
HAL Id: hal-02536624
https://hal.science/hal-02536624v1

Preprint submitted on 8 Apr 2020 (v1), last revised 28 Oct 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gaussian Process Regression for Scalar and Functional
Inputs with funGp - The in-depth tour

José Daniel Betancourt, François Bachoc, Thierry Klein

To cite this version:
José Daniel Betancourt, François Bachoc, Thierry Klein. Gaussian Process Regression for Scalar and
Functional Inputs with funGp - The in-depth tour. 2020. �hal-02536624v1�

https://hal.science/hal-02536624v1
https://hal.archives-ouvertes.fr

Gaussian Process Regression for Scalar and
Functional Inputs with funGp

The in-depth tour

This is a comprehensive guide to creating and manipulating Gaussian process regression mod-
els using the R package funGp. It illustrates through examples, the usage of every function
in the package and each example is accompanied by a code snippet to shorten the learning
curve through direct usage of the functions.

Authors: José Betancourt, François Bachoc, Thierry Klein.
Contributors: Déborah Idier, Jérémy Rhomer.

This manual is for funGp, version 0.1.0 (2020), downloadable from CRAN and GitHub.

Recommended citation: Betancourt, J., Bachoc, F., Klein, T. (2020). R Package Manual:
Gaussian Process Regression for Scalar and Functional Inputs with funGp - The in-depth tour.
RISCOPE project.

funGp was first developed in the frame of the RISCOPE research project, funded by the
French Agence Nationale de la Recherche (ANR) for the period 2017-2021 (ANR project No.
16CE04-0011, RISCOPE.fr), and certified by SAFE Cluster.

1

https://github.com/djbetancourt-gh/funGp.git
https://perso.math.univ-toulouse.fr/riscope/

What does funGp bring to the table?
• Flexible modeling of functional-input regression problems

A narrow class of R packages address regression with functional inputs (e.g., time
series). The vast majority of those packages rely on models limited by strong assump-
tions on the relationship between inputs and outputs (e.g., Linear, Generalized Linear
or Generalized Additive Models). The few ones that suppress these limitations through
more general models (e.g., Kernel Smoothing) often require the output to be a function
defined over the same domain as the functional inputs, which is frequently not the case
and leaves the scalar-output problem unresolved. funGp tackles regression problems
involving scalar and/or functional inputs and a scalar output through the fairly general
Gaussian process model. This is a non-parametric type of model which removes any
need to set a particular input-output parametric relationship in advance, and learns
this information directly from the data.

• Built-in dimension reduction
A common practice when working with functional data is to start by making a projec-
tion of it onto a space of lower dimension, a procedure known as dimension reduction
(DR). This allows to reduce the complexity of the model while preserving the main
statistical or geometric characteristics of the functions. funGp is self-contained in the
sense that it does not depend on other packages to perform DR on the functional in-
puts. At this point, we provide projection onto B-splines or PCA bases. The package
was designed to enable a straightforward extension to other bases in further versions.

• Heuristic model selection
The possibilities offered by a package often translate into alternative model structures.
Just to give an example, most packages that support Gaussian process models allow to
select the kernel function from a set of standard families (e.g., Gaussian, Matérn 5/2,
Matérn 3/2). However, decision support is rarely offered in order to select a suitable
configuration for the problem at hand. We acknowledge the potential impact of such
a decision in the performance of the model [1, 2] and also the practical difficulties that
arise from offering possibilities without decision support. Thus, funGp was equipped
with a model selection functionality that allows the user to automatically search for a
good combination of the so-called structural parameters of the model. At this point,
an Ant-Colony-based algorithm is implemented to perform this task.

• All-level-user-friendly
We aim funGp to be a helpful tool for users within a wide range of knowledge in
mathematics or statistics. Thus, we have made an effort to make simple and intuitive
the way the package work. Most of the arguments in the functions have been provided
default values so that the user can start experimenting with them at its own pace.
Once you get ready, you will be able to start playing with the nugget effect, basis type,
kernel type, multi-start option, parallelization and even the parameters of the heuristic
for model selection. However, to have your first model built by funGp, the only thing
you need to provide is your data.

2

Contents
In-code notation . 4

1 Base functionalities 5
1.1 Create a funGp model . 5
1.2 Predict using a funGp model . 7
1.3 Simulate from a funGp model . 10
1.4 Update a funGp model . 12

2 Model customizations 14
2.1 Kernel family . 15
2.2 Projection basis . 15
2.3 Projection dimension . 16
2.4 Distance for functions . 16

3 Heuristic model selection 18
3.1 Concept . 18
3.2 Using the model factory in funGp . 19

4 Parallelization in funGp 28
4.1 Parallelized hyperparameters optimization . 29
4.2 Parallelized model selection . 30

Closing discussion 30

Acknowledgements 31

3

In-code notation
n.tot Number of points used for prediction

n.tr Number of points using for learning of hyperparameters

n.pr Number of prediction points

n.sm Number of simulation points

ds Number of scalar inputs

df Number of functional inputs

k Array of dimensions for the df functional inputs

p Array of projection dimensions for the functional inputs

K.tt Training auto-covariance matrix

K.pp prediction auto-covariance matrix

K.tp Training-prediction cross-covariance matrix

L Lower diagonal matrix of a Cholesky decomposition

4

1 Base functionalities
This section starts from the bottom with the fundamental tasks implemented in funGp.
Those are: (i) creation of regression models, (ii) prediction of the output at unobserved
input points, (iii) simulation of trajectories from the underlying Gaussian process linked to
any funGp model, and (iv) updating an existing model.

The workflow for each of the four functionalities listed above is illustrated through a follow-
along example based on the analytic black-box function

G1 : [0, 1]2 ×F2 → R,

(x,f) 7→ x(1) + 2x(2) + 4
∫ 1

0
tf (1)(t) dt+

∫ 1

0
f (2)(t) dt,

with x =
(
x(1), x(2), x(3), x(4), x(5)

)
the scalar inputs, f =

(
f (1), f (2)

)
the functional inputs,

and F the set of continuous functions from [0, 1] to R. This function corresponds to the first
analytic example presented in [3], and is accessible in funGp through the black-box function
fgp_BB3.

All code snippets are copy/paste-able directly to R.

1.1 Create a funGp model
Let us start by creating a model. To do so, we must first put the input and output data in
a suitable format. The scalar inputs should be provided as a matrix or data.frame. The
functional inputs should be provided as a list of matrices, one per functional input. The
output should be provided as an array or single-colum matrix. In the case of the inputs, each
row of a matrix must correspond to an input point. Here, we will use synthetic data based
on the analytic case defined in the introductory paragraph of this section, which involves two
scalar inputs and two functional inputs. To generate the input data, we took the scalar input
points from a factorial design over [0, 1]. For the functional inputs we assumed that those
were measured at 10 and 22 time instants. This, just to emphasize the fact that functional
inputs with heterogeneous discretization are valid funGp inputs. Just to have some data to
work with, we sampled all the values of each function randomly from U(0, 1). We also picked
an arbitrary number of 25 training points.

�
generating input data for training
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))

generating output data for training
sOut <- fgp_BB3(sIn, fIn, n.tr)

creating a funGp model
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)

R output:
** Presampling...
** Optimising...
final value 2.841058 # loglikelihood value
converged� �

5

The output of the fgpm function is an object of class fgpm. A calibration plot based on the
Leave-one-out (LOO) predictions.

�
plotting the model
plotLOO(m1)� �

For a design with n.tr points, LOO consists of removing one observation from the design
at a time, each time training the model using the remaining n.tr − 1 points and computing
the prediction at the ignored point. In its basic version, LOO results expensive as it requires
training n.tr models using almost all the data each time. For Gaussian processes, the LOO
predictions are often approximated based on the virtual LOO formulas [4, 5], which require
a single model training.

The model diagnostic plot also displays a measure of the external prediction capability of
the model. It corresponds to the LOO cross-validated squared correlation coefficient Q2

loocv,
defined as:

Q2
loocv := 1−

n.tr∑
i=1

(yi − ŷi,−i)2

n.tr∑
i=1

(yi − ȳ)2
,

with (yi)i=1,...,n.tr the vector of observed output values, ȳ the average of that vector and ŷi,−i

the LOO prediction of yi.

6

Main features of the model are printed when calling the show function on the model:

�
printing the model
m1 # equivalent to show(m1)

R output:
Gaussian Process Model____________________________________

* Scalar inputs: 2
* Functional inputs: 2

Input	Orig. dim	Proj. dim	Basis	Distance
F1	10	3	B-splines	L2_bygroup
F2	22	3	B-splines	L2_bygroup

* Total data points: 25
* Trained with: 25

* Kernel type: matern5_2
* Hyperparameters:

-> variance: 1.6404
-> length-scale:

ls(X1): 2.0000
ls(X2): 2.0000
ls(F1): 2.5804
ls(F2): 3.0370

__� �
The field Proj. dim is related to the possibility of requesting DR1 for the functional inputs.
DR allows to project a functional input of dimension ki onto a space of lower dimension pi

while preserving the main statistical or geometric properties of the variable [6, 7]. This process
often leads to pi << ki, which improves the tractability and processing speed of the model.
By default, the fgpm function sets pi = 3 for all the functional inputs. The user is allowed
to pick a custom projection dimension for each input and also to do not project some of
them. Different projection methods (basis families) are also available. The projection method
used for each input is indicated under the field Basis. The manipulation of the projection
dimension and projection method are discussed in more detail in Section 2.2 and Section 2.3,
respectively.

1.2 Predict using a funGp model
Now let us use our model to make predictions. To do so, we must prepare the input data
corresponding to the coordinates at which the output is to be estimated. The inputs should
have the same format as used for creating the model with the fgpm function in Section 1.1.
The scalar inputs should be provided as a matrix or data.frame and the functional inputs
should be provided as a list of matrices, one per functional input. This time, each row of
an input matrix must correspond to a prediction point.

For the example, we generated the input points in a similar way as for training, i.e., the scalar
inputs from a factorial design over [0, 1] and the functional values randomly from U(0, 1).

1DR: dimension reduction.

7

�
building the model
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)

generating input data for prediction
n.pr <- 100
sIn.pr <- as.matrix(expand.grid(x1 = seq(0,1,length = sqrt(n.pr)), x2 = seq(0,1,length = sqrt(n.pr))))
fIn.pr <- list(f1 = matrix(runif(n.pr*10), ncol = 10), matrix(runif(n.pr*22), ncol = 22))

making predictions
m1.preds <- predict(m1, sIn.pr = sIn.pr, fIn.pr = fIn.pr)

checking content of the list
summary(m1.preds)

R output:
Length Class Mode

mean 100 -none- numeric
sd 100 -none- numeric
lower95 100 -none- numeric
upper95 100 -none- numeric� �
The output of predict is a list containing the estimated mean and standard deviation,
along with the lower and upper limits of the 95% confidence intervals for the output at the
prediction points. In practice, the estimated mean of a Gaussian process model is used as
the prediction of the output while the standard deviation is often interpreted as a measure
of the local error of the prediction. Predictions of a funGp model can be easily plotted by
calling the plotPreds function on the list returned by predict. Note that the model must
also be sent in the function call.

�
plotting predictions
plotPreds(m1, preds = m1.preds)� �

8

With functional inputs, the simple Out-vs-In scatter plots are no longer an option. Thus,
plotPreds displays the increasingly sorted mean and corresponding confidence intervals in-
stead. This plot can be used as a diagnostic tool for identifying potential problems related
to the hyperparameters optimization, for instance:

• Excessively wide confidence intervals could indicate a far-from-optimal hyperparame-
ters’ estimation, especially if it happens for all or a large number of prediction points;

• When a prediction point is included in the training set, the model interpolates the
output and no confidence interval is displayed for that point. In any other case, missing
confidence intervals may be indicative of far-from-optimal hyperparameters’ estimation.

Figures illustrating the two aforementioned potential scenarios are displayed below.

The plotPreds function can also be used to compare predictions against true output values.
In that case, an observed-vs-predicted calibration plot will be added on top of the sorted-
output plot shown before.

�
validating against true output
sOut.pr <- fgp_BB3(sIn.pr, fIn.pr, n.pr)
plotPreds(m1, m1.preds, sOut.pr)� �

9

The calibration plot made by plotPreds will display the predictive squared correlation co-
efficient Q2

hout, which corresponds to the classical coefficient of determination R2 for a test
sample, i.e., for prediction residuals [8]. On the other hand, the ordering in the sorted-output
plot will be lead by the true output vector instead of the predicted mean vector. This way
of sorting is convenient for comparing results of different models fitting the same data. Ei-
ther the calibration plot or the sorted-output plot can be displayed alone by specifying the
argument sortp = FALSE or calib = FALSE, respectively, when calling plotPreds.

Note: by default the predict function in funGp returns so-called light predictions, which in-
clude the predicted mean, standard deviation and limits of the 95% confidence intervals. Some
users might be interested in full predictions, which also include the training-prediction cross-
covariance matrix K.tp and the prediction auto-covariance matrix K.pp. To make full predic-
tions, it suffices to set detail = "full" when calling predict. The behavior of plotPreds
is not affected by this selection.

�
making full predictions
m1.preds_f <- predict(m1, sIn.pr = sIn.pr, fIn.pr = fIn.pr, detail = "full")

checking content of the list
summary(m1.preds_f)

R output:
Length Class Mode

mean 100 -none- numeric
sd 100 -none- numeric
K.tp 2500 -none- numeric
K.pp 10000 -none- numeric
lower95 100 -none- numeric
upper95 100 -none- numeric� �
1.3 Simulate from a funGp model
Simulations in funGp are requested through the simulate function, in a similar way to pre-
dictions. The scalar inputs should be provided as a matrix or data.frame and the functional
inputs should be provided as a list of matrices, one per functional input. Each row of an
input matrix will be interpreted as a point at which to provide simulations. By default,
simulate will perform so-called light simulations, returning a n.rep × n.sm matrix, with
n.rep the number of replications to produce at each input point and n.sm the number of
input points. For the example we took the scalar inputs from a factorial design over [0,1] and
the functional values randomly from U(0, 1).

�
building the model
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)

generating input data for simulation
n.sm <- 100
sIn.sm <- as.matrix(expand.grid(x1 = seq(0,1,length = sqrt(n.sm)), x2 = seq(0,1,length = sqrt(n.sm))))
fIn.sm <- list(f1 = matrix(runif(n.sm*10), ncol = 10), matrix(runif(n.sm*22), ncol = 22))

making light simulations
m1.sims_l <- simulate(m1, nsim = 10, sIn.sm = sIn.sm, fIn.sm = fIn.sm)� �

10

Simulations in funGp are plotted by the plotSims function. In contrast to prediction plots,
simulation plots do not have the output sorted in increasing order, but instead, the simulation
index corresponding to the input coordinates specified by the user is set in the abscissa.

�
plotting light simulations
plotSims(m1, m1.sims_l)� �

If requested, simulate will return a list containing the simulated output, predicted mean,
standard deviation and limits of the 95% confidence intervals at the specified input coordi-
nates. This corresponds to a full simulation, available through the option detail = "full".

�
making full simulations
m1.sims_f <- simulate(m1, nsim = 10, sIn.sm = sIn.sm, fIn.sm = fIn.sm, detail = "full")

checking content of the list
summary(m1.sims_f)

R output:
Length Class Mode

sims 1000 -none- numeric
mean 100 -none- numeric
sd 100 -none- numeric
lower95 100 -none- numeric
upper95 100 -none- numeric� �
Full simulations can also be plotted using the plotSims function. By default, the plot of full
simulations will include the predicted mean and limits of the confidence intervals.

�
plotting full simulations in full mode
plotSims(m1, m1.sims_f)� �

11

A light plot without the mean and confidence intervals is also available for full simulations
by setting detail = "light" when calling plotSims.

1.4 Update a funGp model
As simple as it might appear, the update function allows to perform nine different updating
tasks on a funGp model:

• Operations over the @sIn, @fIn and @sOut slots

1. Deletion of data points

2. Substitution of data points

3. Addition of data points

• Operations over the @kern@varHyp, @kern@s_lsHyps and @kern@s_lsHyps slots

4. Substitution of the variance hyperparameter

5. Substitution of the vector of scalar length-scale hyperparameters

6. Substitution of the vector of functional length-scale hyperparameters

7. Re-estimation of the variance hyperparameter

8. Re-estimation of the vector of scalar length-scale hyperparameters

9. Re-estimation of the vector of functional length-scale hyperparameters

There are many reasons why you might want to modify an existing model; new observations
became available, some of those used for training became obsolete, transcription or typing
errors were found in the training data, you want to experiment with different values of the
hyperparameters, just to mention some. In most cases, part of the work done during the
construction of the original model can be exploited to make the updating process much
faster than building a new model from zero. The request of the different updating tasks is
illustrated in the code snippets below. If you have not built a model yet using the code

12

provided in previous sections, you can use the following one to obtain a model on which to
perform the update tasks of the upcoming examples.

�
building the model
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)� �
• Deletion and addition of data points�

deleting two points
ind.dl <- sample(1:m1@n.tot, 2)
m1up <- update(m1, ind.dl = ind.dl)

R output:
* Complete tasks:

- data deletion

adding five points
n.nw <- 5
sIn.nw <- matrix(runif(n.nw * m1@ds), nrow = n.nw)
fIn.nw <- list(f1 = matrix(runif(n.nw*10), ncol = 10), f2 = matrix(runif(n.nw*22), ncol = 22))
sOut.nw <- fgp_BB3(sIn.nw, fIn.nw, n.nw)
m1up <- update(m1, sIn.nw = sIn.nw, fIn.nw = fIn.nw, sOut.nw = sOut.nw)

R output:
* Complete tasks:

- data addition� �
• substitution of data points�

generating substituting input data for updating
n.sb <- 2
sIn.sb <- matrix(runif(n.sb * m1@ds), nrow = n.sb)
fIn.sb <- list(f1 = matrix(runif(n.sb*10), ncol = 10), f2 = matrix(runif(n.sb*22), ncol = 22))

generating substituting output data for updating
sOut.sb <- fgp_BB3(sIn.sb, fIn.sb, n.sb)

generating indices for substitution
ind.sb <- sample(1:(m1@n.tot), n.sb)

updating all, the scalar inputs, functional inputs and the output
m1up <- update(m1, sIn.sb = sIn.sb, fIn.sb = fIn.sb, sOut.sb = sOut.sb, ind.sb = ind.sb)

R output:
* Complete tasks:

- data substitution� �
Substituting points only from some of the data structures is also possible.�
substituting some data structures
m1up1 <- update(m1, sIn.sb = sIn.sb, ind.sb = ind.sb) # only the scalar inputs
m1up2 <- update(m1, sOut.sb = sOut.sb, ind.sb = ind.sb) # only the output
m1up3 <- update(m1, sIn.sb = sIn.sb, sOut.sb = sOut.sb, ind.sb = ind.sb) # the scalar inputs and the output

R output:
* Complete tasks:

- data substitution� �
13

• Substitution of hyperparameters�
defining hyperparameters for substitution
var.sb <- 3
ls_s.sb <- c(2.44, 1.15)
ls_f.sb <- c(5.83, 4.12)

updating the model
m1up <- update(m1, var.sb = var.sb, ls_s.sb = ls_s.sb, ls_f.sb = ls_f.sb)

R output:
* Complete tasks:

- var substitution
- scalar length-scale substitution
- functional length-scale substitution� �

Substituting only one of the three data structures is possible as well.�
updating the model
m1up <- update(m1, var.sb = var.sb) # only the variance
m1up <- update(m1, ls_f.sb = ls_f.sb) # only the functional length-scale parameters
m1up <- update(m1, var.sb = var.sb, ls_s.sb = ls_s.sb) # only the variance and the scalar ls. parameters� �
• Re-estimation of hyperparameters�

re-estimating the hyperparameters
m1up <- update(m1, var.re = TRUE) # only the variance
m1up <- update(m1, ls_s.re = TRUE) # only the scalar length-scale parameters
m1up <- update(m1, ls_s.re = TRUE, ls_f.re = TRUE) # all length-scale parameters
m1up <- update(m1, var.re = TRUE, ls_s.re = TRUE, ls_f.re = TRUE) # all hyperparameters

R output:
* Complete tasks:

- var re-estimation
- scalar length-scale re-estimation
- functional length-scale re-estimation� �

It is possible to request multiple tasks from the different categories listed above in a single
call to update. When doing so, it is convenient to keep in mind that tasks will be performed
in the following order:

data deletion/substitution → data addition → hypers substitution/re-estimation

It is also good to remember that the following two combinations are unfeasible:

• Data points deletion and substitution;

• Substitution and re-estimation of the same hyperparameter.

2 Model customizations
There are multiple things we can do in order to improve the tractability and predictability of
a funGp model. In this section we discuss the customization of the model through its so-called
structural parameters. It refers to a set of categorical features such as the kernel function or
the projection basis, whose levels could be alternated in order to generate different models
departing from the same input-output data. Without going too deep into the technical details,
this section explains how to start working on these features within funGp and the interested
reader is referred to [1] for a formal and more detailed explanation of the underlying theory.

14

2.1 Kernel family
The selection of a suitable kernel function is something that naturally comes to mind when
working with Gaussian process models. At this point, funGp offers the possibility to choose
among the Gaussian, Matérn 5/2 and Matérn 3/2 kernels. This selection can be specified when
calling the fgpm function, through the parameter kertype. Valid values for this attribute
are "gauss", "matern5_2" and "matern3_2". See for instance the example below with the
Gaussian kernel.�
building the model
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut, kerType = "gauss")� �
By default, fgpm uses the Matérn 5/2 function, which is a popular choice in the Machine
Learning (ML) community.

2.2 Projection basis
In earlier sections of the manual we talked about DR2, the process of reducing the dimension
of your data structures in such a way and extent that the model becomes significantly more
tractable and the loss in terms of predictability is negligible, if some. A common DR approach
when dealing with functional inputs is to project each functional-input matrix onto a space
of lower dimension. This method requires the construction of a set of basis vectors on which
the original curves are projected. Those vectors (typically referred to as basis functions) may
come from diverse families, including among the most popular ones the B-splines [9], PCA
[10], PLS [11], wavelets [12] and kPCA [13]. The suitability of a given basis type might depend
on the regression instance at hand. The B-splines and PCA bases are currently implemented
in funGp for the projection of functional inputs. This option is accessible in the fgpm function
through the parameter f_basType, which can be set to the values "B-splines" or "PCA".
When multiple functional inputs are provided, a custom basis can be selected for each of
them, by passing an array with the selection for each input. If multiple functional inputs are
provided, but a single f_basType value is specified, that selection is used for all the inputs.
Both cases are illustrated below. By default, all functional inputs use a B-splines basis.�
generating input and output data
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)

building the model
different basis for each functional input
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut, f_basType = c("B-splines", "PCA"))

same basis for both functional inputs
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut, f_basType = "PCA")� �

2DR: dimension reduction.

15

2.3 Projection dimension
This parameter is highly influential in both, the predication quality and the tractability of
the model. Ideally, one wants to set the projection dimension considerably lower than the
original one, but not so low that significant prediction power is lost. In the fgpm function,
you can specify the projection dimension for each input by setting the argument f_pdims.
Valid inputs are all the integer numbers from 0 to the original dimension of the curves. The
value 0 is used to request to not perform the projection of an input. If there are multiple
functional inputs, an array can be provided instead of a single value in order to specify
custom projection dimensions. If a single value is specified and multiple functional inputs are
identified, the value is used as projection dimension for all the functional inputs. By default,
all functional inputs are projected onto a space of dimension 3.�
generating input and output data
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)

building the model
the first input not projected, the second one projected in dimension 7
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut, f_pdims = c(0, 7))

both inputs projected in dimension 5
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut, f_pdims = 5)� �
2.4 Distance for functions
Many regression models require the computation of the distance between the design points in
order to determine which ones are the most influential in a given prediction. This is the case
of Gaussian process models, which use such distances to compute the correlation between
pairs of observations. A set of scaling factors called length-scale coefficients are normally used
to quantify the rate of change of the output in terms of each input. For scenarios with only
scalar inputs, the rule is simply to use one length-scale parameter per input, which yields the
distance

‖x− x̃‖L2,θs :=

√√√√√√ ds∑
k=1

∥∥∥x(k) − x̃(k)
∥∥∥2

(
θ

(k)
s

)2 , (1)

with x =
(
x(1), . . . , x(ds)

)
and x̃ =

(
x̃(1), . . . , x̃(ds)

)
two scalar input points, ds the number

of scalar inputs in the model, ‖·‖ the L2 norm for scalars (just the absolute value), and
θs =

(
θ(1)

s , . . . , θ(ds)
s

)
the vector of length-scale parameters for the scalar inputs.

In an instance with functional inputs, the norm ‖·‖ needs to be replaced by a norm suitable
for functions. Two options are currently implemented in funGp, both based on a projection
of each functional inputs of the form

Π
(
f (k)

)
(t) =

pk∑
r=1

α(k)
r B(k)

r (t), (2)

16

with f (k) a curve of the k-th functional input, B(k)
r the r-th basis function used for its

projection, α(k)
r the corresponding projection coefficient, and pk the projection dimension.

The first type of distance implemented for functions considers each curve as a whole and uses
a single length-scale parameter per functional input. This distance is defined as

∥∥∥Π(f)− Π
(
f̃
)∥∥∥

D,θf
:=

√√√√√√√√√ df∑
k=1

∫
Tk

(pk∑
r=1

(
α(k)

r − α̃(k)
r

)
B(k)

r (t)
)2

dt

(
θ

(k)
f

)2 , (3)

with f =
(
f (1), . . . , f (df)

)
and f̃ =

(
f̃ (1), . . . , f̃ (df)

)
two functional input points, df the

number of scalar inputs in the model, Tk ⊂ R the domain of f (k), and θf =
(
θ

(1)
f , . . . , θ

(df)
f

)
the vector of length-scale parameters for the functional inputs. This distance is identified
in the package as L2_bygroup, since it uses a single length-scale parameter for the group
of projection terms corresponding to one functional input. funGp implements an efficient
computation of (3), introduced in [3] and further studied in [1].

The second type of distance works only with the projection coefficients and disregards the
basis functions. The distance is defined as

∥∥∥Π(f)− Π
(
f̃
)∥∥∥

S,θ̇f
:=

√√√√√√√ df∑
k=1

pk∑
r=1

(
α(k)

r − α̃(k)
r

)2

(
θ̇

(k)
f,r

)2 , (4)

where θ̇f = (θ̇(k)
f,r)1≤r≤pk,1≤k≤df denotes the vector of functional length-scale coefficients. Note

that this distance uses one length-scale coefficient per projection term. This might enable a
better modeling of the input-output relationship, but in turn it implies a larger number of
decision variables involved in the learning process, which makes it a harder/longer task. This
distance is identified in the package as L2_byindex since it involves a length-scale parameter
per projection index. It corresponds to the most common approach nowadays, which is to
perform the projection of the inputs and then use each projection coefficient as an individual
scalar input of the model.

In the case that no projection is requested for some input, both distances (3) and (4) use
the original function values instead of the projection coefficients, and the identity is used in
(3) as the matrix of basis functions. Our aim is to keep this manual friendly with users not
expert in statistics. Thus, we leave at this point the technical discussion on the distances,
and we refer the interested user to [1], where this aspect is discussed formally and in more
detail. Below, there are some examples on the selection of the distance through fgpm.�
generating input and output data
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)� �

17

�
original dimensions
f1: 10
f2: 22

building the model
the first f. input using by-index distance and no projection -> 10 length-scale parameters
the second f. input using by-group distance -> 1 length-scale parameter
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut, f_pdims = c(0,5), f_disType = c("L2_byindex", "L2_bygroup"))

both f. inputs using by-group distance -> 2 length-scale parameters
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut, f_pdims = c(0,5), f_disType = "L2_bygroup")

both f. inputs using by-index distance -> (10+5) = 15 length-scale parameters
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut, f_pdims = c(0,5), f_disType = "L2_byindex")� �
3 Heuristic model selection
In the previous section, we covered the base functionalities of funGp. Now, we present a
boosting feature that takes funGp models one step further: the funGp model factory.

3.1 Concept
The fgpm function, explored in Section 1.1, allows to specify through its arguments a num-
ber of characteristics of the model, oriented to make it adaptive to the particularities of the
regression problem at hand. In Section 2 we catalogued those features under the name of
structural parameters of the model, and we illustrated through examples the way of speci-
fying the required configuration of them to the fgpm function. In its current version, funGp
includes the kernel family, the projection basis, the projection dimension and the distance for
functions as structural parameters modifiable by the user. But, which combination of struc-
tural parameters should you use? If you have strong evidence to think that some level of one
of these features will perform better than the others, then you are good to go. Otherwise, it
would be better to make some tests in order to make such a decision. As shown by us through
a set of computer experiments in [1], the ideal model configuration might likely depend on
the particular regression task. Through the fgpm_factory function we enable the user to
conduct a smart exploration of the solution space composed of all the possible structural
parameter configurations. Variable selection is embedded in the optimization through the
definition of structural parameters related to the state of each scalar and functional input in
the model (active or inactive).

At this point, funGp performs heuristic optimization of structural parameters (model selec-
tion) by means of the ant colony based algorithm introduced by us in [14] (find online).
For a set of ds scalar inputs and df functional inputs, the optimization problem addressed
by our algorithm consists in making the following decisions:

• State of the i-th scalar input (inactive, active);

• State of the j-th functional input (inactive, active);

• Projection basis for the j-th functional input (B1, . . . , Bz);

• Projection dimension for the j-th functional input (0, . . . , kj);

• Distance for the j-th functional input (D1, . . . , Dw);

• Kernel type (K1, . . . , Kx),

18

https://hal.archives-ouvertes.fr/hal-02532713

with i ∈ {1, . . . ds}, j ∈ {1, . . . df} and kj the original dimension of input j. The sets
{B1, . . . , Bz}, {D1, . . . , Dw} and {K1, . . . , Kx} correspond to the basis, distance and kernel
families to be considered, in that order. The projection dimension 0 denotes no projection.
In order to find a suitable combination of the parameters listed above, we let our artificial
ants to move through a network with a structure similar to the one depicted in Figure 1.
Such a structure prevents the constitution of senseless solutions (e.g., an input being both,
inactive and active) and helps to keep the network data structures considerably simple by
only defining strictly necessary links.

Figure 1: Decision network used by the ant colony based heuristic for model selection. One
end-to-end path over the network provides a feasible set of structural parameters.

The implementation of the algorithm in funGp strictly considers the levels of kernel function,
projection basis and distance type, listed in Sections 2.1, 2.2 and 2.4, respectively. However,
both the foundations of the approach and the code implementations are general enough to
be easily extended to other levels in future versions of the package. This manual does not go
further into the methodological details of the algorithm, however, a detailed explanation of
it is offered in [14] for the interested reader.

3.2 Using the model factory in funGp

In this section we explain how to manipulate the fgpm_factory function in order to get
optimized model structures. The examples in this section are based on the analytic black-
box function

G2 : [0, 1]5 ×F2 → R,

(x,f) 7→
(
x(2) + 4x(3) − 5

4π2

(
x(1)

)2
+ 5
π
x(1) − 6

)2

+ 10
(

1− 1
8π

)
cos

(
x(1)

) (
x(2)

)2 (
x(5)

)3
+ 10

+ 4
3π

(
42 sin

(
x(4)

) ∫ 1

0
15 f (1)(t) (1− t)− 5 dt

+ π

(
x(1)x(5) + 5

5 + 15
)∫ 1

0
15 t f (2)(t)dt

)
,

with x =
(
x(1), x(2), x(3), x(4), x(5)

)
the scalar inputs, f =

(
f (1), f (2)

)
the functional inputs,

19

and F the set of continuous functions from [0, 1] to R. This function is inspired by the
second analytic example studied in [3], with three additional scalar inputs allocated over the
different terms of the equations to increase a bit its complexity. This function is accessible in
funGp through the black-box function fgp_BB7. Here we generate the scalar and functional
input values in a similar way to how we did in the previous sections.

• Getting started

Let us open this section with a basic call to the factory using its default attribute values.�
generating input and output data
set.seed(100)
n.tr <- 32
sIn <- expand.grid(x1 = seq(0,1,length = n.tr^(1/5)), x2 = seq(0,1,length = n.tr^(1/5)),

x3 = seq(0,1,length = n.tr^(1/5)), x4 = seq(0,1,length = n.tr^(1/5)),
x5 = seq(0,1,length = n.tr^(1/5)))

fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB7(sIn, fIn, n.tr)

calling the funGp factory
xm <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut) # (~10 seconds)� �
The output of fgpm_factory is an object of class Xfgpm. It includes a variety of information
on it that we will be explored later in detail, towards the end of this section. For now, let
us concentrate on the @model slot, which contains the selected regression model. This is an
object of type fgpm, which can be plotted using the plotLOO function. Just to illustrate, let us
compare our optimized model with that obtained if we arbitrarily use the default argument
values in the fgpm function, i.e., using fgpm(sIn = sIn, fIn = fIn, sOut = sOut).�
plotting the optimized model
plotLOO(xm@model)

plotting the model of default fgpm structural configuration
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)
plotLOO(m1)� �

Figure 2: Calibration plot of two structural configurations for the same input and output
data. Left panel: optimized configuration. Right panel: unoptimized, arbitrary configuration.

Right away, just by calling fgpm_factory with its default arguments, we were able to find a
model of greater quality. Some key points in the light of this first result are:

20

• Firstly, the superiority of the optimized model does not imply that the default argument
values of the fgpm function are bad. They are just not tailored to this specific regression
instance, contrarily to the structural parameters selected by fgpm_factory. That is
the purpose of having fgpm_factory in the package, to be able to find good structural
parameters for any regression instance that fgpm could handle.

• Secondly, the result does not mean that funGp models should always be made through
fgpm_factory. In this example we see how the unoptimized model still presents a high
Q2

loocv. However, if there is time, we strongly recommend to perform the optimization.

• Finally, the superiority of the model delivered by fgpm_factory is exclusively fostered
by the optimization of the structural parameter configuration, and has nothing to do
with the mechanism for the optimization of the hyperparameters. Each model evaluated
by fgpm_factory is internally created by a call to fgpm. Thus, the same mechanism of
hyperparameter optimization is used by both functions.

Let us move on with the explanation of the usage of fgpm_factory. The outputs of this
function can be plotted by either the plotX or the plotEvol function. The former one
provides a notion of the absolute and relative quality of the selected model, and the second
one illustrates the evolution of the quality of the explored models along the iterations.

�
displaying plots on the quality of the selected model
plotX(xm)� �

�
plotting the evolution of the objective function
plotEvol(xm)� �

21

Even after multiple iterations, some points still fall relatively far from the maximum. This
happens mainly because we have multiple categorical features, whose alteration might change
the performance statistic in a nonsmooth way. Nonetheless, the median stays close to the
maximum, which confirms that the exploration is converging towards the best known solu-
tions. On the other hand, the points that fall bellow zero usually correspond to models whose
hyperparameters were hard to optimize. This occurs sporadically during the log-likelihood
optimization for Gaussian processes, due to the non-linearity of the objective function.

An easy way to improve the quality of the selected model is just to let the algorithm complete
more iterations. This can be done through the argument setup, as below.�
calling the funGp factory
set.seed(100)
xm <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, setup = list(n.iter = 30)) # (~6.5 seconds)� �

22

In the examples above, fgpm_factory optimized the model structure for Q2
loocv. Optimizing

for Q2
hout (i.e., validating against external observations) is also possible. This type of opti-

mization can be requested by specifying the indices that should be used for training and
validation. For instance, assume that we have the same data as in the previous example,
but now we want to use about 85% of the points for training and the remaining ones for
validation. This can be specified to fgpm_factory through the ind.vl argument as follows.�
generating validation indices
ind.vl <- sample(seq_len(n.tr), 5) # about 15% of points for validation

calling the funGp factory
xm <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, ind.vl = ind.vl) # (~2 seconds)� �
With this call, the factory trains each model using all the data except for the points specified
by ind.vl. Once built, each model is used to predict the output at the points ignored
during training, and the predictive squared correlation coefficient Q2

hout [8] is computed. This
procedure ensures fairness in the comparison, since all the models use the same training and
validation sets. In order to account for the sampling noise, the user may want to use multiple
training-validation pairs of sets. This option is easily requested to the factory by passing a
matrix instead of an array through the argument ind.vl. Such a matrix should have the
indices for one training set on each column. This means, that the matrix should have as
many rows as validation points, and as many columns as replicates.�
generating validation indices
ind.vl <- replicate(30, sample(seq_len(n.tr), 5)) # about 15% of points for validation, 30 replicates

calling the funGp factory
xm <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, ind.vl = ind.vl) # (~4 minutes)� �
The larger the number of replicates, the longest the optimization will be, but also the less
noise will appear on the statistics used to compare the models. Section 4 addresses the
reduction of processing time through parallelization.

Note that the calibration plot produced by plotX will always report the Q2
loocv statistic,

regardless of whether this or the Q2
hout was used for the optimization of the structural pa-

rameters. In contrast, the bottom frame will always display the statistic used during the
optimization. When validation indices are provided, the model stored in the @model slot
of the Xfgpm object will be one trained with as many points as remain once the specified
validation points are removed. When multiple validation sets are specified, the model stored
in the @model slot of the Xfgpm object will be selected in two steps by: (i) identifying the
structural configuration of higher average Q2

hout; and (ii) pick the replicate of best structural
configuration with higher Q2

hout.

• Setting up the parameters of the heuristic

Our model selection algorithm relies on a set of parameters typical of any ant colony based
method. Roughly speaking, those parameters control the number of individuals and iterations,
the degree of exploration and rate of convergence, along with the learning-reinforcement
mechanism in the algorithm. The default values of those parameters in funGp were selected
based on the values used by Dorigo et al. in the introductory paper of the Ant Colony System
[15]. We validated the suitability of that setting for our model selection problem through a
large set of trials involving different black-box functions like the one defined at the beginning

23

of this manual (Section 1), and more than 10 others that raised in the frame of the RISCOPE
research project [16] (see [14] for more details). Here we explain how to modify the parameters
of the heuristic in case the user wants to experiment with them. Our algorithm performs based
on the following list of parameters:

Initial pheromone load

• tao0: initial pheromone load on links pointing out to the selection of a distance type,
a projection basis or a kernel type. Default: 0.1.

• dop.s: factor to control how likely it is to activate a scalar input. It operates on a
relation of the type A = dop.s * I, where A is the initial pheromone load of links
pointing out to the activation of scalar inputs and I is the initial pheromone load of
links pointing out to their inactivation. Default: 1.

• dop.f: analogous to dop.s for functional inputs. Default: 1.

• delta.f and dispr.f: shape parameters for the regularization function that determines
the initial pheromone values on the links connecting the L2_byindex distance (see
Section 2.4) with the projection dimension*. Default: 2 and 1.4, respectively.

Local pheromone update

• rho.l: pheromone evaporation rate*. Default: 0.1.

Global pheromone update

• u.gbest: the algorithm works in an iterative fashion; should the pheromone load on
the links of the best ant so far over all the iterations be reinforced? Default: FALSE.

• n.ibest: the algorithm always reinforces the links of the best n.ibest ants of each
iteration; how many ants should be considered for reinforcement? Default: 1.

• rho.g: learning reinforcement rate*. Default: 0.1.

Population factors

• n.iter: number of iterations. Each iteration involves the exploration of the solution
space, constitution of a set of model configurations, evaluation of their performance in
prediction and system feedback. Default: 15.

• n.pop: number of ants per iteration; each ant corresponds to one solution to the prob-
lem, in this case, a structural configuration for the model. Default: 10.

Bias strength

• q0: ants use one of two rules to select their next node at each step. The first rule leads
the ant through the link with higher pheromone load; the second rule works based on
probabilities which are proportional to the pheromone load on the feasible links. The
ants will randomly chose one of the two rules at each time. They will opt for rule 1 with
probabilityq0 *. Default: 0.95. For larger number of input variables, we recommend
to slightly reduce it to e.g., 0.90. This might facilitate the testing of each input in at
least a few models.

The parameters marked with an asterisk (*) are explained more thoroughly in [14]. All the
parameters listed above can be accessed in a fgpm_factory call through the argument setup,
which should be a list. Below an example using arbitrary setup values.

24

�
calling the funGp factory with an arbitrary setup
mysup <- list(tao0 = .15, dop.s = 1.2, dop.f = 1.3, delta.f = 4, dispr.f = 1.1, rho.l = .2,

u.gbest = TRUE, n.ibest = 2, rho.g = .08, n.iter = 30, n.pop = 12, q0 = .85)
xm <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, setup = mysup) # (~18 seconds)� �
• Defining the solution space

By default, fgpm_factory considers feasible all possible combinations of: inputs state, dis-
tance type, projection dimension, basis family, and kernel family. However, the user is allowed
to modify the solution space by imposing a system of constraints. This is achieved through
the ctraints argument, which should be provided as a list. Below an example.�
generating input and output data
set.seed(100)
n.tr <- 32
sIn <- expand.grid(x1 = seq(0,1,length = n.tr^(1/5)), x2 = seq(0,1,length = n.tr^(1/5)),

x3 = seq(0,1,length = n.tr^(1/5)), x4 = seq(0,1,length = n.tr^(1/5)),
x5 = seq(0,1,length = n.tr^(1/5)))

fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB7(sIn, fIn, n.tr)

setting up the constraints
myctr <- list(s_keepOn = c(1,2), # keep both scalar inputs always on

f_keepOn = c(2), # keep f2 always active
f_disTypes = list("2" = c("L2_byindex")), # only use L2_byindex distance for f2
f_fixDims = matrix(c(2,4), ncol = 1), # f2 should be projected onto a space of dimension 4
f_maxDims = matrix(c(1,5), ncol = 1), # f1 should be projected onto a space of dimension max 5
f_basTypes = list("1" = c("B-splines")), # only use B-splines projection for f1
kerTypes = c("matern5_2", "gauss")) # test only Matern 5/2 and Gaussian kernels

calling the funGp factory with specific constraints
xm <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, ctraints = myctr) # (~15 seconds)� �
This call to the factory will exclusively explore models that fulfill the constraints passed
through ctraints. This can be verified by inspecting the @log.success@sols slot of the
Xfgpm object returned by fgpm_factory.�
checking log of some successfully built models
cbind(xm@log.success@sols, "Q2" = xm@log.success@fitness)� ��
R output:

State_X1 State_X2 State_X3 State_X4 State_X5 State_F1 Distance_F1 Dim_F1 Prj_basis_F1 State_F2 Distance_F2 Dim_F2 Prj_basis_F2 Kernel Q2
1 On On Off On Off Off -- - -- On L2_byindex 4 B-splines matern5_2 0.77
2 On On Off On Off On L2_byindex 3 B-splines On L2_byindex 4 B-splines matern5_2 0.74
3 On On Off On On Off -- - -- On L2_byindex 4 B-splines matern5_2 0.64
4 On On Off On On On L2_byindex 3 B-splines On L2_byindex 4 B-splines matern5_2 0.47
5 On On On On Off Off -- - -- On L2_byindex 4 B-splines matern5_2 0.43
6 On On Off Off On Off -- - -- On L2_byindex 4 B-splines gauss 0.43
7 On On Off Off Off Off -- - -- On L2_byindex 4 B-splines matern5_2 0.42
8 On On On On On On L2_byindex 1 B-splines On L2_byindex 4 B-splines matern5_2 0.38
9 On On On On On Off -- - -- On L2_byindex 4 B-splines matern5_2 0.27
10 On On On On On Off -- - -- On L2_byindex 4 PCA gauss 0.26
11 On On On On On Off -- - -- On L2_byindex 4 PCA matern5_2 0.12
12 On On On Off On Off -- - -- On L2_byindex 4 B-splines matern5_2 0.10
13 On On Off Off On On L2_byindex 1 B-splines On L2_byindex 4 B-splines gauss 0.02
14 On On Off Off On On L2_byindex 2 B-splines On L2_byindex 4 B-splines matern5_2 -0.05
15 On On Off On Off Off -- - -- On L2_byindex 4 PCA matern5_2 -0.07
16 On On Off On Off Off -- - -- On L2_byindex 4 PCA gauss -0.10
17 On On Off Off On On L2_byindex 3 B-splines On L2_byindex 4 B-splines matern5_2 -0.16
18 On On On Off On On L2_bygroup 3 B-splines On L2_byindex 4 PCA gauss -0.27� �
• Time based stopping condition

The basic stopping condition for any ant colony based algorithm is the number of iterations.
This type of stopping condition is often useful during the development stage of the algorithm.

25

However, in the wild it is hard to know in advance which number of iterations will be suitable
for the problem at hand, and even if one had an idea, it would still be difficult to estimate
how much processing time that would suppose. In practice we recommend to use instead a
time based stopping condition. It works by defining a time budget for structural optimization,
and then letting the heuristic run until the budget is exhausted. This possibility has been
implemented in fgpm_factory, and is accessible through the time.lim argument.�
setting up a sufficiently large number of iterations
mysup <- list(n.iter = 2000)

defining time limit
mytlim <- 60

calling the funGp factory with time based stopping condition
xm <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, setup = mysup, time.lim = mytlim)

R output:
** Time limit reached, exploration stopped after 60.01 seconds. # 163 iterations done� �
When using the time based stopping condition, the number of iterations should be set suf-
ficiently large so that it does not cause a premature stop of the exploration. The argument
time.lim should always be provided in seconds. Once the time limit is reached, the algorithm
will attempt to stop as soon as possible, however, the ongoing training process of a model
will never be interrupted. Thus, the actual processing time will normally exceed the specified
time budget for a bit. This discrepancy might be more noticeable for problems involving
heavier model configurations with larger number of inputs or a larger amount of data.

• Further exploring the Xfgpm object

After checking different things that can be done through a fgpm_factory call, it is good
time to dedicate some attention to the information contained in the object delivered by the
function. The object is of class Xfgpm, which includes diverse information about the selected
model and also about the model selection process carried on. Below a list of the slots of the
object with a short description of each.

Selected model

• @model: selected model delivered by the fgpm function.

• @structure: data.frame with the selected structural configuration.

• @stat and @fitness: type and value of the performance statistic used for the opti-
mization of the structural parameters. Currently, the type of performance statistic can
be either Q2

loocv or Q2
hout (see Sections 1.1 and 1.2 for details on these measures).

Record of explored models

• @log.success: object of class antsLog with the structure, function calls and perfor-
mance statistic of all models successfully made during the optimization, organized in
decreasing order of performance.

• @log.crashes: object of class antsLog with the structure and function calls of all
models whose fgpm function call crashed.

26

Exploration extent

• @n.solspace: total number of structural configurations that could be made, based on
the specified solution space.

• @n.explored: total number of structural configurations successfully built and evaluated
during the exploration.

Further information

• @details: a list containing: (i) the set of heuristic parameters used; and (ii) the series
of fitness vectors over the iterations of the heuristic.

• @factoryCall: a reminder of the expression used in the fgpm_factory call.

By conducting the structural optimization through fgpm_factory, one obtains not only one
but a set of high quality models. Those are accessible through the @log.success@sols and
@log.success@args slots. The former contains a data frame with all the levels of structural
parameters selected for each explored model. This data structure could be useful to make a
posterior analysis on patterns that lead to high quality models. The @log.success@args slot
contains exactly the same information, but in a format that allows the easy reconstruction
of any of the explored models. We illustrate this possibility with the following example. We
start by performing a structural optimization.

�
generating input and output data
set.seed(100)
n.tr <- 32
sIn <- expand.grid(x1 = seq(0,1,length = n.tr^(1/5)), x2 = seq(0,1,length = n.tr^(1/5)),

x3 = seq(0,1,length = n.tr^(1/5)), x4 = seq(0,1,length = n.tr^(1/5)),
x5 = seq(0,1,length = n.tr^(1/5)))

fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB7(sIn, fIn, n.tr)

calling the funGp factory
xm <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut) # (~10 seconds)� �
After some time we update our dataset. Now we have 243 points instead of 32. Then, we
rebuild the best three models using the new data.�
generating new data
n.tr <- 243 # more points!
sIn <- expand.grid(x1 = seq(0,1,length = n.tr^(1/5)), x2 = seq(0,1,length = n.tr^(1/5)),

x3 = seq(0,1,length = n.tr^(1/5)), x4 = seq(0,1,length = n.tr^(1/5)),
x5 = seq(0,1,length = n.tr^(1/5)))

fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB7(sIn, fIn, n.tr)

re-building the three best models based on the new data (one model at a time)
m1 <- eval(parse(text = xm@log.success@args[[1]]@string)[[1]])
m2 <- eval(parse(text = xm@log.success@args[[2]]@string)[[1]])
m3 <- eval(parse(text = xm@log.success@args[[3]]@string)[[1]])

re-building the three best models based on the new data (compact code with all 3 calls)
modStack <- lapply(1:3, function(i) eval(parse(text = xm@log.success@args[[i]]@string)[[1]]))� �
Finally, we use each model for prediction. Here, the format4pred function will generate a
list with the scalar and functional inputs to use for each model. If any of the two types of
inputs is not present in the model, format4pred will set it to NULL, which will be properly
interpreted by the fgpm function.

27

�
extracting the fgpm arguments of the three best models
argStack <- xm@log.success@args[1:3]

generating input data for prediction
n.pr <- 32
sIn.pr <- expand.grid(x1 = seq(0,1,length = n.pr^(1/5)), x2 = seq(0,1,length = n.pr^(1/5)),

x3 = seq(0,1,length = n.pr^(1/5)), x4 = seq(0,1,length = n.pr^(1/5)),
x5 = seq(0,1,length = n.pr^(1/5)))

fIn.pr <- list(f1 = matrix(runif(n.pr*10), ncol = 10), matrix(runif(n.pr*22), ncol = 22))

making predictions based on the three best models (compact code with all 3 calls)
preds <- do.call(cbind, Map(function(model, args) {

in4matted <- format4pred(sIn.pr = sIn.pr, fIn.pr = fIn.pr, args)
predict(model, sIn.pr = in4matted$sIn.pr, fIn.pr = in4matted$fIn.pr)$mean

}, modStack, argStack))

plotting predictions made by the three models
require(plyr) # for conciseness
plot(1, xlim = c(1,nrow(preds)), ylim = range(preds), xaxt = "n",

xlab = "Prediction point index", ylab = "Output",
main = "Predictions with best 3 structural configurations")

axis(1, 1:nrow(preds))
l_ply(seq_len(n.pr), function(i) lines(rep(i,2), range(preds[i,1:3]), col = "grey35", lty = 3))
points(preds[,1], pch = 21, bg = "black")
points(preds[,2], pch = 23, bg = "red")
points(preds[,3], pch = 24, bg = "green")
legend("bottomleft", legend = c("Model 1", "Model 2", "Model 3"),

pch = c(21, 23, 24), pt.bg = c("black", "red", "green"), inset = c(.02,.08))� �

4 Parallelization in funGp

Sections 1, 2 and 3 made a good description of funGp from the perspective of functionality.
This last section focuses on efficiency. Both, the fgpm and fgpm_factory functions have been
equipped with the ability to exploit the existence of parallel environments. Below we explain
how to use this feature.

28

4.1 Parallelized hyperparameters optimization
Let us start with the fgpm function, used to create regression models (see Section 1.1). In
funGp, the selection of the hyperparameters of the model is made by likelihood maximization.
For Gaussian processes, this corresponds to a nonlinear optimization problem, sometimes
strongly affected by the selection of the starting points. A common way to deal with this
issue is to start the optimization multiple times from different points, which prevents the
stagnation in local optima. This can be requested to fgpm through the argument n.starts,
which should be assigned an integer value corresponding to the number of starting points to
use. Below an example using 10 starting points.�
generating input data for training
set.seed(100)
n.tr <- 243
sIn <- expand.grid(x1 = seq(0,1,length = n.tr^(1/5)), x2 = seq(0,1,length = n.tr^(1/5)),

x3 = seq(0,1,length = n.tr^(1/5)), x4 = seq(0,1,length = n.tr^(1/5)),
x5 = seq(0,1,length = n.tr^(1/5)))

fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))

generating output data for training
sOut <- fgp_BB7(sIn, fIn, n.tr)

calling fgpm with multistart in sequence
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut, n.starts = 10) # (~22 seconds)� �
Since each starting point triggers an independent optimization process, the requested task
can be performed in parallel. To do so, the user must define a parallel processing cluster and
then pass it to fgpm through the par.clust argument.�
calling fgpm with multistart in parallel
cl <- parallel::makeCluster(3)
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut, n.starts = 10, par.clust = cl) # (~14 seconds)
parallel::stopCluster(cl)� �
As a good practice, the cluster must be stopped right after finishing the requested task in
order to prevent memory issues.

Remark: in order to provide progress bars for the monitoring of time consuming processes
ran in parallel, funGp relies on the doFuture [17] and future [18] R packages. Unfortunately,
under this setting, parallel processes suddenly interrupted tend to leave corrupt connections
that will show up as an error next time you try to perform the parallelized task. To make it
clear, if you launch fgpm in parallel and you stop the process by hand, before it ends, and
then you try to repeat the call in parallel, you may likely find and error indicating that ...
the connection to the worker is corrupt.... If that happens to you, the following
workaround will help to regain control of parallel processing. Once you get the error, repeat
the function call using a different number of nodes. For instance, let us assume that you had
run with 3 nodes in the call that produced the error. We can make the new function call, for
instance with 2 nodes.�
repeating the call with different number of nodes
cl <- parallel::makeCluster(2)
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut, n.starts = 10, par.clust = cl)
parallel::stopCluster(cl)� �
There is no need to let this process become complete, you can stop it by hand a couple
seconds after making the function call. That is it. Now you can launch again the process

29

in parallel with the number of nodes that you were originally using. We acknowledge that
this is more a trick than an ideal way to resolve this types of issues. However, this problem
is originated outside funGp, which limits our control over it. We find the approach shown
above a pragmatic solution for most users. We will remain attentive in case it appears a
more elegant solution to this problem. All this discussion also applies for parallelized calls to
fgpm_factory, which will be discussed in the next section.

4.2 Parallelized model selection
Parallelization is also present in the model factory. Each ant in our heuristic algorithm repre-
sents a structural configuration, and eventually translates into a regression model. Each ant
influence on the decisions made by the others since they share a common decision network
and all of them affect the pheromone load in the links. Nonetheless, each time all the ants
of one iteration complete a model structure, each of the models is built and evaluated for
performance in an independent fashion. Thus, once all the structural configurations of one
iteration are complete, the construction of the corresponding models is a task that can be
performed in parallel. The way to do that is identical to how it is done in the fgpm function.
For this, the user must define a parallel processing cluster and then pass it to fgpm_factory
through the par.clust argument, as below.�
generating input and output data
set.seed(100)
n.tr <- 243
sIn <- expand.grid(x1 = seq(0,1,length = n.tr^(1/5)), x2 = seq(0,1,length = n.tr^(1/5)),

x3 = seq(0,1,length = n.tr^(1/5)), x4 = seq(0,1,length = n.tr^(1/5)),
x5 = seq(0,1,length = n.tr^(1/5)))

fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB7(sIn, fIn, n.tr)

calling fgpm_factory in parallel
cl <- parallel::makeCluster(3)
xm.par <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, par.clust = cl) # (~200 seconds)
parallel::stopCluster(cl)� �
The advice given when explaining the parallelization in the fgpm function applies here; the
cluster must be stopped right after finishing the requested task in order to prevent memory
issues. In addition, we clarify that parallelized processing should be reserved for cases where
each individual process (call to fgpm) takes a significant amount of time. If the call in sequence
is already long due to the large number of processes it involves, but each process runs almost
immediately, the benefit of parallelization might become null. Thus, we prescribe the use of
this feature for problems where the evaluation of a single model takes several seconds or more.
In such a context, parallelization will allow the evaluation of a larger number of structural
configurations in the same amount of time.

Closing discussion
funGp started as a set of scripts enabling to include functional inputs in a regression model.
What we present in this tutorial is that and much more. We have done our best to provide
a powerful regression tool for all-level users. No impositions on the type of relationship
between inputs and outputs, no need of pre-processing of the functional inputs, no need for
complex data structures. You put the data and we put the power of the Gaussian process
models in order to efficiently extract the underlying information from it. The more expertise

30

the user has in statistics and also in the usage of the package, the more it will be able to
discover new possibilities and features. We make strong emphasis on the model selection
functionality, which takes models’ construction to a whole new level. Any regression package
gives you a model in response for your data. Some packages return different types of models
depending on your specifications. Not very often a package helps you to chose the good
model, and this is what funGp does. During the implementation, we kept present at all time
the need for efficiency, and we made an effort to make everything run fast and smooth.
Parallelization in the fgpm and fgpm_factory functions is a valuable commodity in this
regard. We envisage the extension of the package in multiple different aspects, and therefore,
we made the implementations with scalability in mind. All the structural parameters are
modifiable in order to include additional levels or even other structural parameters than
those currently available. The heuristic model selection algorithm was also designed to be
easily adaptable to this type of extension. Going further, the fgpm_factory function was
structured in such a way that other model selection methods could be added later. Being
funGp a piece of open source, we encourage the community to make contributions in any line
found pertinent.

Acknowledgements
This study was conducted in the frame of the RISCOPE project, funded by the French Agence
Nationale de la Recherche (ANR). We thank the ANR for this support. We are also grateful
to Yves Deville from Alpestat for his advice on documentation of R packages and to Juliette
Garcia from ENAC for her assistance on the stabilization of the Ant Colony algorithm for
structural parameter optimization.

References
[1] J. Betancourt, F. Bachoc, T. Klein, D. Idier, R. Pedreros, and J. Rohmer, “Gaussian

process metamodeling of functional-input code for coastal flood hazard assessment,”
Reliability Engineering & System Safety, p. 106870, 2020.

[2] C. Lataniotis, S. Marelli, and B. Sudret, “Extending classical surrogate modelling to
ultrahigh dimensional problems through supervised dimensionality reduction: a data-
driven approach,” arXiv preprint arXiv:1812.06309, 2018.

[3] T. Muehlenstaedt, J. Fruth, and O. Roustant, “Computer experiments with functional
inputs and scalar outputs by a norm-based approach,” Statistics and Computing, vol. 27,
no. 4, pp. 1083–1097, 2017.

[4] B. D. Ripley, Spatial statistics, vol. 575. John Wiley & Sons, 2005.

[5] O. Dubrule, “Cross validation of kriging in a unique neighborhood,” Journal of the
International Association for Mathematical Geology, vol. 15, no. 6, pp. 687–699, 1983.

[6] J. O. Ramsay and B. W. Silverman, Applied functional data analysis: methods and case
studies. Springer, 2007.

[7] A. Marrel, B. Iooss, M. Jullien, B. Laurent, and E. Volkova, “Global sensitivity analysis
for models with spatially dependent outputs,” Environmetrics, vol. 22, no. 3, pp. 383–
397, 2011.

31

[8] J. Nilsson, S. de Jong, and A. K. Smilde, “Multiway calibration in 3d qsar,” Journal
of Chemometrics: A Journal of the Chemometrics Society, vol. 11, no. 6, pp. 511–524,
1997.

[9] C. De Boor, “A practical guide to splines,” in Applied mathematical sciences, vol. 27,
pp. 15–16, Heidelberg: Springer, 1978.

[10] I. Jolliffe, Principal component analysis. Springer, 2011.

[11] I. Papaioannou, M. Ehre, and D. Straub, “Pls-based adaptation for efficient pce repre-
sentation in high dimensions,” Journal of Computational Physics, vol. 387, pp. 186–204,
2019.

[12] A. Cohen, I. Daubechies, and J.-C. Feauveau, “Biorthogonal bases of compactly sup-
ported wavelets,” Communications on pure and applied mathematics, vol. 45, no. 5,
pp. 485–560, 1992.

[13] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear component analysis as a kernel
eigenvalue problem,” Neural computation, vol. 10, no. 5, pp. 1299–1319, 1998.

[14] J. Betancourt, F. Bachoc, T. Klein, and Gamboa, “Technical report: Ant colony based
model selection for functional-input gaussian process regression. Ref. D3.b (WP3.2),
RISCOPE project.” https://hal.archives-ouvertes.fr/hal-02532713, Apr. 2020.
hal-02532713.

[15] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative learning approach
to the traveling salesman problem,” IEEE Transactions on evolutionary computation,
vol. 1, no. 1, pp. 53–66, 1997.

[16] “ANR RISCOPE Project.” https://perso.math.univ-toulouse.fr/riscope/. Ac-
cessed: 2020-03-15.

[17] H. Bengtsson, doFuture: A Universal Foreach Parallel Adapter using the Future API of
the ’future’ Package, 2020. R package version 0.9.0.

[18] H. Bengtsson, future: Unified Parallel and Distributed Processing in R for Everyone,
2020. R package version 1.16.0.

32

https://hal.archives-ouvertes.fr/hal-02532713
https://perso.math.univ-toulouse.fr/riscope/

	In-code notation
	Base functionalities
	Create a funGp model
	Predict using a funGp model
	Simulate from a funGp model
	Update a funGp model

	Model customizations
	Kernel family
	Projection basis
	Projection dimension
	Distance for functions

	Heuristic model selection
	Concept
	Using the model factory in funGp

	Parallelization in funGp
	Parallelized hyperparameters optimization
	Parallelized model selection

	Closing discussion
	Acknowledgements

