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Abstract
Modern methods to detecting adaptive evolution from interspecific protein-coding gene align-
ments rely on statistical models of sequence evolution formulated at the level of codons. By
performing model comparisons, one measures the evidence for signals of adaptive substitution
processes, relative to a null model that disallows any adaptive regime. In this chapter, we present
the detailed form of these models of sequence evolution, and how they are applied to real data
sets. The classical codon substitution models are based on evaluating the relative nonsynonymous
to synonymous substitution rates, and the main focus has traditionally been placed on devising
models allowing for increasingly more subtle manifestations of adaptive substitution processes.
We also overview a contrasting modeling direction that has emerged in the last decade—although
with roots two decades back—in which the emphasis is placed on devising a richer modeling of
purifying selection. Using simulations, we expand the characterization of this latter approach,
followed by a contrasting of its conclusions on real data with those of classical codon models. Fi-
nally, we discuss the numerous model violations that can lead to erroneous inferences on various
tests, and potential future directions meriting attention.

How to cite: Christine Lowe and Nicolas Rodrigue (2020). Detecting Adaptation from Multi-
species Protein-coding DNA Sequence Alignments. In Scornavacca, C., Delsuc, F., and Galtier,
N., editors, Phylogenetics in the Genomic Era, chapter No. 4.5, pp. 4.5:1–4.5:18. No commercial
publisher | Authors open access book. The book is freely available at https://hal.inria.fr/PGE.

1 Introduction

When alignments of protein-coding DNA sequences from different species became available
in the second half of the 20th century, evolutionary biologists quickly sought to contrast the
rate of substitutions that do not alter the encoded amino acid sequence (the synonymous
substitutions) to those that imply an amino acid replacement (the nonsynonymous substitu-
tions). Early methods were based on simple counting schemes (Miyata and Yasunaga, 1980;
Perler et al., 1980; Gojobori, 1983; Li et al., 1985; Nei and Gojobori, 1986). One of their
objectives was to account for the fact that not all codon states have the same potential for
synonymous and nonsynonymous substitutions; for instance, a codon encoding tryptophan
has no synonymous opportunity, given that it is alone in encoding this amino acid, whereas
leucine is encoded by six codons, and therefore has high synonymous opportunity. These
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4.5:2 Detecting Adaptation from Multi-species Protein-coding DNA Sequence Alignments

early methods also relied on multiple pairwise sequence comparisons, for all or most of the
possible pairs from the multiple sequence alignment. By the 1990s, however, a number of
statistical models were proposed, working within a full phylogenetic framework (Goldman
and Yang, 1994; Muse and Gaut, 1994; Halpern and Bruno, 1998). Rather than utilizing
counting schemes on pairwise comparisons, the models were based on the idea of fitting para-
meters (e.g., by maximum likelihood) representing features of a codon substitution process
running over the branches of a phylogenetic tree relating all sequences of an alignment.

In this chapter, we follow two main threads in the development of codon substitution
models aimed at detecting adaption in protein-coding genes. The first consists of models
based on a parameter denoted ω, which corresponds to the rate ratio of nonsynonymous
(dN) and synonymous (dS) substitutions (ω = dN/dS). The traditional interpretation
of ω is that instances where model fitting leads to ω ∼ 1 correspond to (nearly) neutral
evolution, whereas ω < 1 indicates purifying, or negative selection, and ω > 1 corresponds
to an adaptive regime, or positive selection. We present the detailed form of such models,
as well as the commonly used extensions allowing for variation in ω across codon sites of
an alignment. The second modeling thread we present is focused on better capturing the
subtleties of purifying selection, in what has come to be known as the mutation-selection
framework. These approaches attempt to account for the heterogeneity of amino acid fitness
profiles across sites, and form a null model against which to test for nonsynonymous rates
greater than expected under the mutation-selection balance. We describe the mutation-
selection rationale in detail, and present a simulation study to further characterize the
approach. We also contrast its results on several thousands of real data sets with those of
the classical codon substitution models. Finally, we discuss a number of model violations
that can influence inferences under codon substitution models, and outline future research
directions that merit greater attention.

2 The classic codon substitution models

Appearing back-to-back in the 1994 September issue of Molecular Biology and Evolution,
the papers by Muse and Gaut (1994, “MG”) and Goldman and Yang (1994, “GY”) took the
ideas of likelihood-based phylogenetic analysis in the nucleotide state space, and proposed to
expand the state space to in-frame nucleotide triplets: rather than specifying a 4 by 4 matrix
of nucleotide substitution rates, a 61 by 61 (assuming a universal genetic code) matrix of
codon substitution rates is specified; the lethality of stop-codons is a built-in assumption of
the model, in being disallowed in the state space. Another built-in assumption is that of a
point-mutation process, where the substitution rate between codons that differ by two or
three nucleotides is set to zero. However, this latter assumption is not new to the codon-
level context, but inherent to the nucleotide-level context as well, since the probability of
two nucleotide sites undergoing a substitution within a given time interval vanishes as the
interval approaches zero (see Chapter 1.1 [Pupko and Mayrose 2020]).

2.1 MG-style models
Thanks to the point-mutation assumption, one can re-formulate a nucleotide-level model,
such as the general-time-reversible (GTR) model (Lanave et al., 1984), into a nucleotide
triplet state space. Let ρ = (ρlm)1≤l,m≤4 be a set of (symmetrical) nucleotide relative ex-
changeability parameters, with the constraint

∑
1≤l<m≤4 ρlm = 1. Also let ϕ = (ϕm)1≤m≤4,

with
∑4
m=1 ϕm = 1, be a set of nucleotide equilibrium frequency parameters. The GTR

model specifies the entries of a 4 by 4 rate matrix as Qlm = ρlmϕm. The exact same model
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can be written into a 64 by 64 matrix, specifying rates from one codon i to another j as:

Qij =
{
ρicjcϕjc , if i and j differ only at cth codon position,
0, otherwise,

(1)

where ic corresponds to an index of the nucleotide at the cth codon position (c = 1, 2, or 3) of
codon i (ic = 1, 2, 3, or 4, as indices for A, C, G, and T). The distinction between Equation 1
and the GTR model is only one of a game of indices, but the formulation given in Equation 1
suggests that we could further recognize different types of codon substitutions. For instance,
if we suppress stop codons from the process (reducing it to a 61 by 61 rate matrix, as
stated above), we could recognize the distinction between synonymous and nonsynonymous
substitution rates, specifying the entries in the matrix as:

Qij =


ρicjcϕjc , if i and j are synonymous
ρicjcϕjcω, if i and j are nonsynonymous
0, otherwise.

(2)

The model given in Equation 2 resembles closely the one proposed by Muse and Gaut (1994).
The most notable difference is that in their seminal paper, Muse and Gaut invoked a new
multiplicative parameter for nonsynonymous and synonymous rates, whereas in Equation 2
we effectively set the synonymous rate multiplier to 1, and invoke a single parameter, ω,
on nonsynonymous rates, and hence ω = dN/dS. The other difference with the original
model is that Equation 2 includes parameters controlling nucleotide exchangeabilities (as
in a GTR nucleotide-level model), whereas Muse and Gaut originally did not, and only
used the frequency parameter of the target nucleotide (as in a F81 nucleotide-level model,
Felsenstein, 1981). The stationary probability of codon i, denoted πi, which can be thought
of as the proportion of time spent in codon state i when running the substitution process
for a very long time, is given by:

πi = ϕi1ϕi2ϕi3∑
j ϕj1ϕj2ϕj3

, (3)

where the summation in the denominator is over all 61 (non-stop) codon states. In other
words, the stationarity of the model given by Equation 2 is nearly identical to what it would
be under the GTR model over three nucleotide positions, but with a slight re-normalization
for the absence of the stop codons from the state space.

One of the widely used extensions to this formulation, often denoted as F3x4, is to invoke
three distinct nucleotide frequency vectors, ϕ(1), ϕ(2), and ϕ(3), for the three within-codon
positions (Yang, 2006), and hence with a rate matrix given by:

Qij =


ρicjcϕ

(c)
jc
, if i and j are synonymous

ρicjcϕ
(c)
jc
ω, if i and j are nonsynonymous

0, otherwise,
(4)

and stationary probability given by:

πi =
ϕ

(1)
i1
ϕ

(2)
i2
ϕ

(3)
i3∑

j ϕ
(1)
j1
ϕ

(2)
j2
ϕ

(3)
j3

. (5)

The idea behind F3x4 formulation—so called because it involves three sets of four-dimensional
frequency vectors—is to account for the uneven frequencies observed across the three within-
codon positions that result from the structure of the genetic code; for instance, if there is
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a highly skewed compositional bias in the data, it is most reflected in the third codon po-
sitions, whose state typically has no impact on the encoded amino acid, whereas first and
second codon positions, whose states generally dictate the amino acid, would have different
nucleotide frequencies. In other words, the differences in nucleotide frequencies across the
three positions are features of different selective pressures operating at the amino acid level.
While it may seem artificial to have an enriched parameterization at the nucleotide-level to
account for features of selection at the amino acid level, the justification is phenomenolo-
gical: regardless of the mechanistic details at the amino acid level, this modeling approach
attempts to capture the net effect of these mechanisms, at least partially.

Pond et al. (2010) proposed a correction to the common practice of setting the values of
these parameters to the nucleotide frequencies observed at the three codon positions of the
data set at hand. The parameters can also be estimated by maximum likelihood, or become
part of a Bayesian inference (Rodrigue et al., 2008a).

2.2 GY-style models

Models inspired by Goldman and Yang (1994) differ from those inspired by Muse and Gaut
(1994) in a few ways. Perhaps the most significant difference, however, is the fact that with
GY-style models the entries in the substitution rate matrix are proportional to the frequency
(or stationary probability) of the target codon:

Qij =


ρicjcπj , if i and j are synonymous
ρicjcπjω, if i and j are nonsynonymous
0, otherwise.

(6)

This contrasts with the MG-style models given in Equation 2, which have entries propor-
tional to the frequency of the target nucleotide (ϕjc).

Most practitioners set the values of the 61-dimensional π-vector based on nucleotide-level
specifications. For instance, it is common to work with a single vector of nucleotide frequen-
cies, denoted F1x4, and setting πi ∝ ϕi1ϕi2ϕi3 . This practice, however, leads to peculiar
effects in the specification of codon substitution rates, that could sometimes contradict the
modeling intention. Rodrigue et al. (2008a) point out an example: suppose a context that
is highly sucesptible to events leading to A or to T (in other words, a context where ϕA
and ϕT are at higher values than ϕC and ϕG); all else being equal, the substitution rate
from CGC to CTC (i.e., toward a high-frequency state T) will be lower than the rate from
ATA to AGA (i.e., toward a low-frequency state G). Stated in reciprocally, the rate will be
higher for the event that goes against the compositional bias at the nucleotide level (to a
final state G), simply because of the context of the event. It is unclear if practitioners fully
realize these sorts of peculiarities of GY-style F1x4 models, or if they consider them to be
negligible to the inference of interest, usually ω (or its distribution).

Naturally, the F3x4 configuration, setting πi ∝ ϕ(1)
i1
ϕ

(2)
i2
ϕ

(3)
i3

is also utilized extensively in
GY-style models. However, Huelsenbeck and Dyer (2004), as well as Rodrigue et al. (2008b),
have shown that such approximations of π are often well outside the 95% credibility intervals
of full Bayesian inferences of the 61-dimensional vector (a setting often denoted F61). On
the other hand, the main drawback of the GY-F61 model is the confounded account of
nucleotide, amino acid, and codon propensities. As discussed in a later section, the MG-
style models offer opportunities to account for these propensities separately, within the
mutation-selection framework.



C. Lowe and N. Rodrigue 4.5:5

3 Distributions of ω

Beyond issues relating to MG versus GY, or F1x4, F3x4, and F61, the main objective of
codon substitution models is to characterize the ratio of nonsynonymous rates to synonymous
rates, or ω, as denoted above, with a particular interest in cases where ω > 1. In the previous
section, we presented the classic codon substitution models in their homogeneous versions;
each codon column of the alignment is considered to be the realization of a strictly identical
Markov process, remaining unchanged across the branches of the phylogeny, or across the
positions of the alignment. When fitting such global models to real data, one virtually never
encounters cases where ω > 1, simply because adaptive evolution is unlikely to be operating
across all states, sites, and branches. In this section, we present the ideas behind the most
widely known models of codon substitutions that account for variation in ω, with a focus
on across-site heterogeneity.

3.1 Variable ω across sites
The first models to account for variation in ω values across the codon alignment were inspired
from the random effects approaches of Yang (1993, 1994) to model rates across sites in
nucleotide-level models. They consider each codon column of the alignment to have been
produced from a model with ω drawn from a parametric statistical law (Nielsen and Yang,
1998; Yang et al., 2000). A problem remains, however, in that there is no inherent reason
to choose one statistical law over another. The approach taken in the seminal works of
Yang, Nielsen and collaborators was empirical: explore many different statistical laws, and
perform likelihood-based model comparisons to identify the most appropriate one.

The simplest strategy to capturing an unknown distribution is to discretize it, into a
finite mixture model. Suppose that we allow for K different ω parameters operating across
codon alignment sites, denoted ω1, ω2,..., ωK . The probability of the nth codon alignment
column, denoted Dn, given the parameters of the model, denoted collectively as θ, is given
as a weighted average over the K components of the mixture:

p(Dn | θ) =
K∑
k=1

wkp(Dn | θ, ωk), (7)

where w = (wk)1≤k≤K , with
∑K
k=1 wk = 1 is a set of weights associated with each compon-

ent; these weights can be thought of as the prior probabilities that a particular alignment
codon column Dn was generated by each of the K components.

In what they refer to as their neutral model, Nielsen and Yang (1998) set K = 2,
ω1 = 0, and ω2 = 1, and infer the remaining parameters by maximum likelihood. In
other words, their neutral model assumes a mixture of two codon sites, one in which the
nonsynonymous substitution rate matches the synonymous substitution rate, and one in
which nonsynonymous events are disallowed. Their positive selection model adds a third
class (K = 3), with ω3 > 1. A likelihood ratio test can be performed between these two
models, to establish if there is evidence of positive selection. Such a test is an example of
the general approach to detecting adaptive evolution in the maximum likelihood framework,
often followed by Empirical Bayes methods for identifying sites with high probability of
having ω > 1 (reviewed in Anisimova, 2012).

Capturing the unknown distribution of ω-values across sites can also be explored using
continuous parametric distributions. For instance, rather than a two-component neutral
model where sites either belong to a component with ω1 = 0 or ω2 = 1, one could invoke a
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continuous distribution in the [0, 1] range, such as the beta distribution (Yang et al., 2000).
Under such a model, a site likelihood takes the following form:

p(Dn | θ) =
∫
ωn

p(ωn | α, β)p(Dn | θ, ωn)dωn, (8)

where p(ωn | α, β) is the density under the beta distribution (analogous to wk in Equation 7),
parameterized by α and β (which become part of the ML inference). In practice, the
integral in Equation 8 is approximated through a discretization technique, reducing it to a
weighted sum much like in Equation 7, but the overall approach still allows for a compact
parameterization accounting for the heterogeneity across sites.

Of course, one could also envisage models built from a mixture of a continuous distribu-
tion and a discrete category ωp > 1 to allow for sites with positive selection, leading to a
site likelihood with the form:

p(Dn | θ) = w1

(∫
ωn

p(ωn | α, β)p(Dn | θ, ωn)dωn
)

+ w2p(Dn | θ, ωp). (9)

As before, this latter model, along with the previous one based on the beta distribution
alone, can form the basis of a likelihood ratio test for the presence of sites with signatures
of adaptive evolution.

Models based on mixtures of discrete and continuous distributions, or several continuous
distributions, can be built in a similar fashion, which led Yang et al. (2000) to propose
the suite of M-class models, with associated likelihood-ratio tests for adaptive substitution
regimes. Indeed, the latter test based on comparing a model invoking a beta distribution
and a additional component ωp > 1 against a model with only the beta distribution is known
as the M8 versus M7 test.

These types of models have also been studied in the Bayesian context (Huelsenbeck and
Dyer, 2004), within which they were also extended into non-parametric versions based on
the Dirichlet process (Huelsenbeck et al., 2006; Rodrigue et al., 2008b,a).

3.2 Increasingly subtle modeling of variation in ω

Historically, the development of codon models has mainly progressed in the manner described
above: the focus has been on proposing models that would allow for increasingly subtle
manifestations of adaptive evolution, such as adaptive regimes operating at particular sites,
and/or along particular branches (Yang and Nielsen, 2002; Yang et al., 2005; Yang and
Dos Reis, 2010; Guindon et al., 2004), typically through the use of a variety of statistical
devices controlling the values of ω across sites and branches. This focus may have turned
attention away from a richer modeling of mutational features, as well as impeded a more
general questioning of the use of ω as an appropriate means of detecting adaptation.

Indeed, the interpretation of ω values has been a point of contention (Nielsen and Yang,
2003; Seo and Kishino, 2008). Nielsen and Yang (2003) made indirect connections between
this parameter and basic population genetics theory. They related the value of ω to the
scaled selection coefficient, denoted S, which quantifies the change in fitness associated to a
particular amino acid replacement, through the expression ω = S/(1 − e−S). This relation
raises some odd scenarios. For instance, ω > 1 implies that all nonsynonymous substitutions
(at a given site and/or branch) have S > 0; an amino acid replacement from ‘L’ to ‘I’ would
have a positive selection coefficient, and so would one from ‘I’ to ‘L’. Conversely, cases where
ω < 1 imply that every nonsynonymous substitution decreases fitness (S < 0), including,
say, ‘D’ to ‘E’ and ‘E’ to ‘D’.
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Meanwhile, another modeling rationale had emerged with an entirely different focus:
devising a better representation of the pervasive underlying purifying selection operating on
protein-coding DNA sequences.

4 The mutation-selection framework

In 1998, Halpern and Bruno (1998, “HB’) introduced a model formulation with a more
straightforward interpretation directly rooted in population genetics concepts. Their basic
idea was to explicitly recognize both the initial and final states of a codon substitution,
rather than simply distinguishing between synonymous and nonsynonymous events, and the
identity of the final nucleotide or codon state. Yang and Nielsen (2008) offered a clear
presentation of the idea of the model, introducing a fitness parameter fi for codon i. A
change from a wild-type state i to a mutant state j then implies a selection coefficient
sij = fj − fi. The fixation probability associated to the mutant is given (approximated)
by 2sij/(1− e−2Nesij ), where Ne is the effective chromosomal population size. In a context
involving haploids, Ne directly corresponds to the effective population size, whereas with
diploids, our notation implies that Ne is twice the effective population size; in other words,
the Ne we refer to here includes a ploidy-dependent multiplicative factor (see Yang and
Nielsen, 2008, for details). A mutational process can be specified, for instance as a nucleotide-
level GTR model, where the mutation rate from codon i to j is given by µij = ρicjcϕjc ,
and the chromosomal population-level mutation rate is thus Neµij . These two concepts are
combined multiplicatively to specify the substitution rate:

Qij =
{
Neµij

2sij
1−e(−2Nesij) , if i and j differ by one nucleotide,

0 otherwise.
(10)

By multiplying the leftmost Ne factor through the fixation probability, and replacing 2Nesij
with Sij , the scaled selection coefficient (scaled by twice the effective chromosomal popula-
tion size), the model given by Equation 10 can be re-written as:

Qij =
{
µij

Sij

1−e−Sij , if i and j differ by one nucleotide,
0 otherwise,

(11)

where Sij = Fj − Fi, and where Fi = 2Nefi is the scaled fitness of codon i. One can
estimate scaled fitness parameters by anchoring one of them at Fi = 0 (for instance), and
estimating the remaining fitness parameters around this constraint; what matters is the rel-
ative scaled fitness. An alternative, however is to set Fi = lnψi, where ψ = (ψi)1≤i≤61, with∑61
i=1 ψi = 1, is a codon profile. With this mutation-selection framework, the interpretations

of Sij < 0, Sij = 0, and Sij > 0 as negative, neutral, and positive selection coefficients apply
to specific events, as opposed to being the coefficients of a long-standing regime implied
from Nielsen and Yang (2003)’s interpretation.

The stationary probability of codon i under such a model is given by

πi = ϕi1ϕi2ϕi3e
Fi∑

j ϕj1ϕj2ϕj3e
Fj
, (12)

or equivalently

πi = ϕi1ϕi2ϕi3ψi∑
j ϕj1ϕj2ϕj3ψj

. (13)

PGE
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In Equations 12 and 13, we have defined parameters controlling nucleotide propensities,
ϕ, and parameters controlling codon fitness, ψ. The stationary probability, π, is calculated
on the basis of ϕ and ψ, but the presentation of the model suggests that it is ϕ and ψ (or F )
that are being estimated. In the presentation of the model by Halpern and Bruno (1998),
however, it is π and ϕ that are estimated, with ψ (or F ) being implicit. Specifically, they
construct the substitution matrix as:

Qij =


µij

ln
(
πjµji
πiµij

)
1−
(
πiµij
πjµji

) , if i and j differ by one nucleotide,

0 otherwise.

(14)

The equivalence of these approaches is made plain by noting that substituting Equation 13
into Equation 14 yields Equation 11.

4.1 HB-style models

Above, the form of the mutation-selection framework is presented as a global model. A core
idea of Halpern and Bruno HB model, however, is to have a unique set of codon profiles for
each site. Moreover, in practice, they reduce the model to having only amino acid profiles;
this yields a model for each site n given by:

Q
(n)
ij =


µij

lnφ(n)
f(j)−lnφ(n)

f(i)

1−
(
φ

(n)
f(i)/φ

(n)
f(j)

) , if i and j are nonsyn. and differ by one nucleotide,

µij , if i and j are syn. and differ by one nucleotide,
0 otherwise,

(15)

where φ(n) = (φ(n)
a )1≤a≤20 is the amino acid profile operating at site n, and f(i) returns an

index for the amino acid encoded by codon i. Note that with S(n)
ij = lnφ(n)

f(j) − lnφ(n)
f(i), we

can re-write the model in manner similar to Equation 11:

Q
(n)
ij =


µij

S
(n)
ij

1−e
−S(n)

ij

, if i and j are nonsyn. and differ by one nucleotide,

µij , if i and j are syn. and differ by one nucleotide,
0 otherwise.

(16)

As such, the HB model is one that specifies as many codon substitution matrices as there are
codon columns in the alignment, with each sharing a single nucleotide-level parameterization,
but having a unique set of amino acid fitness parameters to it alone.

The adoption of the approach was hindered by its very high dimensionality, with a
decade passing before such site-specific parameters were used again (Holder et al., 2008;
Tamuri et al., 2012, 2014). There are also concerns with the treatment of site-specific
profiles as bona fide parameters to be estimated by ML, given that such conditions do not
conform with those of asymptotic theory of likelihood inference (Rodrigue, 2013): site-
specific approaches do not have asymptotic conditions, since applying them to data sets
with increasingly greater number of sites implies introducing new amino acid profiles, and
thus changing the model; applying them to data sets with more sequences also changes the
model, by requiring additional branch lengths, over a different tree. An alternative modeling
strategy, routinely applied in most phylogenetic analyses, is the random variable approach.
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4.2 Random-variable approaches for mutation-selection models
As described earlier in the context of classical codon models focused on ω, the random
variable approach has also been invoked for amino acid fitness profiles, with both paramet-
ric (Rodrigue, 2013) and non-parametric (Rodrigue et al., 2010b; Rodrigue and Lartillot,
2014) methods. As before, the amino acid fitness profiles are considered random variables,
integrated over a statistical law (Lartillot 2006; Chapter 1.4 [Lartillot 2020]). Along the
parametric versions, the statistical laws utilized in previous studies have included a plain
flat Dirichlet on the 20 amino acid states (Rodrigue and Aris-Brosou, 2011; Rodrigue, 2013),
a free Dirichlet, itself with parameters controlling its center and concentration (Lartillot,
2006; Rodrigue, 2013), or finite mixture models with empirically derived values (Rodrigue
and Aris-Brosou, 2011; Kazmi and Rodrigue, 2019).

Along the non-parametric versions, the Dirichlet process on amino acid fitness profiles
has been utilized, implemented via both “Chinese restaurant” (Rodrigue et al., 2010b) and
“stick-breaking” (Rodrigue and Lartillot, 2014) representations. Both representations utilize
an auxiliary variable z = (zn)1≤n≤N , specifying for each codon site the current allocation
to one of K sets of “active”1 amino acid fitness profiles, and the substitution model at site
n is often presented as:

Q
(n)
ij =


µij

S
(zn)
ij

1−e
−S(zn)

ij

, if i and j are nonsyn. and differ by one nucleotide,

µij , if i and j are syn. and differ by one nucleotide,
0 otherwise,

(17)

where S(zn)
ij = lnφ(zn)

f(j) − lnφ(zn)
f(i) is the scaled selection coefficient based on the amino acid

profile allocated to site n, denoted φ(zn). The model given in Equation 17 is sometimes
denoted MutSelDP.

In spite of being referred to as non-parametric, the Dirichlet process indeed involves
parameters (often referred to as hyper-parameters), specifying a base distribution, analogous
to a mean, and a granularity parameter, controlling the coarseness of the estimation of
the unknown distribution. The likelihood function can be thought of as an integral over
the infinite set of mixture models, conditional on these hyperparameters; the integral is
effectively approximated using Monte Carlo methods. To date, relatively little work has
been done to study the Dirichlet process with alternative hyperparameters; previous studies
have endowed them with their own simple statistical laws (hyperpriors), and treated them as
free elements of the inference. Richer hyperpriors, such as a base distribution itself consisting
of a mixture of Dirichlets, should be studied in future work.

4.3 The mutation-selection framework as a null model for detecting
adaptation

The basic motivation behind the mutation-selection framework set out by Halpern & Bruno
is to define a better null model as a starting point to understanding features of the evolution
of protein-coding genes (Rodrigue et al., 2010b). Specifically, the framework is focused on
capturing purifying selection in a site-heterogeneous manner. Spielman and Wilke (2015)
clearly lay out out how these models have the effect of inducing a dN/dS ratio less than 1

1 The Monte Carlo devices invoke large sets of amino acid profiles, some of which are not actually
allocated to any sites in the alignment (see Lartillot et al., 2013, for details).
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at stationarity. We refer to the dN/dS ratio induced by the mutation-selection formulation
as ω0, and it is intuitively straightforward to see why it is constrained in the 0 to 1 range,
by examining two extreme cases. First, suppose that, for some reason, all amino acids have
nearly the same fitness; then, all values of Sij would be close to 0, and thus Sij/(1−e−S) ∼ 1,
such that, when accounting for mutational opportunity (see Spielman and Wilke, 2015, for
details), the nonsynonymous rate and the synonymous rate closely match (i.e., ω0 is close to
1). At the other extreme, suppose that the amino acid fitness profile is strongly dominated
by a single amino acid; then, at stationarity, it would be rare to be in a state other than this
dominating amino acid, with all possible mutations away from it leading to very negative
values of Sij , and thus Sij/(1 − e−S) ∼ 0, such that the induced nonsynonymous rate is
close to 0 (i.e., ω0 is close to 0). Other configurations on amino acid profiles, between these
two extreme scenarios, lead to ω0 in the 0 to 1 range.

These ideas suggest an alternative approach to detecting adaptive regimes: rather than
aiming to detect cases where ω > 1, we could aim to detect cases where the overall dN/dS
is greater than what would be expected under a pure mutation-selection formulation. One
approach to this is to introduce a multiplicative parameter to nonsynonymous events, which
we denote ω∗ (the asterisk is used to clearly distinguish this parameter from ω), leading to
the following model by Rodrigue and Lartillot (2017):

Q
(n)
ij =


µijω∗

S
(zn)
ij

1−e
−S(zn)

ij

, if i and j are nonsyn. and differ by one nucleotide,

µij , if i and j and syn. and differ by one nucleotide,
0 otherwise.

(18)

The model given in Equation 18 is referred to as MutSelDP-ω∗. With such a formulation,
the overall ω = dN/dS of the model at stationarity can be thought of as ω = ω∗ω0. Or,
written alternatively as, ω∗ = ω/ω0, this new parameter can be thought of as a measure of the
deviation in the overall dN/dS (ω) with respect to what is expected from the pure mutation-
selection formulation (ω0). A value of ω∗ > 1 signals that the overall nonsynonymous rate is
greater than expected under the mutation-selection balance, indicating a potential adaptive
regime. The approach is much less demanding than classical codon models requiring that
the nonsynonymous rate actually surpasses the synonymous rate, and could therefore have
the potential to detect manifestations of adaptation that would otherwise be overlooked.
More fundamentally, the approach demonstrates a different modeling perspective: that of
formulating a better null framework, in order to uncover more subtle deviations from this
new null. Such ideas were also studied by Bloom (2017).

5 Simulation study

Rodrigue and Lartillot (2017) conducted a brief simulation study to highlight the general
behaviour of the MutSelDP-ω∗ model given in Equation 18 when encountering data gener-
ated under an adaptive regime. Without going into the details of the simulation methods
(described in full in Rodrigue and Lartillot, 2017), the idea is to change the amino acid
fitness parameters (used to evolve sequences) over a phylogenetic tree; at a certain rate (ρ
in Rodrigue and Lartillot, 2017) over the branches of the phylogeny, the amino acid profiles
are altered (referred to as a Red Queen regime in Rodrigue and Lartillot, 2017). Thus,
a sequence evolving along the branches with such changes in amino acid profiles is never
quite at equilibrium, since it is tracking a repeatedly changing fitness optimum. In order
to achieve a state of higher fitness, the sequence will accumulate a greater number of non-
synonymous substitutions than it would have in the absence of changes in fitness over time.
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Note, however, that the increased nonsynonymous rate is generally still far from surpassing
the synonymous rate.

In addition to controlling the rate of the Red Queen—the rate at which amino acid
profiles are changed over the phylogeny—we can control themagnitude (σRQ in Rodrigue and
Lartillot, 2017) of the change brought about to entries in the amino acid profile being altered.
We can also control the degree (K in Rodrigue and Lartillot, 2017) of the change in profile,
which corresponds to the number of pairs of entries in a profile that are being changed. We
also alter the proportion of sites that are evolved under a Red Queen, with the remaining
sites evolved under a pure mutation-selection process. Finally, we have an absolute mutation
rate, which acts as a multiplier in the data-generating substitution matrices, and controls
the overall amount of evolutionary signal in the simulations (set at 2 × 10−4 in Rodrigue
and Lartillot, 2017). The simulations originally presented by Rodrigue and Lartillot (2017)
only altered the rate of the Red Queen, leaving all other parameters of the simulation set to
arbitrary values. Here, we further explore how the model reacts to a range of different values
for other simulation parameters, with the results displayed as box-plots of the posterior
mean values of ω∗ over 20 replicate simulations in Figure 1. As done by Rodrigue and
Lartillot (2017), we varied the rate of the Red-Queen (Figure 1A,B), however, rather than
applying the Red-Queen regime to all sites, we explore results with the proportion of sites
in an adaptive regime ranging from 0 to 1. We also adjust the number of pairs altered,
or degreE,From 1 to 10 (Figure 1E,F), and study different magnitudes of changes brought
to each pair of profiles (Figure 1C,D). All simulation scenarios were repeated on the basis
of two starting sets of amino acid fitness profiles: those obtained from running the plain
MutSelDP model (without ω∗) as given in Equation 17 on the BRCA1 alignment described
by Rodrigue and Lartillot (2017), or on the concatenated alignment by Lartillot and Delsuc
(2012).

In examining all of the performed simulations, increasing the proportion of sites in the
alignment evolving under a Red-Queen evolutionary regime led to progressively higher ω∗
values (Figure 1). This is easy to understand, as ω∗ is a global parameter, estimated on
the basis of the joint information found in the alignment. Therefore, if only a few sites
experience an adaptive process, the model will accommodate the majority of the positions.
As more sites are under a Red-Queen regime, the value of ω∗ increases, and if the Red-
Queen is sufficiently pronounced, the probability that ω∗ is greater than 1 given the data,
written symbolically as p(ω∗ > 1 | D), approaches 1. When the Red-Queen regime is
applied to 10% of sites, only 8% of simulations were found to be under positive selection
using the BRCA1 amino acid profiles and 6% using the nuclear concatenation-based profiles
(p(ω∗ > 1 | D) ≥ 0.95). When all sites are subject to the Red-Queen regime, 89% of
simulations were found to be under positive selection based on the BRCA1-derived profiles
and 93% based on the concatenation-derived profiles.

Simulations based on concatenation- and BRCA1-derived profiles exhibited similar over-
all trends. We note, however, that in simulations based on the concatenation-derived profiles
without any sites evolving under a Red-Queen, ω∗ appears to be slightly below 1 (Fig-
ure 1B,D,F). Under null conditions, 2% of concatenation-based simulations where above 1,
similar to the 1% observed with the BRCA1-based simulations. More noteworthy, under
null conditions, 10% of BRCA1-based simulations were below 1 and 18% of concatenation-
based simulations (p(ω∗ < 1 | D) ≥ 0.95). The tendency of these simulations to lead to
ω∗ values below 1 supports the conclusions of Spielman and Wilke (2015) that the current
MutSelDP model overestimates ω0. However, null-generated data leading to ω∗ values less
than 1 suggests that detecting adaptive evolution using ω∗ > 1 will be conservative.
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Figure 1 Simulations of an adaptive fitness landscape were performed using amino acid derived
from the BRCA1 gene (Rodrigue and Lartillot, 2017) (A, C, E) and the nuclear concatenation by
Lartillot and Delsuc (2012) (B, D, F). Varying the proportion of sites in combination with the
magnitude of change had the greatest impact on ω∗ under both sets of amino acid profiles (C,D).
Increasing the rate of the Red Queen and the degree (the number of amino acid fitness values
changed) eventually leads to a plateau effect (A,B, E,F).
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Figure 2 The effect of overall mutation rate on inferred values of ω∗.

Reproducing the results of Rodrigue and Lartillot (2017), we varied the rate of the Red-
Queen (Figure 1A,B). When simulating alignments with 10% to 20% of sites under increasing
rates of evolution, simulations were detected to be under adaptive evolution (p(ω∗ > 1 | D) ≥
0.95) with a frequency less than or equal to 30% of replicates. At least 40% of sites were
required to be under the Red-Queen regime in conjunction with a moderate rate of change,
to find adaptive evolution in more than half of the simulations. When increasing the rate of
change for the evolutionary regime there appears to be a plateau effect, where subsequent
increases to the rate have no further impact on ω∗ (Figure 1A,B). In other words, increasing
the rate of the Red Queen eventually leads to a saturation effect: if the fitness profiles are
altered at a rate greater than the substitution rate, there is not sufficient time between Red
Queen changes for the sequence to evolve toward the intermediate fitness optima, and the
Red Queen starts “spinning its wheels”.

The highest values of ω∗ were reached by increasing the magnitude of changes in amino
acid profiles, when the proportion of Red-Queen sites was high (Figure 1C,D). Simply stated,
more drastic changes to amino acid profiles will increase the nonsynonymous flux in sequence
evolution, leading to higher values of ω∗.

Altering the number of pairs of amino acid fitness values subject to change at a site led
to a similar pattern observed with rate changes (Figure 1E,F). Examining simulations where
only 10% or 20% of the sites in the alignment are considered, the proportion of simulations
resulting in inferences with ω∗ > 1 shows little variation. However, beyond 40% of Red-
Queen sites in the alignment, there is a rapid jump to greater than 90% of simulations being
detected as being under adaptive evolution (p(ω∗ > 1 | D) ≥ 0.95). However, with more
than 40% of Red-Queen sites, after the increase in degree from one pair of amino acids to
two, subsequent increases beyond two pairs have minimal apparent effect on on the value
of ω∗. This can be understood from the fact that many changes to amino acid profiles will
have little impact on the evolving sequence, if those changes are made to amino acid states
that are not accessible via point mutation, which will tend to happen increasingly when
changing multiple pairs of values.

The simulations described above were done with the objective of recreating adaptive
evolution, through changes over time to the parameters controlling the amino acid fitness
landscape. The next set of simulations was aimed at studying the model’s behaviour with

PGE



4.5:14 Detecting Adaptation from Multi-species Protein-coding DNA Sequence Alignments

pure mutation-selection simulations, where the overall amount of evolutionary signal is con-
trolled by modulating the underlying mutation rate over time. We varied a multiplicative
parameter to the mutation matrix given by Rodrigue and Lartillot (2017) from 0.000025
to 0.00075, again with 20 replicates for each setting. The results of the posterior mean ω∗
across replicates are displayed with box-plots at each set of simulation conditions in Figure 2.

We see from Figure 2 that when the mutation rate is sufficiently high, the simulations
tend to lead to ω∗ around 1. When the mutation rate is low, however, ω∗ is below one, and
can be very low when the mutation rate is sufficiently low. Under these simulations, many
sites have only a few substitutions (or none at all), such that when an analysis is conducted
on the resulting artificial data sets, the Dirichlet process has very little evolutionary signal
from which to infer the distribution of amino acid profiles across sites; loosely speaking, the
model “chooses” to dispense with capturing purifying selection with the Dirichlet process
apparatus (by adopting a low-dimensional, nearly flat configuration). In other words, when
the overall evolutionary signal is very weak, the model given in Equation 18 reverts back to
the simpler MG model given in (2), with ω∗ effectively playing the role of ω.

6 Comparison of mutation-selection and classical frameworks on real
data

The MutSelDP-ω∗ model has only been applied to a handful of real data sets. To gain a
broader empirical view of how the model reacts to real data sets, we analyzed a random
sub-set of 4464 alignments taken from the OrthoMaM database (v8, Douzery et al., 2014).
To get a general sense of the values of ω obtained across these alignments, we sorted the
posterior mean values obtained and plotted them in Figure 3. Of the genes examined, 8.7%
(388 genes) had 95% credibility intervals with ω∗ greater than 1 (note that this implies that
p(ω∗ > 1 | D) > 0.975). This is not entirely unexpected, as the majority of genes are not
likely to be subjected to an ongoing Red-Queen over the mammalian phylogeny. What is
somewhat surprising, however, is the extent to which most genes lead to ω∗ well below 1.
While is has been shown that epistasis can lead to ω∗ values below 1 (Rodrigue and Lartillot,
2017), we suspect that many of these data sets are analogous to those simulated with very
low mutation rates: they are highly conserved, and generally imply very few nonsynonymous
substitutions. In other words, most alignments do not have sufficient evolutionary signal to
reliably infer the Dirichlet process on amino acid profiles, such that the model favors a more
compact means of fitting low nonsynonymous rates with low ω∗ values, rather than several
highly peaked amino acid profiles.

The same datasets from OrthoMaM were examined with CODEML (Yang, 2007), under
the M7 and M8 models. Based on CODEML, 1301 genes reject the null M7 model in an LRT
against M8 (p < 0.05). Among these, 497 genes had no sites within the gene detected to be
under adaptive evolution as defined by p(ω > 1 | D) ≥ 0.95 with the Bayes Empirical Bayes
approach. Here, we make the distinction between two classes of genes detected to be under
adaptive evolution with M8: those that reject M7 in the LRT against M8, and those that
also have at least one significant site (p(ω > 1 | D) ≥ 0.95). We compared genes in the latter
class with the genes uncovered with the MutSelDP-ω∗ model. There is a 70.1% overlap in
the genes identified using the two methods, and this overlap climes to 82.5% if considering
only genes with a length greater than 500 codons. Thus, it appears that the two methods
are at least partially capturing the same features, but doing so in very different ways. It is
particularly noteworthy that the MutSelDP-ω∗ model is detecting adaptive regimes globally
over the gene, whereas the M8 model has the potential for site-heterogeneous detection.



C. Lowe and N. Rodrigue 4.5:15

0

1

2

3

4

5

6

7

OrthoMam genes

ω
 *

Figure 3 Analysis of a random subset of 4464 genes from the OrthoMam v8 database with the
MutSelDP-ω∗ model.

7 Conclusion

Although MutSelDP-ω∗ is one of the richest codon substitution models proposed to date,
its parameterization for detecting adaptive evolution is a simple univariate multiplier (ω∗)
on nonsynonymous rates. Yet, it is already capable of detecting subtle instances of adaptive
regimes in simulations, and has the potential to detect similar signals of adaptation in real
data as the classical models with distributions of nonsynonymous rate multipliers.

It would of course be of great interest to expand the MutSelDP-ω∗ model to allow
for a distribution of ω∗ values across sites, and/or across branches, in the same spirit as
has been explored over the last few decades with classical codon models. Such models
with multiple independent types of heterogeneity (e.g., distributions of amino acid profiles
and distributions of ω∗) pose significant challenges, not the least of which will be their
computational burden. Some short-cuts, such as utilizing empirically derived mixtures of
amino acid profiles, along with a preset grid of ω∗ values, could be worth considering for
more speedy first-pass analyses of large data sets.

It would also be of interest to explore more simulations, incorporating more known
features of the evolutionary process into the data-generating model. One glaring model
violation in real data, laid bare in equation (10), is the assumption of a time-homogeneous
effective population size (Ne). Understanding how the MutSelDP-ω∗ model, or its eventual
extensions, reacts to data simulated with changing effective population size over the tree
would be an important first step. Other recent simulations (Laurin-Lemay et al., 2018a) have
shown the CpG hypermutability can mislead some codon substitution models into detecting
selection on synonymous codon usage. More generally, applying simulations to assessing the
effects of these model violations, as well as others (Venkat et al., 2018; Jones et al., 2018),
on mutation-selection-based models are in order to more carefully calibrate the reliability of
the inferences to which they lead.

Finally, long-term modeling objectives should probably seek to integrate recent innova-
tions into a single model, that could accommodate features such as uneven codon usage (e.g.,
as in Pouyet et al., 2016), variable effective populations size across the phylogeny, context-
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dependent mutation rates, and epistatic effects (both within and across genes). Preliminary
works exist that lay out the technical means of pursuing such a project, including ideas
from Approximate Bayesian Computation (Laurin-Lemay et al., 2018b), and nested-MCMC
systems (Robinson et al., 2003; Rodrigue et al., 2009; Kleinman et al., 2010; Rodrigue et al.,
2010a). Bringing these ideas together could enable a framework for building models that
are progressively more faithful to modern biological understanding of molecular evolution.
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