(0,1,length = n.tr^(1/5)),
+ x2 = seq(0,1,length = n.tr^(1/5)),
+ x3 = seq(0,1,length = n.tr^(1/5)),
+ x4 = seq(0,1,length = n.tr^(1/5)),
+ x5 = seq(0,1,length = n.tr^(1/5)))
R> fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10),
+ f2 = matrix(runif(n.tr*22), ncol = 22))
R> sOut <- fgp_BB7(sIn, fIn, n.tr)

⋄ Getting started
In our first example, we make a basic call to the model factory using its default arguments:

R> xm <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut) # (~10 seconds)

** Initializing decision network...

** Optimizing structural parameters...

** Ants are done ;)

The output of fgpm_factory() is an object of class "Xfgpm" containing the optimized func-
tional model (i.e., an object of class "fgpm" as the one delivered by fgpm()), a statistical
indicator of its prediction power, the selected structural configuration, a record of all the eval-
uated models, among various other types of information. For now, we focus on the @model
slot storing the optimized regression model. Let us first compare this optimized model with
the one produced by fgpm() using its default arguments. This can be done by means of the
plot() function introduced in Section 3.1, which receives an fgpm object as argument.

R> ## optimized model
R> plot(xm@model, main = "")

R> ## model with default fgpm() structural configuration
R> m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)
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default arguments.

Figure 8: Calibration plot for optimized and unoptimized structural configurations.

** Presampling...

** Optimising hyperparameters...

final value 205.640552
converged

** Hyperparameters done!

R> plot(m1, main = "")

The outputs of the two plot() calls are displayed in Figures 8a and 8b, respectively. As can
be seen, right away, just by calling fgpm_factory() with its default arguments, we were able
to find a model of greater quality than the one obtained with the default fgpm() arguments.
Some key points in the light of this first result are:

• While the default structural parameters in fgpm() provide reasonable predictions, they
are not tailored to the data set at hand. In that view, the purpose of having fgpm_factory()
in the package is to be able to generate high quality structural configurations tailored
to any data set that fgpm() could handle.

• The superiority of the model delivered by fgpm_factory() is exclusively fostered by
the optimization of the structural parameter configuration, and is unrelated to the
mechanism for the optimization of the hyperparameters. Each model evaluated by
fgpm_factory() is internally created by a call to fgpm(). Thus, the same mechanism
of hyperparameter optimization is used by both functions.

Let us move on with the exploration of the Xfgpm object delivered by fgpm_factory() using
the plot() method.

R> plot(xm, which = "diag")

R> plot(xm, which = "evol")
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(a) Absolute and relative quality diagnostic plots delivered by plot() with which = "diag" (default
value).
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(b) Model quality evolution plot delivered by plot() with which = "evol".

Figure 9: Figures available for the Xfgpm model delivered by fgpm_factory().

The plot() method has an argument which allowing to choose between a diagnostic plot
and an evolution plot. With the default choice which = "diag" the plot provides infor-
mation on the absolute and relative quality of the selected model (Figure 9a). The choice
which = "evol" illustrates the evolution in quality of the explored models along the opti-
mization (Figure 9b). In the evolution plot, the points below zero usually correspond to
models whose hyperparameters were difficult to optimize. This happens sporadically during
the log-likelihood optimization for GPs due to the non-linearity of the objective function, and
is not an issue that affects exclusively the funGp package.
The quality of the selected model generally increases with the number of iterations completed
by the algorithm. By default, the model factory performs 15 iterations. This quantity can be
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Figure 10: Improved quality of the optimized model using a larger number of iterations.

customized through the setup argument of the function, defined as a list. The way to do
it is by including an element named n.iter in the setup list and giving it the value of the
required number of iterations.

R> set.seed(100)
R> xm <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut,
+ setup = list(n.iter = 30)) # calling the funGp factory (~6.5 seconds)

** Initializing decision network...

** Optimizing structural parameters...

** Ants are done ;)

Figure 10 displays the output of the plot() call on the model obtained with 30 iterations.
In this case, the algorithm explored a larger number of model configurations and was able to
find a model of higher quality than the one obtained with the default 15 iterations (Figure 9).
In the examples above, fgpm_factory() optimized the model structure for Q2

loocv (see Section
3). Validating against external observations is also possible. This type of optimization can
be requested by specifying, through the ind.vl argument, the indices of the data that should
be used for validation. For instance, suppose that we have the same data as in the previous
example, but we want to use about 85% of the points for training and the remaining ones for
validation.

R> ## about 15% of points for validation
R> ind.vl <- sample(seq_len(n.tr), 5)
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R> ## calling the funGp factory (~2 seconds)
R> xm <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, ind.vl = ind.vl)

** Initializing decision network...

** Optimizing structural parameters...

** Ants are done ;)

With this call, the model factory trains each model using all the data except for the points
specified by ind.vl. Once built, each model is used to predict the output at the points ignored
during training, and the predictive squared correlation coefficient Q2

hout (Nilsson et al. 1997)
is computed. This procedure ensures homogeneity in the comparison, since all the models
use the same training and validation sets. To account for the sampling noise, it is possible
to define multiple pairs of training-validation sets. This option is requested to the factory by
passing a matrix instead of an array through the argument ind.vl. Such a matrix should
have a vector of validation indices per column, and as many columns as replicates.

R> ## ~15% of points for validation, 30 replicates
R> ind.vl <- replicate(30, sample(seq_len(n.tr), 5))
R> ## calling the funGp factory (~4 minutes)
R> xm <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, ind.vl = ind.vl)

Note that the calibration plot produced by plot() with which = "diag" will always report
the Q2

loocv statistic, regardless of whether this or the Q2
hout is used for the optimization of the

structural parameters. In contrast, the evolution plot produced by this same function will
display the statistic used during the optimization. When validation indices are provided, the
optimized model stored in the Xfgpm object is one trained with as many points as left once
the specified validation points are removed. When multiple validation sets are specified, the
optimal model is selected by first identifying the structural configuration with largest average
Q2

hout over all the replicates, and then picking among the corresponding models the one with
largest individual Q2

hout.

5.3. Setting up the parameters of the ACO algorithm
Our model selection algorithm relies on a set of parameters typical of any Ant Colony based
method (recall the description of the method in Section 5.1). Those parameters control the
number of individuals and iterations, degree of exploration, rate of convergence, as well as
the learning mechanism in the algorithm. The full list of parameters implemented in the
fgpm_factory() function are listed below; those marked with an asterisk (*) are explained
more thoroughly in Betancourt et al. (2020a).

Initial pheromone load: at the beginning of the algorithm, each edge in the decision net-
work is assigned a quantity indicating its desirability for the ants.

• tao0: initial pheromone load on links pointing out to the selection of a distance type,
a projection basis or a kernel type. Default: 0.1.
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• dop.s: factor to control how likely it is to activate a scalar input. It operates on
a relation of the type A = dop.s * I, where A is the initial pheromone load of links
pointing out to the activation of scalar inputs and I is the initial pheromone load of
links pointing out to their inactivation (which is set equal to tao0). Default: 1.

• dop.f: analogous to dop.s for functional inputs. Default: 1.
• delta.f and dispr.f: shape parameters for the regularization function that determines

the initial pheromone values on the links connecting the L2_byindex distance with the
projection dimension*. Default: 2 and 1.4, respectively.

Local pheromone update: as the ants traverse the decision network, the pheromone load
of the used links is reduced to foment diversification in the structural configurations generated.

• rho.l: pheromone evaporation rate*. Default: 0.1.

Global pheromone update: the algorithm works by iterations, each involving a given num-
ber of ants. After each iteration, an update process is performed to increase the pheromone
load in the links included in the best configurations evaluated so far.

• n.ibest: the algorithm always reinforces the links of the best n.ibest ants of the
current iteration; how many ants should be used? Default: 1.

• u.gbest: should the links of the best ant over all the iterations so far be reinforced
during the global pheromone update as well? Default: FALSE.

• rho.g: learning reinforcement rate*. Default: 0.1.

Population factors: the extent of the search is primarily driven by the number of iterations
and ants per iteration.

• n.iter: number of iterations. Each iteration involves exploration, local pheromone
update, constitution of model configurations, evaluation of performance in prediction,
and system feedback through global pheromone update (recall Section 5.1). Default:
15.

• n.pop: number of ants (structural configurations) per iteration. Default: 10.

Bias strength: ants use one of two rules to select their next node at each step. The first
rule leads the ant through the link with larger pheromone load; the second rule works based
on probabilities which are proportional to the pheromone load on the feasible links. The ants
will randomly chose one of the two rules at each time.

• q0: at each step, each ant will opt for rule 1 with probability q0*. Default: 0.95. For
larger number of input variables, we recommend to slightly reduce it to e.g., 0.90. This
might promote the evaluation of each input in at least some few models.

The default values of ACO-Gp parameters in funGp are based on the setup used by Dorigo and
Gambardella (1997) in the introductory paper of the Ant Colony System. Similar values have
proved to deliver a good performance for ACO-based algorithms in a variety of applications
(see e.g., Li, Soleimani, and Zohal (2019) or Singh, Singh, Kumar, and Biswas 2020). All
the parameters listed above can be customized in a fgpm_factory call through the argument
setup, which should be a list. Below is an example using arbitrary setup values.
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R> ## custom heuristic configuration
R> mysup <- list(tao0 = .15, dop.s = 1.2, dop.f = 1.3, delta.f = 4,
+ dispr.f = 1.1, rho.l = .2, u.gbest = TRUE, n.ibest = 2,
+ rho.g = .08, n.iter = 30, n.pop = 12, q0 = .85)
R> ## calling the funGp factory (~18 seconds)
R> xm <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, setup = mysup)

** Initializing decision network...

** Optimizing structural parameters...

** Ants are done ;)

5.4. Defining the solution space

By default, fgpm_factory() considers feasible all possible combinations of: inputs state,
distance type, projection dimension, basis family, and kernel family. However, the user is
allowed to modify the solution space by imposing a system of constraints. This is achieved
through the ctraints argument, which should be provided as a list. Below is an example
considering the following list of constraints:

• Keep both scalar inputs always active;
• Keep f (2) always active;
• Only use the L2_byindex distance for f (2);
• Input f (2) should be projected onto a space of dimension 4;
• Input f (1) should be projected onto a space of dimension ≤ 5;
• Only use the B-splines projection method for f (1);
• Only test the Matérn 5/2 and Gaussian kernels.

R> ## custom constraints
R> myctr <- list(s_keepOn = c(1, 2), f_keepOn = c(2),
+ f_disTypes = list("2" = c("L2_byindex")),
+ f_fixDims = matrix(c(2, 4), ncol = 1),
+ f_maxDims = matrix(c(1,5), ncol = 1),
+ f_basTypes = list("1" = c("B-splines")),
+ kerTypes = c("matern5_2", "gauss"))
R> ## calling the funGp factory (~15 seconds)
R> xm <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, ctraints = myctr)

The consistency of the explored configurations with the specified constraints can be verified
through the @log.success@sols slot of the Xfgpm object returned by fgpm_factory(). This
slot provides a data.frame with all the configurations successfully built and tested. Their
corresponding prediction quality indicators can be obtained from the @log.success@fitness
slot of the Xfgpm object (either Q2

loocv or Q2
hout, depending on the optimized statistic). This

is summarized by the summary() function as follows.
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R> summary(xm)

5.5. Time based stopping condition

In practice, it might be difficult to know in advance how many iterations will be enough to
find a good configuration. Hence, fgpm_factory() offers an alternative stopping condition
based on processing time. This feature is accessible in fgpm_factory() through the time.lim
argument, which should be provided in seconds.

R> mysup <- list(n.iter = 2000) # a sufficiently large number of iterations
R> xm <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, setup = mysup,
+ time.lim = 60)

** Initializing decision network...

** Optimizing structural parameters...

** Time limit reached, exploration stopped after 60.01 seconds.

** Ants are done ;)

The number of iterations was set large enough to avoid a premature stop of the algorithm.
Once the time limit is reached, the algorithm will attempt to stop as soon as possible, how-
ever, an ongoing model training process (i.e., the hyperparameter optimization) will never be
interrupted. Thus, the actual processing time will often slightly exceed the specified budget.

5.6. Further exploring the Xfgpm object

We close this section by discussing in more detail the information contained in the Xfgpm ob-
ject delivered by fgpm_factory(). Below we provide a list of the slots included in this object.

Optimal structural configuration
• @model: object of class "fgpm" associated to the selected model configuration.
• @structure: data.frame indicating the selected structural configuration.
• @stat and @fitness: type (Q2

loocv or Q2
hout) and value of the performance statistic used

for the optimization of the structural parameters.

Record of explored models
• @log.success: object of class "antsLog" with the structure, function call and perfor-

mance statistic of all the models successfully built and tested during the optimization.
• @log.crashes: object of class "antsLog" with the structure and function calls of all

the models whose fgpm() function call crashed.

Exploration extent
• @n.solspace: number of feasible structural configurations.
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• @n.explored: number of structural configurations successfully built and tested during
the optimization.

Further information
• @details: a list containing: (i) the set of heuristic parameters used; and (ii) the series

of fitness vectors over the iterations of the heuristic.
• @factoryCall: a reminder of the expression used in the fgpm_factory() call.

The @log.success slot opens the possibility for a variety of interesting analyses that could
be performed after the structural configuration. Based on the @log.success@sols compo-
nent, for instance, which contains a data.frame with the structural parameters used in each
explored model, one could seek to identify patterns leading to high quality models. The
@log.success@args component contains analogous information, but in a format that allows
the easy reconstruction of any explored model. We illustrate this possibility with the following
example. We start from the structural optimization using 32 training points.

R> set.seed(100)
R> n.tr <- 32
R> sIn <- expand.grid(x1 = seq(0, 1, length = n.tr^(1/5)),
+ x2 = seq(0, 1, length = n.tr^(1/5)),
+ x3 = seq(0, 1, length = n.tr^(1/5)),
+ x4 = seq(0, 1, length = n.tr^(1/5)),
+ x5 = seq(0, 1, length = n.tr^(1/5)))
R> fIn <- list(f1 = matrix(runif(n.tr * 10), ncol = 10),
+ f2 = matrix(runif(n.tr * 22), ncol = 22))
R> sOut <- fgp_BB7(sIn, fIn, n.tr)
R> xm <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut) # (~10 seconds)

** Initializing decision network...

** Optimizing structural parameters...

** Ants are done ;)

Let us now rebuild the three best models using a larger number of training points. The
modelDef() function returns a parsed R code that can be evaluated to rebuild the model
corresponding to an index given by the ind formal argument. This code is to be evaluated in
an environment containing the required objects sIn, fIn and sOut. By default, eval() uses
the global environment.

R> n.tr <- 243
R> sIn <- expand.grid(x1 = seq(0, 1, length = n.tr^(1/5)),
+ x2 = seq(0, 1, length = n.tr^(1/5)),
+ x3 = seq(0, 1, length = n.tr^(1/5)),
+ x4 = seq(0, 1, length = n.tr^(1/5)),
+ x5 = seq(0, 1, length = n.tr^(1/5)))
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R> fIn <- list(f1 = matrix(runif(n.tr * 10), ncol = 10),
+ f2 = matrix(runif(n.tr * 22), ncol = 22))
R> sOut <- fgp_BB7(sIn, fIn, n.tr)
R> m1 <- eval(modelDef(xm, ind = 1))

** Presampling...

** Optimising hyperparameters...

** Hyperparameters done!

R> m2 <- eval(modelDef(xm, ind = 2))

** Presampling...

** Optimising hyperparameters...

** Hyperparameters done!

R> m3 <- eval(modelDef(xm, ind = 3))

** Presampling...

** Optimising hyperparameters...

** Hyperparameters done!

Remark that m1, m2 and m3 are rebuilt from a different data set from the original data set
used to obtain them when building xm. In the case where these three models were rebuilt
using the same data set as when building xm, the estimated hyperparameters could still take
different values than when building xm, since the hyperparameter optimization precedures use
random initializations.
The three models m1, m2 and m3 can easily be used to make predictions thanks to the
get_active_in() function, which automatically removes the inactive inputs from predic-
tion or simulation data structures based on the fgpm() arguments of the model. To illustrate
this, we start by stacking the three rebuilt models and their arguments into two lists.

R> modStack <- list(m1, m2, m3)
R> argStack <- xm@log.success@args[1:3]

Then, we generate some input points for prediction.

R> n.pr <- 32
R> sIn.pr <- expand.grid(x1 = seq(0, 1, length = n.pr^(1/5)),
+ x2 = seq(0, 1, length = n.pr^(1/5)),
+ x3 = seq(0, 1, length = n.pr^(1/5)),
+ x4 = seq(0, 1, length = n.pr^(1/5)),
+ x5 = seq(0, 1, length = n.pr^(1/5)))
R> fIn.pr <- list(f1 = matrix(runif(n.pr * 10), ncol = 10),
+ f2 = matrix(runif(n.pr * 22), ncol = 22))
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Figure 11: Predictions with models based on the best three structural configurations.

Finally, we perform predictions based on the three models with the aid of get_active_in().

R> preds <- do.call(cbind, Map(function(model, args) {
+ active <- get_active_in(sIn = sIn.pr, fIn = fIn.pr, args)
+ predict(model, sIn.pr = active$sIn.on,
+ fIn.pr = active$fIn.on)$mean
+ }, modStack, argStack))

The resulting predictions are displayed in Figure 11.

6. Parallelization in funGp
Both, the fgpm() and fgpm_factory() functions have been equipped with the ability to
exploit the availability of parallel environments. Now we explain how to access this feature.

6.1. Parallelized hyperparameter optimization

In funGp, the calibration of the hyperparameters of the model is made by likelihood maxi-
mization. For GPs, this corresponds to a nonlinear optimization problem, sometimes strongly
affected by the selection of the starting points. A common way to deal with this issue is to
start the optimization multiple times from different points, which prevents the stagnation at
local optima. This option is accessible in fgpm() through the argument n.starts, which
should be assigned an integer value corresponding to the number of starting points to use.
Below is an example using 10 starting points.

R> m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut, n.starts = 10)

** Presampling...
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** Optimising hyperparameters...

** Parallel backend register not found. Multistart optimizations done in sequence.

** Hyperparameters done!

Since each starting point triggers an independent optimization process, the requested task
can be performed in parallel. To do so, the user must define a parallel processing cluster and
then pass it to fgpm() through the par.clust argument. As a good practice, the cluster
must be stopped right after finishing the requested task in order to prevent memory issues.

R> cl <- parallel::makeCluster(3)
R> m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut,
+ n.starts = 10, par.clust = cl)

** Presampling...

** Optimising hyperparameters...

** Parallel backend register found. Multistart optimizations done in parallel.

final value 1107.918763
converged
final value 1107.918763
converged
final value 1107.918763
converged
final value 1107.918763
converged
final value 1107.918763
converged
iter 10 value 1107.918763
final value 1107.918763
converged
final value 1107.918763
converged
final value 1107.918763
converged
final value 1107.918763
converged
final value 1107.918763
converged

** Hyperparameters done!

R> parallel::stopCluster(cl)
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6.2. Parallelized structural optimization

During a call to fgpm_factory(), each time all the ants of one iteration complete a feasible
path, the corresponding models are built and evaluated in an independent fashion. Thus, this
task can be performed in parallel. The way to request this to fgpm_factory() is identical to
how it is requested to fgpm(). The user must define a parallel processing cluster and then
pass it to fgpm_factory() through the par.clust argument, as shown below.

R> cl <- parallel::makeCluster(3)
R> xm.par <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, par.clust = cl)
R> parallel::stopCluster(cl)

7. Flooding real case application
Here we apply the functionalities of funGp to a real case that is related to the problem of
setting up a rapid FEWS for coastal flooding at Gâvres, France (Idier et al. 2021). The
modeling of coastal flooding at the proper resolution (metric) to predict floods in urban areas
and account precisely for processes such as wave overtopping is so time consuming (i.e., the
computation time is hardly smaller than the real time) that forecasting efforts are greatly
hindered. To overcome this difficulty, one solution relies on the construction of metamodels
by following the approach described by (Betancourt et al. 2020b).
We focus here on the prediction of the maximum value of the flooded area over time (denoted
Y ). See histogram in Figure 12.

R> set.seed(100)
R> load("Replication_data/FloodingCase.RData")
R> df <- length(Xf) ## Number of functional inputs
R> n <- nrow(Xs)
R> hist(Y, xlab = "Flooded Area (m^2)", main = "Model outputs")

Seven offshore meteo-oceanic forcing conditions depicted in Figure 13 are considered, namely

• the tide;

• the surge;

• the significant wave height, denoted Hsx and Hsy (projected onto the Cartesian x- and
y-axis by means of the wave direction);

• the peak period of waves;

• the wind speed at 10m height, denoted Ux and Uy (projected onto the Cartesian x- and
y-axis by means of the wind direction).

Each time series is sampled every 10 minutes (37 time steps) over the time interval (HT - 3
hours to HT + 3 hours), with HT referring to high tide.
To ease the analysis, the time-varying offshore meteo-oceanic forcings have been decomposed
as A0 + fn(t) where A0 is a constant value over time (corresponding to the tide peak, i.e., the
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Figure 12: Histogram of flooded area (m2).

maximum value of the tide over the considered time interval, and to the temporal average for
the other variables), and fn(t) is a time-varying signal after removal of A0.
In total the inputs of the GP model include seven fn(t) time series, eight scalar inputs (the
seven A0 scalar inputs as well as one additional scalar input corresponding to the mean sea
level msl).
The random selection of the inputs is based on the procedure described by Idier et al. (2021,
Sect. 2.5.2). A total number of 174 numerical experiments were performed. To showcase
funGp functionalities, we use 100 numerical experiments for the training and 74 for the
predictions.
In this example, we set up a GP model with default parameters i.e., a "matern5_2" kernel,
a "L2_bygroup" distance to be used for each functional coordinates within the covariance
function of the GP, and a projection using B-splines basis functions onto a 3-dimensional
space.

R> ## definition of the training and test samples
R> id.train <- sample(1:n, 100, replace = FALSE)
R> id.test <- (1:n)[-id.train]
R>
R> Xs.train <- Xs[id.train, ]
R> Xs.test <- Xs[id.test, ]
R>
R> Xf.train <- Xf.test <- list()
R> for (i in 1:df){
+ Xf.train[[i]] <- Xf[[i]][id.train, ]
+ Xf.test[[i]] <- Xf[[i]][id.test, ]
+ }
R> Y.train <- Y[id.train]
R> Y.test <- Y[id.test]
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Figure 13: Functional inputs of the flooding case.

R>
R> ## fitting
R> m1 <- fgpm(sIn = Xs.train, fIn = Xf.train, sOut = Y.train)

** Presampling...
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Figure 14: Leave-one-out cross validation diagnostic for the flooding application case.

** Optimising hyperparameters...

iter 10 value 1182.014146
iter 20 value 1178.110135
iter 30 value 1173.998820
iter 40 value 1172.713992
iter 50 value 1171.349083
iter 60 value 1169.167690
iter 70 value 1169.000458
iter 80 value 1168.063292
iter 90 value 1167.251745
iter 100 value 1167.098221
final value 1167.042455
stopped after 101 iterations

** Hyperparameters done!

We first check the predictive capability of the constructed GP model using leave-one-out
cross-validation. Figure 14 compares the observed and predicted Y values and shows a very
satisfactory agreement with a Q2

loocv >0.95.

R> plot(m1)

An alternative option is to check the predictive capability by means of a dataset of independent
model results (Figure 15). The predictions can be performed by using the kriging mean plotted
together with the prediction intervals at 0.95.

R> m1.preds <- predict(m1, sIn.pr = Xs.test, fIn.pr = Xf.test)
R> plot(m1.preds)
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Figure 15: Predictions on independent samples for the flooding application case.

Due to the many assumptions (related to the account for 8 scalar and 7 functional inputs)
to be made to parameterize the GP model, we apply the ACO-Gp algorithm (with default
parameters) to automatically select the structural parameters depending on the predictive
performance. Interestingly, the examination of the best five solutions (with Q2

loocv ranging
from 0.952 to 0.964, see Figure 16) indicates that the wind characteristics (scalar inputs
denoted X7 and X8, and functional inputs denoted F6 and F7) are not included in the
structure of the GP models. These models majoritarily include four time series, namely the
tide, Hsx, Hsy and Tp. The next line of code was executed to call the model factory, and it
is here commented because its execution time was significant.

R> ## xm <- fgpm_factory(sIn = Xs.train, fIn = Xf.train, sOut = Y.train)
R> # plotting the solution
R> plot(xm, which = "diag")

R> # 6 best solutions
R> ## head(xm@log.success@sols, "Q2" = xm@log.success@fitness)
R> summary(xm, n = 5)

State of inputs
X1 X2 X3 X4 X5 X6 X7 X8 F1 F2 F3 F4 F5 F6 F7 Kern Q2

1 x x x x x x x x x x mat32 0.964
2 x x x x x x x x x x mat32 0.963
3 x x x x x x x x x mat32 0.961
4 x x x x x x x x x x mat32 0.957
5 x x x x x x x x mat32 0.952
Details for functional inputs

F1 D_F1 Dim_F1 Bas_F1 F2 D_F2 Dim_F2 Bas_F2 F3 D_F3 Dim_F3 Bas_F3
1 x grp 29 PCA -- - -- x grp 23 Bspl
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Figure 16: Best solutions resulting from the ACO-Gp algorithm applied to the flooding case.

2 x idx 1 Bspl -- - -- x grp 30 Bspl
3 x idx 1 Bspl -- - -- x grp 23 PCA
4 x grp 29 PCA -- - -- x idx 2 Bspl
5 x grp 29 PCA -- - -- x grp 23 Bspl

F4 D_F4 Dim_F4 Bas_F4 F5 D_F5 Dim_F5 Bas_F5 F6 D_F6 Dim_F6 Bas_F6
1 x grp 26 Bspl x grp 20 PCA -- - --
2 x grp 26 Bspl x grp 20 PCA -- - --
3 -- - -- x grp 20 PCA -- - --
4 x grp 26 Bspl x grp 20 PCA -- - --
5 x grp 26 Bspl -- - -- -- - --

F7 D_F7 Dim_F7 Bas_F7 Kern Q2
1 -- - -- mat32 0.964
2 -- - -- mat32 0.963
3 -- - -- mat32 0.961
4 -- - -- mat32 0.957
5 -- - -- mat32 0.952

8. Closing discussion
This article introduced the R package funGp, which allows the treatment of regression prob-
lems involving multiple scalar and/or functional inputs, and a scalar output, through the
fairly general GP model. In addition to being one of the few packages providing functional-
input regression under this type of model, funGp features the ability to automatically set
the structural parameters of the model for prediction performance. So far, this is a distinc-
tive characteristic rarely found in current open-source regression software. The package is
also equipped with multiple plotting functions that enable the quick inspection of the out-
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puts delivered by its main functions: fgpm(), fgpm_factory(), predict() and simulate().
Moreover, parallelization has been incorporated as an efficiency booster for the procedures of
model construction and structural optimization. The robustness and stability of funGp has
been validated on numerous analytic examples and on the real life early warning application.
We envisage the extension of the package in various directions, including the addition of
complementary levels of the structural parameters already available (e.g., other projection
methods, distance functions and kernel functions), incorporation of additional structural pa-
rameters (e.g., type of transformation function for the output) and implementation of alterna-
tive structural optimization methods (e.g., brute-force search and Genetic Algorithms). Our
code implementations were made with these potential extensions in mind and thus, the pack-
age is architectured under the principle of modularity for easy extension. Further potential
extensions, both in terms of methodology and implementation, are possible. It would be valu-
able to allow for functional outputs and for multi-dimensional functional inputs, for instance
two-dimensional maps numerically given by matrices. For multi-dimensional functional in-
puts, tensor product splines may be considered. As discussed in Section 3, an extension of
the funGp package from simple to universal Kriging could be investigated, hence allowing
to include a trend in the GP model. Note also that the automatic structural configuration
procedure of Section 5 currently aims at returning a “best” structural configuration. Since
close-to-optimal predictive performances could be achieved by very different structural con-
figurations, an interesting extension of the funGp package could be to carry out Bayesian
model averaging of multiple structural configurations, in the spirit of Zhang and Taflanidis
(2019). Another extension perspective of the funGp package is to allow for covariance com-
putations for functional inputs based on L2 norms applied directly to the functions rather
than their projections, and weighted by functional correlation lengths. This would provide
new distances, sharing commonalities with (6), but where θ

(k)
f would be a function. The

funGp package is available from GitHub (https://github.com/djbetancourt-gh/funGp)
and CRAN (https://cran.r-project.org/package=funGp). We encourage the community
to make contributions in the proposed topics or any other found relevant.
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A. funGp at a glance

The funGp package allows the easy construction of GP regression models with special treat-
ment of functional inputs, an aspect scarcely treated by other R packages. The package is
constituted by two major modules which are described in the paragraphs that follow.

⋄ Regression: this module is responsible for the core functionalities of the package: (i) cre-
ation and diagnostic of GP regression models, (ii) prediction at unobserved input coordinates,
(iii) conditional simulation, and (iv) model updating. These procedures are implemented in
the five functions listed in Table 2. All the listed functions are set up with default arguments
that allow an effortless first interaction with the package. However, high degree of customiza-
tion is enabled to let the users get greater control over the outputs and extend the scope
of the analysis as they become familiar with the overall functioning of the package. As an
example, the fgpm() function allows the customization of the so-called structural parameters
and the definition of custom hyperparameters, among other features.

Function Type Description
fgpm() function Creation of GP regression models. Outputs an object of S4

class "fgpm" representing the fitted model
predict() method Prediction at new input points. Delivers the estimated out-

put values and corresponding uncertainty at specified points
simulate() method Conditional simulation. Delivers the simulated output val-

ues and corresponding uncertainty at specified points
update() method Efficient model update. Allows to add, delete or substitute

data, and also to replace or re-estimate hyperparameters
plot() method Diagnostic plot for GP model; receives an fgpm object as

main argument

Table 2: Base funGp functionalities related to the class "fgpm".

⋄ Structural optimization: the set of functions listed in Table 2 could constitute by them-
selves a regression package. However, funGp goes further and incorporates the automatic
calibration of structural parameters of the model, a functionality widely neglected by other
regression tools. Structural optimization enables the efficient exploration of the space of pos-
sible model configurations, seeking for optimal predictive performance. Diagnostic plots are
provided for a quick evaluation of the selected model and the evolution of the optimization.
The main procedures of this module are implemented in the three functions listed in Table 3.
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Function Type Description
fgpm_factory() function Structural optimization of GP models. Outputs an object

of S4 class "Xfgpm" containing the optimized model along
with records from the optimization process

plot() method which = "diag": information on the absolute and relative
quality of the selected model

plot() method which = "evol": verification plot showing the evolution in
the quality of the explored structural configurations along
the optimization

summary() method Lists the evaluated structural configurations with their pre-
diction performances

Table 3: Complementary funGp functionnalities related to the class "Xfgpm" enabling struc-
tural optimization.

B. Manual prediction
As explained in Section 3.2, GP predictions are accessible in funGp through the predict()
method. However, as a verification/inspection procedure, it is also possible to recreate the
different data structures necessary for making the predictions manually based on the equations
(2) and (3) of Gaussian conditioning. The recovery of these data structures is explained below,
departing from an hypothetical model m1 created with fgpm().

• Vector of observed output values y: this vector is stored at the @sOut slot of the fgpm
object associated with the model.

R> y <- m1@sOut

• Unconditional n × n∗ training-prediction cross-covariance matrix C((X, F ), (X∗, F∗)) and
n∗ × n∗ prediction auto-covariance matrix C((X∗, F∗), (X∗, F∗)): these matrices can be
obtained from a full prediction generated by predict(), as shown below.

R> preds <- predict(m1, sIn.pr = sIn.pr, fIn.pr = fIn.pr, detail = "full")
R> K.tp <- preds$K.tp
R> K.pp <- preds$K.pp

• Unconditional n × n training auto-covariance matrix C((X, F ), (X, F )): this matrix can
be regenerated from the lower triangular matrix of its LU decomposition, stored at the
@preMats$L slot of the model.

R> K.tt <- tcrossprod(m1@preMats$L)

Once the y, K.tp, K.pp and K.tt data structures have been recovered, the predicted output
values and corresponding confidence intervals can be reproduced based on Gaussian condi-
tioning as follows.

R> ## predictive mean and variance
R> y.pr <- t(K.tp) %*% solve(K.tt) %*% y
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R> v.pr <- diag(K.pp - t(K.tp) %*% solve(K.tt) %*% K.tp)
R> ## limits of 95% confidence intervals
R> ll <- y.pr - 1.96 * sqrt(v.pr)
R> ul <- y.pr + 1.96 * sqrt(v.pr)

We remark that this way of computing GP predictions is computationally inefficient, and is
only recommended for purposes of verification and examination of the involved data struc-
tures. Predictions and simulations performed through the predict() and simulate() func-
tions in funGp are highly optimized for computational efficiency.
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