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Abstract
The fossil record is the primary source of time-stamped information useful for dating phylogenetic
trees; and many statistical approaches are available for integrating data from fossil and living
species. In this tutorial, we demonstrate how to perform joint inference of divergence times
and phylogenetic relationships of fossil and extant taxa from morphological data using the pro-
gram RevBayes. RevBayes (http://revbayes.com) is a flexible and powerful tool for Bayesian
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5.2:2 Estimating a time-calibrated phylogeny of fossil and extant taxa using RevBayes

phylogenetic inference. Statistical models in RevBayes are built using probabilistic graphical
models and described via an interpreted programming language. As a result, RevBayes offers
a wide range of statistical models—ranging from very simple models with few parameters to
hierarchical models describing complex biological processes—that are useful in many biological
applications. The exercise described here provides instructions on how to construct a phylogen-
etic model combining the fossilized birth-death process and models describing the generation of
morphological data, which is then used to execute an analysis that unites modern and extinct
taxa in a dated phylogenetic tree. The content and associated files for this tutorial are kept
up-to-date at: http://revbayes.com/tutorials/fbd_simple.

How to cite: Joëlle Barido-Sottani, Joshua A. Justison, April M. Wright, Rachel C. M. Warnock,
Walker Pett, and Tracy A. Heath (2020). Estimating a time-calibrated phylogeny of fossil and
extant taxa using RevBayes. In Scornavacca, C., Delsuc, F., and Galtier, N., editors, Phylogen-
etics in the Genomic Era, chapter No. 5.2, pp. 5.2:2–5.2:23. No commercial publisher | Authors
open access book. The book is freely available at https://hal.inria.fr/PGE.

Funding This work was supported by National Science Foundation (USA) grants DEB-1556615,
DEB-1556853, and DBI-1759909 (JBS, JAJ, WP, and TAH); and an Institutional Development
Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes
of Health under grant number P2O GM103424-18 (AMW).

1 Introduction to RevBayes

RevBayes (Höhna et al., 2016) is an open-source software program for Bayesian phylogenetic
inference. It offers a flexible framework for hierarchical Bayesian modeling of complex
and biologically realistic models of evolution. This flexibility is possible because RevBayes
uses probabilistic graphical models (Höhna et al., 2014) and an interpreted programming
language—called Rev—to specify and represent statistical models. For an review of the
concepts and techniques used in this chapter, see Chapters 1.4 and 5.1 (Lartillot 2020; Pett
and Heath 2020).

Links to revBayes software and documentation
Website: http://revbayes.com
Download: http://revbayes.com/download
Open source projects on GitHub: https://github.com/revbayes
Tutorials: http://revbayes.com/tutorials
Rev language reference: http://revbayes.com/documentation

In the probabilistic graphical modeling framework of RevBayes, model components
(parameters and distributions) are interchangeable building blocks for constructing a complete
statistical model (Höhna et al., 2016). This modularity enables users to easily modify a model
to match their prior assumptions. When applying Bayesian analysis approaches, RevBayes
uses a Markov chain Monte-Carlo (MCMC) algorithm to sample the posterior distributions
of unknown parameters in a model. While inference using MCMC is the primary analysis
approach in RevBayes, there are several other available statistical approaches, including
model comparison using Bayes factors, and posterior predictive model checking and analysis
of model adequacy (Höhna et al., 2018).

http://revbayes.com/tutorials/fbd_simple
https://hal.inria.fr/PGE
http://revbayes.com
http://revbayes.com/download
https://github.com/revbayes
http://revbayes.com/tutorials
http://revbayes.com/documentation
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The core RevBayes library (written in C++) implements the various objects and functions
that define a model and perform statistical analyses. Currently, the main interface to the
RevBayes core is Rev, the interpreted programming language that users access via a RevBayes
console or through writing Rev scripts. Members of the RevBayes Development Team are
currently working to expand the set of interfaces for working with RevBayes and the Rev
language. These include RevScripter1 a graphical user interface for generating Rev analysis
scripts, a Jupyter kernel2 for running RevBayes in the Jupyter notebook environment, the
RevKnitr3 R package for using Rev interactively in RStudio, and the RevGadgets4 R package
for summarizing output from RevBayes analyses. Additional information on installing
alternative graphical interfaces can be found on the RevBayes website5.

The modular framework of RevBayes has facilitated the rapid expansion of available
statistical methods for investigating evolutionary hypotheses. The tutorial presented here
provides a mere glimpse at what is possible in RevBayes, focusing explicitly on inference of
a time-calibrated phylogeny using paleontological and neontological data. However, there
are a wide range of approaches for inferring macroevolutionary parameters in a phylogenetic
framework. Throughout the tutorial, we refer to alternative or more advanced models
and methods available in RevBayes. Thus, we hope that the exercises described here will
introduce the reader to the potential for conducting analyses in RevBayes that may elucidate
the evolutionary processes underpinning the generation of their biological data.

2 Background: Inferring the Timing and Phylogeny of Fossil and
Extant Taxa

This tutorial and associated files (i.e., data and script files) are maintained on the
RevBayes website: http://revbayes.com/tutorials/fbd_simple.

The exercise described in Section 3 is a guide to using RevBayes to perform a simple
phylogenetic analysis of extant and fossil bear species (family Ursidae), using morphological
data as well as the occurrence times of lineages observed in the fossil record. To get an
overview of the model, it is useful to think of the model as a generating process for our data.
Suppose we would like to simulate our fossil and morphological data; we would consider two
components (Figure 1):

Time tree model: This is the diversification process that describes how a phylogeny
is generated as well as when fossils are sampled along each lineage on the phylogeny.
This component generates the phylogeny, divergence times, and the fossil occurrence
data. The tree topology and node ages are parameters of the model that generates our
morphological characters.
Discrete morphological character change model: This model describes how discrete
morphological character states change over time on the phylogeny. The generation of
observed morphological character states is governed by other model components including

1 RevScripter: http://revbayes.com/revscripter
2 RevBayes Jupyter kernel: https://github.com/revbayes/revbayes_kernel
3 RevKnitr: https://github.com/revbayes/RevKnitr
4 RevGadgets R package https://github.com/revbayes/RevGadgets
5 Graphical User Interface installation: http://revbayes.com/gui-setup
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the substitution process and variation among characters in our matrix and among branches
on the tree.

These two components, or modules, form the backbone of the inference model and reflect
our prior beliefs on how the tree, fossil data, and morphological trait data are generated.
We will provide a brief overview of the specific models used within each component while
pointing to other tutorials that implement alternative models.

Figure 1 Modular components of the graphical model used in the analysis described in this
tutorial. The gray boxes indicate the observed data: fossil ages and discrete morphological characters.
The white boxes represent the models that generated the data. See also Section 5 of Chapter 5.1
[Pett and Heath 2020], and, in particular Figure 5, for other hierarchical models.

2.1 Time tree model: the fossilized birth-death process
The fossilized birth-death (FBD) process provides a joint distribution on the divergence times
of living and extinct species, the tree topology, and the sampling of fossils (Stadler, 2010;
Heath et al., 2014). The FBD model can be broken into two sub-processes, the birth-death
process and the fossilization process.

2.1.1 Birth-death process
The birth-death process is a branching process that provides a distribution for the tree
topology and divergence times on the tree. We will consider a constant-rate birth-death
process (Kendall, 1948; Thompson, 1975). Specifically, we will assume every lineage has the
same constant rate of speciation λ and rate of extinction µ at any moment in time (Nee
et al., 1994; Höhna, 2015). Speciation and extinction events occur with rate parameters λ
and µ respectively, whereby the waiting time between events is exponentially distributed
with parameter (λ+ µ). Then, given an event occurred, the probability of the event being
a speciation is (λ / (λ+ µ)) while the probability of the event being an extinction is (µ /
(λ+ µ)).

The birth-death process depends on two other parameters as well, the origin time and
the sampling probability. The origin time, denoted φ, represents the starting time of the
stem lineage, which is the age of the entire process. The sampling probability, denoted ρ,
gives the probability that an extant species is sampled.

The assumption that, at any given time, each lineage has the same speciation rate
and extinction rate may not be realistic or valid in some systems. Several models are
currently implemented in RevBayes that relax the assumption of constant rates such as,
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episodic diversification rates6 (Höhna, 2015), environment-dependent diversification rates7
(Condamine et al., 2018), branch-specific diversification rates8 (Höhna et al., 2019), or
diversification rates tied to a species trait9 (Maddison et al., 2007; Freyman and Höhna,
2018, 2019).

2.1.2 Fossilization process
Given a phylogeny, in this case a phylogeny generated by a birth-death process, the fossilization
process provides a distribution for sampling fossilized occurrences of lineages in the tree
(Heath et al., 2014). Much like speciation and extinction, fossil sampling is modeled according
to a Poisson process with rate parameter ψ. This means that each lineage has the same
constant rate of producing a fossil. As a result, along a given lineage, the time between
fossilization events is exponentially distributed with rate ψ.

One key assumption of the FBD model is that each fossil represents a distinct fossil
specimen. However, if certain taxa persist through time and fossilize particularly well,
then the same taxon may be sampled at different stratigraphic ages. These fossil data are
commonly represented by only the first and last appearances of a fossil morphospecies. In
this case one might want to consider the fossilized birth-death range process10 (Stadler et al.,
2018) in RevBayes to model the stratigraphic ranges of fossil occurrences.

2.1.3 Accounting for fossil age uncertainty
Often, there is uncertainty around the age of each fossil, which is typically represented as an
interval of the minimum and maximum possible ages. Moreover, a recent study demonstrated
using simulated data that ignoring uncertainty in fossil occurrence dates can lead to biased
estimates of divergence times (Barido-Sottani et al., 2019). RevBayes allows fossil occurrence
time uncertainty to be modeled by directly treating it as part of the likelihood of the fossil
data given the time tree. We model this by assuming the likelihood of a particular fossil
occurrence Fi is zero if the inferred age ti occurs outside the time interval (ai, bi) and some
non-zero likelihood when the fossil is placed within the interval. Specifically, we will assume
the fossil could occur anywhere within the observed interval with uniform probability, this
means that the likelihood is equal to one if the inferred fossil age is consistent with the
observed fossil interval:

f [Fi | ai, bi, ti] =
{

1 if ai < ti < bi

0 otherwise
(1)

The incorporation of uncertainty around the fossil occurrence data is shown graphically
as a part of our model in (Figure 2).

2.2 Modeling discrete morphological character change
Given a phylogeny, the discrete morphological character change model will describe how
traits change along each lineage, resulting in the observed character states of fossils and

6 Episodic diversification rates tutorial: http://revbayes.com/tutorials/divrate/ebd
7 Environment-dependent diversification rates tutorial: http://revbayes.com/tutorials/divrate/env
8 Branch-specific diversification tutorial: http://revbayes.com/tutorials/divrate/branch_specific
9 State-dependent diversification tutorial: http://revbayes.com/tutorials/sse/bisse-intro
10Fossilized birth-death range process tutorial: http://revbayes.com/tutorials/fbd_range
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Figure 2 A graphical model of the fossil age likelihood model used in this tutorial. The likelihood
of fossil observation Fi is uniform and non-zero when the inferred fossil age ti falls within the
observed time interval (ai, bi).

living species. In our case, the phylogeny and fossil occurrences are generated from the FBD
process and we will be modeling the evolution of discrete morphological characters with two
states. There are three main components to consider with modeling discrete morphological
traits (as shown in Figure 1): the substitution model, the branch rate model, and the site
rate model.

2.2.1 Substitution model

The substitution model describes how discrete morphological characters evolve over time.
We will be using the Mk model (Lewis, 2001), a generalization of the Jukes-Cantor (Jukes
and Cantor, 1969) model described for nucleotide substitutions (see Chapter 1.1 [Pupko and
Mayrose 2020]).

The Mk model assumes that all transitions from one state to another occur at the same
rate, for all k states. Since the characters used in this tutorial all have two states, we will
specifically be using a model where k = 2. Thus, a transition from state 0 to state 1 is equally
as likely as a transition from state 1 to state 0. For this tutorial, we focus on binary (2-state)
characters for simplicity, but it is important to note that RevBayes can also accommodate
multistate characters11.

The evolution of discrete morphological characters is thought to occur at a very slow rate.
Moreover, once some characters transition to a certain state, they rarely transition back,
which means that the assumption of symmetric rates is likely violated my many empirical
datasets (Wright et al., 2016; Wright, 2019). We can accommodate asymmetric transition
rates12 for each state using alternative models in RevBayes. Additionally, if some characters
change symmetrically while others change asymmetrically, it is possible to partition13 the
matrix to account for model heterogeneity among characters.

11Multistate discrete morphology tutorial: http://revbayes.com/tutorials/morph_tree/V2
12Asymmetric transition rates tutorial: http://revbayes.com/tutorials/morph_tree
13Partitioned data analysis tutorial: http://revbayes.com/tutorials/partition

http://revbayes.com/tutorials/morph_tree/V2
http://revbayes.com/tutorials/morph_tree
http://revbayes.com/tutorials/partition
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2.2.2 Branch-rate model
The branch-rate model describes how rates of morphological state transitions vary among
branches in the tree. Each lineage in the phylogeny is assigned a value that acts as a
scalar for the rate of character evolution. In our case we assume each branch has the same
rate of evolution, this is a strict morphological clock (analogous to a strict molecular clock
Zuckerkandl and Pauling, 1962). It is also possible to account for variation in rates among
branches. These “relaxed-clock” models are commonly applied to molecular datasets and are
currently implemented in RevBayes14 (see Chapter 4.4 [Bromham 2020]).

2.2.3 Site-rate model
The rate of character evolution can often vary from site to site, i.e., from one column in the
matrix to another (see Chapter 1.1 [Pupko and Mayrose 2020]). Under the site-rate model, a
scalar is applied to each character to account for variation in relative rates. In our case we
will assume that each character belongs to one of four rate categories from the discretized
gamma distribution (Yang, 1994), which is parameterized by shape parameter α and number
of rate categories n. Normally a gamma distribution requires shape α and rate β parameters,
however, we set our site rates to have a mean of one, which results in the constraint α = β,
thus eliminating the second parameter. The parameter n breaks the gamma distribution
into n equiprobable bins where the rate value of each bin is equal to its mean or median.

2.3 Putting together the complete phylogenetic model
We have outlined the specific components forming the processes that govern the generation
of the time tree and morphological character data; and together these modules make up the
complete phylogenetic model. Figure 3 shows the complete probabilistic graphical model
that includes all of the parameters we will use in this tutorial (for more on graphical models
for statistical phylogenetics see Höhna et al., 2014).

The parameters represented as stochastic nodes (solid white circles) in Figure 3 are
unknown random variables that are estimated in our analysis. For each of these parameters,
we assume a prior distribution that describes our uncertainty in that parameter’s value. For
example, we apply an exponential distribution with a rate of 10 as a prior on the mutation
rate: µ ∼ Exponential(10). The parameters represented as constant nodes (white boxes) are
fixed to “known” or asserted values in the analysis.

2.4 Alternative models and analyses
The model choices and analysis in this tutorial focus on a simple example. Importantly, the
modular design of RevBayes allows for many model choices to be swapped with more complex
or biologically relevant processes for a given system. Analyses of a wide range of data types
are also implemented in RevBayes (e.g., nucleotide sequences15, historical biogeographic
ranges16). Moreover, it is possible to fully integrate models describing the generation of data
from different sources like in the “combined-evidence” approach17 (Ronquist et al., 2012;
Zhang et al., 2016; Gavryushkina et al., 2017) in a single, hierarchical Bayesian model. Some

14Relaxed clock models tutorial: http://revbayes.com/tutorials/clocks
15Nucleotide substitution models tutorial: http://revbayes.com/tutorials/ctmc
16Modeling discrete biogeography tutorial: http://revbayes.com/tutorials/biogeo/biogeo_intro
17FBD combined evidence tutorial: http://revbayes.com/tutorials/fbd/fbd_specimen
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Figure 3 The complete graphical model used in the analysis described in this tutorial. This
explicit representation of the model expands on the modular version depicted in Figure 1. The
model components are defined in the box on the right. To simplify the model, we do not represent
the components accounting for fossil age uncertainty illustrated in Figure 2.

researchers may wish to perform analyses with node calibrations18, and this approach is
also possible in RevBayes. Ultimately, for any statistical analysis of empirical data, it is
important to consider the processes governing the generation of those data and how they
can be represented in a hierarchical model.

3 Exercise: Phylogenetic Inference under the Fossilized Birth-Death
Process

In this exercise, we will create a script in Rev, the interpreted programming language used
by RevBayes, that defines the model outlined above and specifies the details of the MCMC
simulation. This script can be executed in RevBayes to complete the full analysis. We
conclude the exercise by evaluating the performance of the MCMC and summarizing the
results.

3.1 Data and files

This tutorial is maintained online at http://revbayes.com/tutorials/fbd_simple. On
this page, you will also find links to other RevBayes tutorials that will supplement some of
the information provided here. Additionally, this site gives links to the data files and the
completed script file.

18Molecular dating with node calibrations tutorial: http://revbayes.com/tutorials/dating/nodedate

http://revbayes.com/tutorials/fbd_simple
http://revbayes.com/tutorials/dating/nodedate
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On your own computer or your remote machine, create a directory called
RB_FBD_Tutorial (or any name you like).

Then, navigate to the folder you just created and make a new directory called data.

In the data folder, add the following files (you can download these files from the URLs
provided):

bears_taxa.tsv: a tab-separated table listing the 18 bear species in our analysis
(both fossil and extant) and their occurrence age ranges (minimum and maximum
ages). For extant taxa, the minimum age is 0.0 (i.e., the present).
http://revbayes.com/tutorials/fbd_simple/data/bears_taxa.tsv
bears_morphology.nex: a matrix of 62 discrete, binary (coded 0 or 1) morphological
characters for our 18 species of fossil and extant bears.
http://revbayes.com/tutorials/fbd_simple/data/bears_morphology.nex

Now you can create a separate file for the Rev script.

In the RB_FBD_Tutorial directory created above, create a blank file called
FBD_tutorial.Rev and open it in a text editor.

It is also possible (though not recommended) to execute this entire tutorial in the
RevBayes console.

The file FBD_tutorial.Rev will contain all of the instructions required to load the data,
assemble the different model components used in the analysis, and configure and run the
Markov chain Monte Carlo (MCMC) analysis. Once you finish writing this file, you can
compare your script with the FBD_tutorial.Rev file on the tutorial webpage.

3.2 Importing data into RevBayes

We will begin our Rev script by loading in the two data files that were downloaded and saved
to the data directory. In RevBayes, we use functions to read the contents of files and assign
them to variables in our workspace. First, we will create a variable called taxa that will
contain the data read in from bears_taxa.tsv.

taxa <- readTaxonData (" data/ bears_taxa .tsv ")

Next, we will import the morphological character matrix from bears_morphology.nex
and assign it to the variable morpho. In this exercise, we are using a NEXUS-formatted data
file, but it is worth noting that several other file-types are acceptable depending on the kind
of data (e.g., FASTA for molecular data).

morpho <- readDiscreteCharacterData (" data/ bears_morphology .nex ")

Here, we use the function readDiscreteCharacterData to load a data matrix to the
workspace from a formatted file. This function can be used for discrete morphological data
as well as molecular sequence data (e.g., nucleotides, amino acids).

PGE
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3.3 Helper variables
Before we begin specifying the hierarchical model, it is useful to instantiate some “helper
variables” that will be used in our model and MCMC specification throughout our script.

First, we will create a new constant node called n_taxa that is equal to the number of
species in our analysis (18).

n_taxa <- taxa.size ()

Next, we will create a workspace variable called moves, which is a vector that will
contain all of the MCMC moves used to propose new states for every stochastic node in the
model graph. Each time a new stochastic node is created in the model, we can append the
corresponding moves to this vector.

moves = VectorMoves ()

One important distinction here is that moves is part of the RevBayes workspace and not
the hierarchical model. Thus, we use the workspace assignment operator = instead of the
constant node assignment operator <-.

3.4 The fossilized birth-death process
3.4.1 Speciation and extinction rates
Two key parameters of the FBD process are the speciation rate (the rate at which lineages
are added to the tree, denoted by λ in Figure 3) and the extinction rate (the rate at which
lineages are removed from the tree, µ in Figure 3). We will place exponential priors on both
of these values, meaning we assume each parameter is drawn independently from a different
exponential distribution, where each distribution has a rate parameter equal to 10. Note
that an exponential distribution with a rate of 10 has an expected value (mean) of 1/10.

Create the exponentially distributed stochastic nodes for the speciation_rate and
extinction_rate using the ~ stochastic assignment operator.

speciation_rate ~ dnExponential (10)
extinction_rate ~ dnExponential (10)

The ~ operator in Rev instantiates a stochastic node in the model (i.e., a solid circle
in Figure 3). Every stochastic node must be defined by a distribution. In this case, we
use the exponential. In the Rev language, every distribution has the prefix dn to make
it easier to locate the various distributions in the Rev language documentation (http:
//revbayes.com/documentation). When a stochastic node is created in the model, the
distribution function assigns it an initial value by drawing a random value from the prior
distribution and assigns the node to the named variable.

For every stochastic node we declare, we must also specify proposal algorithms (called
moves) to sample the value of the parameter in proportion to its posterior probability (see
Chapter 1.4 [Lartillot 2020]). If a move is not specified for a stochastic node, then it will not
be estimated, but fixed to its initial value.

The extinction rate and speciation rate are both positive, real numbers (i.e., non-negative
floating point variables). For both of these nodes, we will use a scaling move (mvScale),
which proposes multiplicative changes to a parameter.

moves. append ( mvScale ( speciation_rate , weight =1))
moves. append ( mvScale ( extinction_rate , weight =1))

http://revbayes.com/documentation
http://revbayes.com/documentation
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You will also notice that each move has a specified weight. This option indicates the
frequency a given move will be performed in each MCMC cycle. In RevBayes, the MCMC
is executed by default with a schedule of moves at each step of the chain, instead of just
one move per step, as is done in MrBayes (Ronquist and Huelsenbeck, 2003) or BEAST
(Drummond et al., 2012; Bouckaert et al., 2014). Here, if we were to run our MCMC with our
current vector of two moves each with a weight of 1, then our move schedule would perform
two moves in each cycle. Within a cycle, an individual move is chosen from the move list in
proportion to its weight. Therefore, with both moves assigned weight=1, each has an equal
probability of being executed and will be performed on average one time per MCMC cycle.
For more information on moves and how they are performed in RevBayes, please refer to the
tutorials introducing Markov chain Monte Carlo19 and nucleotide substitution models20.

In addition to the speciation (λ) and extinction (µ) rates, we may also be interested in
inferring the net diversification rate (λ− µ) and the turnover (µ/λ). Since these parameters
can each be expressed as a deterministic transformation of the speciation and extinction
rates, we can monitor their values (i.e., track their values and print them to a file) by creating
two deterministic nodes using the := deterministic assignment operator.

diversification := speciation_rate - extinction_rate
turnover := extinction_rate / speciation_rate

Deterministic nodes are represented by circles with dotted borders in a probabilistic
graphical model. To maintain the simplicity of the model in Figure 3, the diversification rate
and turnover are not shown.

3.4.2 Extant sampling probability
Every extant bear species is represented in this dataset. Therefore, we will fix the probability
of sampling an extant lineage (ρ in Figure 3) to 1. The parameter rho will be specified as a
constant node (new values for rho will not be sampled in the MCMC) using the <- constant
assignment operator.

rho <- 1.0

Because ρ is a constant node, we do not have to assign a move to this parameter because
we assume the value is known and fixed.

3.4.3 Fossil sampling rate
Since our data set includes serially sampled lineages, we must also account for the rate of
sampling through time. This is the fossil sampling (or recovery) rate (ψ in Figure 3), which
we will instantiate as a stochastic node named psi. As with the speciation and extinction
rates (see Section 3.4.1), we will use an exponential prior on this parameter and apply a
scale move to sample values from the posterior distribution.

psi ~ dnExponential (10)
moves. append ( mvScale (psi , weight =1))

19 Introduction to MCMC tutorial: http://revbayes.com/tutorials/mcmc/
20Nucleotide substitution models tutorial: http://revbayes.com/tutorials/ctmc
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3.4.4 Origin time
The FBD process is conditioned on the origin time (φ in Figure 3), which requires specification
of a node representing the age of the clade. We will set a uniform distribution on the origin
age, with the lower bound set at the age of the oldest bear fossil (37 My) and the higher
bound of 55 My set to the age of the most recent common ancestor of crown Carnivora
estimated by recent studies (dos Reis et al., 2012). For the move, we will use a sliding window
move (mvSlide), which samples a parameter uniformly within an interval (defined by the
half-width “delta”, which is set to 1 by default). Sliding window moves can be problematic
for small values, as the window may overlap zero. However, our prior on the origin age
excludes values ≤ 37.0, so this is not an issue.
origin_time ~ dnUnif (37.0 , 55.0)
moves. append ( mvSlide ( origin_time , weight =1.0))

3.4.5 The FBD tree
Now that we have specified all of the parameters of the FBD process (λ, µ, φ, ψ), we will use
these parameters to create the stochastic node representing the time-calibrated tree that we
will call fbd_tree. The fbd_tree (T in Figure 3) is generated by a fossilized birth-death
distribution and is conditionally dependent on λ, µ, φ, and ψ. The FBD distribution function
dnFBDP takes the FBD parameters as arguments as well as the taxa variable which specifies
the number of terminal taxa as well as the taxon labels.
fbd_tree ~ dnFBDP ( origin = origin_time , lambda = speciation_rate ,

mu= extinction_rate , psi=psi , rho=rho , taxa=taxa)

Next, in order to sample from the posterior distribution of trees, we need to specify moves
that propose changes to the topology (mvFNPR) and node times (mvNodeTimeSlideUniform).
We also include a proposal (mvCollapseExpandFossilBranch) that will collapse or expand
a fossil branch, thus sampling trees where a given fossil is either a sampled ancestor or a
sampled tip. In addition, when conditioning on the origin time, we also need to explicitly
sample the root age (mvRootTimeSlideUniform).
moves. append ( mvFNPR (fbd_tree , weight =15.0))
moves. append ( mvCollapseExpandFossilBranch (fbd_tree , origin_time ,

weight =6.0))

moves. append ( mvNodeTimeSlideUniform (fbd_tree , weight =40.0))
moves. append ( mvRootTimeSlideUniform (fbd_tree , origin_time ,

weight =5.0))

Note that we specified a higher move weight for each of the proposals operating on
fbd_tree than we did for the previous stochastic nodes. This means that our move schedule
will propose fifteen times as many new topologies via the mvFNPR move as it will new values of
speciation_rate using mvScale, for example. By increasing the number of times new values
are proposed for a parameter, we are increasing the sampling intensity for that parameter.
Typically, we do this for parameters that we are particularly interested in or for parameters
that tend to induce long mixing times. A node like T in our graphical model (Figure 3)
represents a complex set of variables: the tree topology and all divergence times. Moreover,
the likelihoods of our fossil occurrence data and the morphological character data are both
conditionally dependent on the time tree. Such complex variables require more extensive
sampling than other nodes.
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3.4.6 Sampling fossil cccurrence times
We need to account for uncertainty in the age estimates of our fossils using the observed
minimum and maximum stratigraphic ages that are provided in the file bears_taxa.tsv.
We can represent the fossil likelihood using any uniform distribution that is non-zero when
the likelihood is equal to one (see Section 2.1.3). For example, if ti is the inferred fossil age
and (ai, bi) is the observed stratigraphic interval, we know the likelihood is equal to one when
ai < ti < bi, or equivalently ti − bi < 0 < ti − ai. So we can represent this likelihood using a
uniform random variable, uniformly distributed in (ti − bi, ti − ai) and clamped at zero.

To do this, we will get all the fossils from the tree and use a for loop to iterate over
them. For each fossil observation, we will create a uniform random variable representing the
likelihood, based on the minimum and maximum ages specified in the file bears_taxa.tsv.

fossils = fbd_tree . getFossils ()
for(i in 1: fossils .size ())
{

t[i] := tmrca(fbd_tree , clade( fossils [i]))

a_i = fossils [i]. getMinAge ()
b_i = fossils [i]. getMaxAge ()

F[i] ~ dnUniform (t[i] - b_i , t[i] - a_i)
F[i]. clamp( 0 )

}

Finally, we will add a move that samples the ages of all the fossils on the tree.

moves. append ( mvFossilTimeSlideUniform (fbd_tree , origin_time ,
weight =5.0))

3.4.7 Monitoring parameters of interest
There are additional parameters that may be of particular interest to us that are not directly
sampled as part of the graphical model defined thus far. As with the diversification and
turnover nodes specified in Section 3.4.1, we can create deterministic nodes to sample the
posterior distributions of these parameters. Here we will create a deterministic node called
num_samp_anc that will compute the number of sampled ancestors in our fbd_tree.

num_samp_anc := fbd_tree . numSampledAncestors ()

We are also interested in the age of the most-recent-common ancestor (MRCA) of all
living bears. To monitor this age in our MCMC sample, we must use the clade() function to
identify the node corresponding to the MRCA. Once this clade is defined we can instantiate
a deterministic node called age_extant that will record the age of the MRCA of all living
bears, using the tmrca() function.

clade_extant = clade (" Ailuropoda_melanoleuca "," Tremarctos_ornatus ",
" Melursus_ursinus "," Ursus_arctos ",
" Ursus_maritimus "," Helarctos_malayanus ",
" Ursus_americanus "," Ursus_thibetanus ")

age_extant := tmrca(fbd_tree , clade_extant )

In the same way we monitored the MRCA of the extant bears, we can also monitor the
age of a fossil taxon that we may be interested in recording. We will monitor the marginal

PGE



5.2:14 Estimating a time-calibrated phylogeny of fossil and extant taxa using RevBayes

distribution of the age of Kretzoiarctos beatrix (Abella et al., 2012), which is sampled between
11.2–11.8 My.

age_Kretzoiarctos_beatrix := tmrca(fbd_tree ,
clade (" Kretzoiarctos_beatrix "))

3.5 Modeling the evolution of binary morphological characters
The next part of the graphical model, we will define specifies the model of morphological
character evolution. This component includes the substitution model, the model of rate
variation among characters, and the model of rate variation among branches (Figure 3).

As stated in Section 2.2.1, we will use the Mk model to describe the substitution process.
Because the Mk model is a generalization of the Jukes-Cantor model (Jukes and Cantor,
1969), we will initialize our instantaneous rate matrix from a Jukes-Cantor matrix (see
Chapter 1.1 [Pupko and Mayrose 2020]). The constant node Q_morpho corresponds to the
two-state rate matrix Q in Figure 3.

Q_morpho := fnJC (2)

We will assume that rates vary among characters in our data matrix according to a
discretized gamma distribution (described in Section 2.2.3). For this model, we create a vector
of rates named rates_morpho which is the product of a function fnDiscretizeGamma() that
divides up a gamma distribution into a set of equal-probability bins (R in Figure 3). Here,
our only stochastic node is alpha_morpho (α in Figure 3), which is the shape parameter of
the discretized gamma distribution.

alpha_morpho ~ dnExponential (1.0)
rates_morpho := fnDiscretizeGamma ( alpha_morpho , alpha_morpho , 4)

moves. append ( mvScale ( alpha_morpho , weight =5.0))

The phylogenetic model also assumes that each branch has a rate of morphological
character change. For simplicity, we will assume a strict morphological clock–meaning that
every branch has the same rate represented by the stochastic node clock_morpho (c in Figure
3), which is drawn from an exponential distribution (see Section 2.2.2).

clock_morpho ~ dnExponential (1.0)
moves. append ( mvScale ( clock_morpho , weight =4.0))

3.5.1 The phylogenetic CTMC
If you refer to Figure 3, you will see that we have defined almost all of the components of the
complete model except for the observed node representing our morphological character data
(M). The character matrix is a clamped stochastic node that is generated by a phylogenetic
continuous-time Markov chain (CTMC) distribution (see Chapter 1.1 [Pupko and Mayrose
2020]). This node is conditionally dependent on the time tree (T : fbd_tree), clock rate
(c: clock_morpho), site rates (R: rates_morpho), and the two-state Mk rate matrix (Q:
Q_morpho). With all of these nodes instantiated in the graphical model, we can now connect
the components by defining the node representing our observed morphological data.

There are some unique aspects to specifying a phylogenetic CTMC for morphological data.
You will notice that we have an option called coding. This option allows us to condition on
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biases in the way the morphological data were collected (i.e., ascertainment bias). By setting
coding=variable we can correct for coding only variable characters (as discussed in Lewis,
2001).

phyMorpho ~ dnPhyloCTMC (tree=fbd_tree , siteRates = rates_morpho ,
branchRates = clock_morpho , Q=Q_morpho ,
type =" Standard ", coding =" variable ")

phyMorpho .clamp( morpho )

Now that we have defined our complete model, we can create a workspace variable that
packages the entire model graph. This makes it easy to pass the whole model to functions
that will set up our MCMC analysis. This variable is created using the model() function,
which takes only a single node in the graph. We will use the fbd_tree node, but you can try
this with an alternative node (e.g., clock_morpho, rho, etc.). As long as you have established
all of the connections among the model parameters, the model() function will find every
other node by traversing the edges of the graph (Figure 3).

mymodel = model( fbd_tree )

3.6 Monitoring variables
We have defined the full probabilistic graphical model shown in Figure 3 and now we are
ready to specify the details of our MCMC analysis. The first step in setting up the analysis
is to create monitors that will record the values of each parameter in our model for every
sampled cycle of the MCMC. The sampled values are saved to file (or printed to screen) and
can be summarized when our MCMC simulation is complete.

Let’s create three different monitor objects for this analysis. To manage the monitors in
RevBayes, we create another workspace variable called monitors that is a vector containing
the three monitor variables.

monitors = VectorMonitors ()

We will append our first monitor to the monitors vector. This will create a file called
bears.log in a directory called output (if this directory does not already exist, RevBayes
will create it). The function mnModel() initializes a monitor that saves all of the numerical
parameters in the model to a tab-delineated file. This file is useful for summarizing marginal
posteriors in statistical plotting tools like Tracer (Rambaut et al., 2018) or R (R Core Team,
2020). We will exclude the F vector from logging, as it is purely used as an auxiliary variable
for estimating fossil ages, and is clamped to 0. Additionally, we also specify how frequently
we sample our Markov chain by setting the printgen option. We will sample every 10 cycles
of our MCMC.

monitors . append ( mnModel ( filename =" output /bears.log", printgen =10,
exclude =["F"]))

You may think that sampling every 10 generations may be too frequent to avoid correlation
between samples in our MCMC. However, recall that a single “generation” in RevBayes
performs a schedule of moves that is determined by the number of moves in the moves vector
and the weights assigned to those moves (see Section 3.4.1). Thus, a single generation in this
analysis will involve 26 moves, so if we record every 10 generations, there will be 260 moves
between each sample.
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We want to create a separate file containing samples of the tree and branch lengths since
these will not be saved by the monitor defined above. To save the tree parameter, we can use
the mnFile() function that saves specific parameters to a file. We indicate the parameters
by including them in the function’s options.

monitors . append ( mnFile ( filename =" output /bears.trees", printgen =10,
fbd_tree ))

The final monitor will print updates of our MCMC to the screen. The screen monitor
function mnScreen() allows us to add parameters in our model that will be displayed along
with a few default values (including the current iteration, posterior, likelihood, and prior).
We will monitor the age of the MRCA of the living bears, the number of sampled ancestors,
and the origin time in the screen output.

monitors . append ( mnScreen ( printgen =10, age_extant , num_samp_anc ,
origin_time ))

3.7 Setting up and running the MCMC sampler
Our Rev script specifies the three major parts of our MCMC analysis: a model (mymodel), a
list of MCMC proposals (moves), and a way to save the values sampled by our Markov chain
(monitors). With these three components, we can set up our analysis using the mcmc()
function. This function creates a workspace variable that we can use to execute the MCMC
simulation.

mymcmc = mcmc(mymodel , monitors , moves)

Using our variable mymcmc, we can execute the run() member method to start our MCMC
sampler.

mymcmc .run( generations =10000)

Finally, since we are going to save this analysis in a script file and run it in RevBayes, it
is useful to include a statement that will quit the program when the run is complete.

q()

Your script is now complete! Note that you can compare your script to the
FBD_tutorial.Rev file provided on the tutorial webpage.

Save the FBD_tutorial.Rev file in the RB_FBD_Tutorial directory.

3.8 Execute the analysis script in RevBayes
With your script complete and data files in the proper location, you can execute the
FBD_tutorial.Rev script in RevBayes.

Run the RevByes executable.
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On Unix systems, if the RevBayes is in your path, you simply need to navigate to the
RB_FBD_Tutorial directory and type rb.

If the RevBayes executable is not in your path, you can execute it and then change
your working directory within the program using the setwd() function which takes the
absolute path to your directory as an argument.

setwd ("< path to >/ RB_FBD_Tutorial ")

Once RevBayes is in the correct working directory (RB_FBD_Tutorial), you can then use
the source() function to feed RevBayes your master script file (FBD_tutorial.Rev).

source (" FBD_tutorial .Rev ")

This will execute the analysis and you should see the various parameters—specified when
you initialized the screen monitor—printed to the screen every 10 generations. When the
analysis is complete, RevBayes will quit and you will have a new directory called output that
will contain all of the files you specified with the monitors.

3.9 Results
Two files are created by the monitors in Section 3.6. These files, located in the output
directory contain the record of values sampled for the various parameters of the model over
the course of the MCMC. In the following sections, we will assess the performance of our
MCMC sampler and summarize the marginal posterior distributions of numerical parameters
(in the file bears.log) and the time-calibrated phylogeny (in the file bears.trees).

3.9.1 Evaluating the MCMC sampler
The first step when analyzing the output of an MCMC run is to check whether the chain
has converged on the stationary distribution and sampled effectively (i.e., achieved “good
mixing”). This can be done by loading the parameter log, in our case the file bears.log, in
a program such as Tracer21 (Rambaut et al., 2018), shown in Figure 4.

On the left side is a panel summarizing all the parameters appearing in the log, with their
mean estimate and ESS value (effective sample size). The ESS of a parameter determines
whether the chain has adequately sampled the associated variable: values above 200 are
considered “good”, whereas values below 200, highlighted by Tracer in yellow or red, indicate
poor mixing. Explicitly, the ESS measures the degree of independence between samples
and parameters with signatures of autocorrelation between samples are indicative of an
inadequate sampler.

Here we can see that the chain has mixed well for some parameters, but not others. In
particular, we see low ESS values for the origin time (origin_time) and the ages of some
fossil tips (t[1], t[9] and t[10]). This may indicate that the MCMC sampler has not
converged on the stationary distribution for these parameters, which are associated with
the FBD tree. What this assessment reveals is that we did not perform enough proposals
for these parameters. Thus, it will be important to run the MCMC for more generations

21Tracer: http://beast.community/tracer
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Figure 4 Analysis in Tracer of the parameter estimates obtained on the bears dataset.

(specified in Section 3.7) and/or increase the weights of moves applied to these stochastic
nodes (e.g., the mvSlide applied to origin_time in Section 3.4.4). For more details on
diagnosing convergence of MCMC samples under the FBD model, please see the tutorial on
combined-evidence analysis in RevBayes 22.

3.9.2 Summarizing the tree
Once we are certain that our MCMC has effectively sampled the joint posterior distribution
of our model parameters, we can summarize the tree topology, branch times, and fossil ages
that were saved to output/bears.trees using some built-in RevBayes functions.

Run the RevByes executable, making sure that the working directory is
RB_FBD_Tutorial.

The file bears.trees contains the trees and associated parameters that were sampled
every 10 generations by our monitor. In RevBayes, we often refer to a set of samples from
our MCMC as a “trace”.

Begin by loading the tree trace into RevBayes from the bears.trees file.

trace = readTreeTrace (" output /bears.trees ")

By default, a burn-in of 25% is used when reading in the tree trace (250 trees in our
case). Note that this is different from Tracer, which uses a burn-in fraction of 10% by

22FBD combined evidence tutorial: http://revbayes.com/tutorials/fbd/fbd_specimen
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default. You can specify a different burn-in fraction, say 50%, by typing the command
trace.setBurnin(500).

Now we will use the mccTree() function to return a maximum clade credibility (MCC)
tree. The MCC tree is the tree with the maximum product of the posterior clade probabilities.
When considering trees with sampled ancestors, we refer to the maximum sampled ancestor
clade credibility (MSACC) tree (Gavryushkina et al., 2017).

mccTree (trace , file =" output /bears.mcc.tre ")

When there are sampled ancestors present, visualizing the tree can be fairly difficult in
traditional tree viewers. We will make use of a browser-based tree visualization tool called
IcyTree (Vaughan, 2017), which can be accessed at https://icytree.org. IcyTree has
many unique options for visualizing phylogenetic trees and can produce publication-quality
vector image files (i.e., SVG). Additionally, it correctly represents sampled ancestors on the
tree as nodes, each with only one descendant (Figure 5).

Navigate to https://icytree.org and open the file output/bears.mcc.tre in IcyTree.

Try to replicate the tree in Figure 5 (Hint: Style > Mark Singletons).
F Why might a node with a sampled ancestor be referred to as a singleton?
F How can you see the names of the fossils that are putative sampled ancestors?
F What is the posterior probability that Zaragocyon daamsi is a sampled ancestor?

Figure 5 Maximum sampled ancestor clade credibility (MSACC) tree of bear species used in this
tutorial.
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3.10 Summary

In this tutorial, we have introduced core information about how morphological and age
information are modeled for use with the FBD model in RevBayes. We have also discussed
important aspects of executing and summarizing MCMC analysis. This exercise uses a
simplified data set and set of models for analysis of fossil and extant data. Most researchers
working on living taxa have access to molecular (including genomic) data and may be
interested in applying these methods to much larger datasets and more complex problems.
Note that the goal of this tutorial is to provide a concise introduction to the framework for
analysis of paleontological and neontological data in RevBayes. For more information on
how to apply RevBayes datasets combining morphological and molecular characters, please
refer to the tutorial describing this approach: http://revbayes.com/tutorials/fbd/fbd_
specimen.

4 Bayesian Phylogenetic Inference in RevBayes

This tutorial provided a very focused look at the range of models and methods available in
RevBayes. There are currently numerous approaches available and under active development
by RevBayes team members. These include (but are not limited to):

Model selection using Bayes factors
Model averaging of substitution models
Approaches for assessing model adequacy using posterior prediction
Analysis of multi-state discrete morphological characters under asymmetric models
Various relaxed-clock models
Models that vary diversification over time
State-dependent diversification models
Analysis of chromosome evolution
Lineage specific diversification rate variation
Analysis of continuous characters under Brownian motion and Ornstein-Uhlenbeck models
Ancestral area estimation and phylogenetic analysis of historical biogeography
Gene-tree/species-tree inference under the multi-species coalescent
The flexibility of the modeling framework implemented in RevBayes provides a rich

tool-kit for phylogenetic analysis under complex models. Moreover, the RevBayes core and
probabilistic graphical models make it possible for new developers to readily implement their
ideas in an existing code base. Members of the RevBayes Development Team are working
to expand the documentation for new developers (http://revbayes.com/developer) to
facilitate the growth of new statistical models and methods available in RevBayes.
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