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Equilibrium Signaling: Molecular Communication
Robust to Geometry Uncertainties

Bayram Akdeniz, Malcolm Egan and Bao Quoc Tang

Abstract—A basic property of any diffusion-based molecular
communication system is the geometry of the enclosing container.
In particular, the geometry influences the system’s behavior near
the boundary and in all existing modulation schemes governs
receiver design. However, it is not always straightforward to
characterize the geometry of the system. This is particularly
the case when the molecular communication system operates in
vitro, where the geometry may be complex or dynamic. In this
paper, we propose a new scheme—called equilibrium signaling—
which is robust to uncertainties in the container geometry. In
particular, receiver design only depends on the relative volumes
of the transmitter or receiver, and the entire container. Our
scheme relies on reversible reactions in the transmitter and
the receiver, which ensure the existence of an equilibrium state
into which information is encoded. In this case, we derive
near optimal detection rules and develop a simple and effective
estimation method to obtain the container volume. We also show
that equilibrium signaling can outperform classical modulation
schemes, such as concentration shift keying, under practical
sampling constraints imposed by biological oscillators.

I. INTRODUCTION

The design of diffusion-based molecular communications is
heavily dependent on the geometry of the enclosing container.
This is due to the fact that the geometry has an important
influence on the diffusion of molecules within the container,
and determines the statistics for the number of molecules that
are observed by a receiver.

The importance of the container geometry is clear in the
large body of existing work developing detection schemes
for diffusion-based molecular communication systems based
on modulation of concentration [1]–[7], [7]–[11], commonly
known as concentration shift keying (CSK). Other variations
include molecular shift keying [12] and, more recently, reac-
tion shift keying [13]. In these previous works, the detection
rules depend heavily on the choice of container geometry,
which determines the boundary conditions for the underlying
(stochastic) differential equations governing diffusion.

It is not clear that it is always reasonable for the container
geometry to be well-characterized. For microfluidic systems,
the geometry may not be perfectly known due to the challenges
or precisely fabricating micro- or nano-scale channels [14],
[15]. On the other hand, in vitro molecular communications—
such as in or between cells—may occur in environments which
are difficult to characterize [16]. Even if the geometry is
known, it may be too complicated to accurately derive the
resulting channel response. It is therefore desirable to seek
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signaling strategies that are not geometry-dependent. That is,
modulation schemes that induce receiver observations that are
robust to changes in the geometry.

In this paper, we propose a new signaling scheme for
which the receiver observations only depend on the transmitted
signals and the total volume of the container and not on the
specific geometry. Our scheme relies on systems of chemical
reactions within both the transmitter and the receiver. That
is, the receiver is also capable of producing information-
carrying molecules. Under a variety of conditions—typically
requiring the presence of reversible chemical reactions—the
quantity of molecules in the receiver then converges to an
equilibrium state [17], independent of the specific geometry
of the container. When the equilibrium state can be accurately
characterized, reliable communication can be supported.

For our signaling scheme—which we call equilibrium sig-
naling—it is feasible to analytically derive near-optimal de-
tection rules for a wide range of container geometries. For
example, such near-optimal detection rules are feasible for
the containers in Fig. 1. For other modulation schemes, such
as classical CSK, the optimal detection rule in the case of
the examples in Fig. 1 would require numerical solution of a
partial differential equation. We remark that this remains true
also for the reactive signaling schemes proposed in [18], [19].

One potential challenge in exploiting the equilibrium state
to communicate is a low sampling rate. This is due to the need
to wait until the system approaches an equilibrium state after
each transmission. Nevertheless, for many proposed applica-
tions of molecular communications, biochemical circuits are
highly desirable. At present, biochemical oscillators typically
have a period on the order of, at least, minutes [20]. Since the
sampling rate depends on the period of the oscillator, sampling
near the equilibrium state may not only be desirable but also
necessary.

In principle, a vast number of chemical reaction-diffusion
systems can provide the equilibrium state required for equilib-
rium signaling. However, the key challenge is to obtain a pre-
cise characterization of the statistics for receiver observations,
which is in general an open problem. To this end, we primarily
focus on molecular communication systems involving a single
reversible unimolecular (or first-order) reaction. Nevertheless,
systems involving larger numbers of unimolecular reactions
satisfying generalized reversibility conditions can also be
realized. Appropriately interpreted, such a class of reactions
is able to model a wide range of chemical dynamics [21].

Allowing for spatially inhomogeneous diffusion, we ob-
tain an accurate approximation for the receiver observations.
This is justified both through analytical approximation and
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(a) A 2-D channel (molecules cannot diffuse into the black
region).

(b) A 2-D channel (molecules cannot diffuse into the black
region).

Fig. 1: Containers with complex geometry.

empirical statistical analysis. Under this approximation, we
derive the optimal detection rule. However, this rule requires
the use of a variant on Viterbi decoding and hence requires
storage of all previous observations of the receiver, which
may be problematic for biological circuit implementations. To
obtain a computationally feasible solution, we also introduce
a suboptimal scheme based on a heuristic decision rule based
on the difference between the last two observations.

We then focus on system parameter design, including the
sampling time and optimal decision threshold—in terms of the
symbol error rate—for the computationally feasible subopti-
mal scheme. We also introduce a simple method to estimate
the container volume, accounting for the increase of molecules
in the system due to pilot transmissions.

Unlike classical CSK schemes, equilibrium signaling is
robust to the container geometry. In particular, classical CSK
schemes are highly dependent on effective distance estima-
tion in addition to container boundaries. On the other hand,
equilibrium signaling is only dependent on the volume of the
container. We also find that our scheme significantly outper-
forms classical CSK in the presence of reversible reactions
and the same sampling rate.

II. SYSTEM MODEL

Let Ω ⊂ Rd, d ∈ {1, 2, 3} be a domain with smooth
boundary ∂Ω consisting of transmitting and receiving devices
with a fluid medium separating the devices. Consider the

TABLE I: Notation.

Variable Definition
N Number of voxels in the system.
Vvox Volume of each voxel.
VTx, VRx Volume of the transmitter and receiver.
S1, S2 Chemical species.
Mi(t) = [M1

i (t),M2
i (t)] State vector of voxel i in time t.

κlij Diffusive jump rate.
ali, l = 1, 2. Reaction rate constants.
νkj Quantity of each species k

produced or removed in reaction j.
NRx j(t) Number of Sj molecules in the

receiver at time t
Sm
n Binary sequence with length n and

m elements bit 1.
sk k-th symbol of Sm

n .
Ts Communication time interval.
∆ Number of transmitted molecules

for each bit 1 transmission.
µr Expected number of molecules in the

receiver of S1 for a transmission of bit 1.
Dl(x), l = 1, 2. Spatially dependent diffusion coefficient.

discretization of Ω into N volume elements (voxels) each of
volume Vvox, with the set of points in voxel i denoted by
Vi, i = 1, . . . , N . Here, volume is interpreted as length in
R1, area in R2, and volume in R3.

Messages to be sent by the transmitter with volume VTx are
encoded into the quantity of species S1. Within the transmitter
and the receiver, each species is produced or removed via the
unimolecular reactions

S1 → S2

S2 → S1.
(1)

In particular, the transmitter produces information-carrying
molecules of species S2 by the first reaction in (1).

Considering unimolecular reactions is not as restrictive as it
may appear. In particular, unimolecular reactions are capable
of modeling the dynamics of a range of biochemical systems
[21]. We assume that molecules of species S1 produced in the
transmitter are not capable of diffusing into the channel. On
the other hand, this is possible for species S2.

At the receiver, with volume VRx (not necessarily the
same as VTx), molecules of species S2 are able to generate
molecules of species S1 via the second reaction in (1). The
receiver can then attempt to decode the transmitted message
based on observations of the quantities of species S1 and
species S2 that are present at the sampling time.

In order to capture the effect of small quantities of each
chemical species in the system, we consider a stochastic
model for the kinetics. To formally describe the scenario, we
introduce the following notation. Let M l

i (t), l = 1, 2, i =
1, . . . , N denote the random variable for the number of
molecules of species S1 or S2 in voxel i at time t. Denote
Mi(t) = [M1

i (t),M2
i (t)] as the state vector in voxel i and

the matrix M(t) = [M1(t), . . . ,MN (t)]. The probability that
M(t) has value m at time t is then denoted by

P (m, t) = Pr(M(t) = m|M(0) = m0), (2)

where M(0) is the initial quantity of molecules of each species
in each voxel.
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Since each reaction is unimolecular, it follows that in each
reaction the number of molecules of the two species involved
can only increase or decrease by one. Let 1li be the state
where the number of molecules in all voxels is zero, except
for species l in voxel i. That is, M(t) + 1li means that the
number of molecules of species l in voxel i is increased by
one.

A popular model for stochastic kinetics of molecules is the
reaction-diffusion master equation [22], also utilized in the
context of molecular communications in [23]. In this model,
the diffusive jump rate is denoted by κlij for each individual
molecules of the l-th species moving from voxel j into voxel
i, with κii = 0, i = 1, . . . , N . In particular, the probability
per unit time that a molecule of Sl diffuses from voxel j to
voxel i at time t is given by κlijM

l
j(t).

In general, κlij depends on i, j and l; that is, the probability
of a molecule diffusing between two voxels is not spatially
homogeneous (diffusive jump rates vary from voxel to voxel).
While spatially homogeneous diffusion is a standard assump-
tion in the molecular communications literature, variations in
the fluid environment can induce inhomogeneity which we are
able to capture within our model.

We remark that an alternative stochastic model has recently
been studied in the context of reactive signaling [18]. A key
feature of the RDME model is that it provides information
about the statistical dependence in the receiver observations
over time, which is not the case for [18]. We also note that
spatial homogeneity for the diffusion process is assumed in
[18] and in the vast majority of other work on molecular
communications.

In the case of mass-action kinetics and first-order reactions,
the probability per unit time that a molecule of Sl in voxel i
reacts at time t is given by aliM

l
i (t) with rate constants ali.

In general, the reaction rate is dependent on the voxel index.
The net change of each chemical species due to the reaction
with substrate Sl is expressed via the column vector νl ∈ N2.
The term νl1i indicates that M(t) changes by νk in the i-th
voxel.

Remark 1. In order to model production of S1 in the trans-
mitter and S2, we assume that for voxels i comprising the
transmitter and the receiver ali = al, while a1i = 0 for voxels
comprising the channel.

In the RMDE model, the probability distribution Pr(m, t)
evolves according to the system of differential equations given
by

dP (m, t)

dt

=

N∑
i=1

N∑
j=1

2∑
l=1

(
κlij(m

l
j + 1)P (m + 1lj − 1li, t)

−κljiml
iP (m, t)

)
+

N∑
i=1

2∑
l=1

(
ali(m

l
i + 1)P (m− νl1i, t)

−aliml
iP (m, t)

)
. (3)

The system of ordinary differential equations in (3) corre-
sponds to the Kolmogorov forward equation for a continuous-

time Markov chain; that is, the evolution of the system state
is Markovian. In our setting, the Markov chain corresponding
to the RDME is irreducible and positive recurrent. Therefore,
a stationary distribution exists and is given by [24]

π(m) = lim
t→∞

Pr(M(t) = m|M(0) = m0). (4)

III. PROPOSED EQUILIBRIUM SIGNALING STRATEGY

The existence of an equilibrium state provides the oppor-
tunity to develop a new signaling strategy. In particular, if
the statistics for the quantity of each species at the receiver
can be characterized, transmitted symbols may be recovered
based on observations within the equilibrium state. As we will
show, such an approach is highly robust to uncertainties in the
container geometry, which is not the case for classical CSK
signaling schemes.

In this section, we detail our proposed equilibrium signaling
strategy tailored to the model in Section II. We focus on the
case of binary signaling; that is, for the transmitter to send a
bit 1, it generates ∆ molecules of species S1 within a single
voxel of the transmitter. For the case of bit 0, the transmitter
generates zero molecules of species S1. Each bit is equally
likely to be sent.

Assume that the system operates using time slots with
duration Ts and that no molecules of species S1 nor S2 are
present in the system at t = 0. The bit to be transmitted in time
slot n is denoted by sn. Moreover, molecules that are produced
by the transmitter may change the number of each species via
the reactions in (1); however, no molecules degrade.

Consider the n-th time slot. Due to the previous n − 1
transmissions, there are NTx,l(nTs), l = 1, 2 molecules of
species Sl in the transmitter. At a time nTs+δ shortly after the
beginning of the time slot, the transmitter produces a quantity
of S1 depending on the bit to be transmitted. In particular,

NTx,1(nTs + δ) =

{
NTx,1(nTs) + ∆ sn = 1,
NTx,1(nTs) sn = 0,

(5)

for δ > 0 a sufficiently small period of time; that is, δ is
chosen such that no reactions occur nor any molecules diffuse
to a voxel outside of the transmitter.

The key idea behind the proposed signaling strategy is that
for sufficiently large Ts, the total number of molecules of
species S1 and S2 in the receiver at the time of sampling will
be approximately drawn from the stationary distribution of the
RDME. As such, if the stationary distribution is known, then
near-optimal detection rules can be obtained.

To this end, suppose that a sequence of bits, s1, . . . , sn,
over a period of n sampling intervals is sent. Let Smn denote
such a sequence containing with m transmissions (each cor-
responding to a bit 1). Further, let NRx,1(nTs|Smn ) denote the
number of molecules of species S1 observed by the receiver
at the end of the n-th symbol period (i.e., at time (n+ 1)Ts),
given the transmitted sequence Smn .

We make the following assertion, which will be validated
in Section IV.

Assertion 1.

NRx,1(nTs|Smn ) ∼ N (mµr,mµr), (6)
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where µr > 0 is a known constant, only dependent on
the volume of the enclosing container and not the specific
geometry, and N (µ, σ2) denotes the Gaussian law with mean
µ and variance σ2. In particular,

µr =
∆ VRx

NVvox

1 + a1

a2
VTx+VRx

NVvox

. (7)

Under the assumption that a1 = a2 and VTx = VRx,

µr =
∆VRx

NVvox + 2VRx
. (8)

In (6), µr is the average number of molecules for each
species in each voxel given ∆ molecules are in the system
(corresponding to a single transmission of bit 1). To gain
some intuition into the value of µr, consider the case when
a1 = a2 and VRx = VTx. Recall that the effect of diffusion
is to evenly spread the molecules of each species between all
voxels. This implies that the number of molecules of S1 is the
same within each voxel comprising VTx and VRx. Moreover,
the number of molecules of S2 is the same within each voxel in
the total volume. On the other hand, the effect of the reactions
is to produce, on average at equilibrium, the same number of
molecules of each species within the transmitter and receiver
voxels. As such on average at equilibrium, there are twice
the total number of molecules in the transmitter and receiver
voxels compared with the voxels comprising the channel.

Under Assertion 1, the distribution for the quantity of S1 in
the receiver at the sampling time for the n + 1-th time slot,
corresponding to a transmission sn+1 ∈ {0, 1} is given by

NRx,1((n+ 1)Ts|Smn , sn+1)

∼
{

N (mµr,mµr) sn+1 = 0,
N ((m+ 1)µr, (m+ 1)µr) sn+1 = 1.

(9)

A. Near-Optimal Detection

We seek to obtain an estimate for the sequence
(s1, . . . , sn+1). Although the observation process is Marko-
vian, for a sufficiently large time slot Ts, the observations
NRx,1(Ts), . . . , NRx,1((n+ 1)Ts) are approximately indepen-
dent. Let NRx,1 denote the vector of observations at the
receiver for the quantity of S1 and s ∈ {0, 1}n+1 denote a
potential vector of transmitted bits. Under Assertion 1, the
joint likelihood of the observations is given by

fNRx,1|s(n)

=

n+1∏
i=1

1√
2πµr

∑i
j=1 sj

exp

(
−

(ni − µr
∑i
j=1 sj)

2

2µr
∑i
j=1 sj

)
,

(10)

and, assuming the independence of elements of NRx,1, the
optimal detection rule is given by

ŝ∗ = arg max
s∈{0,1}n+1

fNRx,1|s(n). (11)

A brute force search for the estimate ŝ∗ in (10) leads to
a complexity that grows exponentially in n. Nevertheless, the
Viterbi algorithm with appropriate branch weights can be used

to solve the optimization problem with complexity of order
O(n). Note that while the Viterbi algorithm yields an optimal
solution for (11), it is under the assumption that Assertion 1
holds.

We briefly sketch the computations in Algorithm 1, which
is a form of the Viterbi algorithm with branch metrics tailored
to the problem in (10). For the k-th symbol sk ∈ {0, 1},
let p(nk|sk) = log(fNRx,1(kTs)|sk(nk)). In the k-th symbol
interval, it is necessary to compute Pk−1,0 and Pk−1,1, which
correspond to the probability of the most probable sequence
until the k − 1-th symbol and the k-th symbol is 0 and 1,
respectively.

Algorithm 1 Near-Optimal Detection Algorithm

1: Input: sk ∈ {0, 1}, p(nk|sk),
2: for k = 1 to n+ 1

logPk,0 = max (logPk−1,0 + p(nk|0), logPk−1,1 + p(nk|0)).
logPk,1 = max(logPk−1,0 + p(nk|1), logPk−1,1 +
p(nk|1)).
sk,0 = arg maxi,j logPk,0.
sk,1 = arg maxi,j logPk,1.

3: Find the most probable path:
u = arg maxi Pn+1,i.

4: Backtrack this path:
ŝ∗ = {s1,u, s2,u...sn+1,u}.

B. Detection with Low Memory Requirements

For large n, directly solving the optimization problem in
(11) requires the storage all previous observations, which may
not be feasible due to limitations of the underlying biological
circuits. As such, it also is desirable to consider approaches
that only require limited memory.

To this end, define

R(n+ 1) = NRx,1((n+ 1)Ts)−NRx,1(nTs). (12)

In this case, each bit is decoded sequentially via the detection
rule

s̃n+1 =

{
1 R(n+ 1) > τ,
0 otherwise. (13)

The optimal choice of τ for the decision rule in (13) can be
obtained via an analysis of the bit error rate, which we carry
out in Section V-B. As will be shown in Section VI-A via
particle-based simulations, this low memory detection achieves
nearly the same performance as the near-optimal algorithm in
Algorithm 1.

IV. EQUILIBRIUM CHARACTERIZATION: JUSTIFICATION
OF ASSERTION 1

The potential of the signaling scheme in Section III relies on
the validity of Assertion 1. We first develop a stochastic linear
noise approximation of the RDME model in Section II, which
justifies the Gaussian law. We then perform the Kolmogorov-
Smirnov test to provide a further empirical validation.
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A. Stochastic Linear Noise Approximation

It is known that for stochastic chemical reaction networks
under mass-action kinetics, the evolution of the molecular
counts of each species can be approximated by the chem-
ical Langevin equation [25]. Since diffusion is modeled by
unimolecular reactions in the RDME model in Section II,
it follows that a similar approximation can be applied. In
particular, we have

M l
i (t+ τ)

≈M l
i (t) +

N∑
j=1

κlijM
l
j(t)τ +

N∑
j=1

√
κlijM

l
j(t)τND,j(0, 1)

−
N∑
j=1

κjiM
l
i (t) +

N∑
j=1

√
κljiM

l
i (t)τND′,j(0, 1)

+ a3−li M3−l
i (t)τ − aliM l

i (t))τ

+
2∑
k=1

√
akiM

k
i (t)τNR,k(0, 1), (14)

where each standard normal random variable ND,j(0, 1),
ND′,j(0, 1), and NR,k(0, 1) are independent.

Let V = Vi, i = 1, . . . , N be the volume of voxel i and
define the concentration of species Sl in voxel i by

Cli(t) =
M l
i (t)

V
. (15)

It then follows from the RDME that

dE[Cli(t)]

dt
=

N∑
j=1

(
κlijE[Clj(t)]− κljiE[Cli(t)]

)
− E[aliC

l
i(t))] + E[a3−li C3−l

i (t)], (16)

which follows from [22, Sec. 1.1.3].
Since all reactions are unimolecular, under the assumption

that the diffusion jump rates, κij , are chosen appropriately, the
expected concentrations converge to a deterministic reaction-
diffusion system [22]. In particular, let u1, u2 be the de-
terministic concentrations. Then, the deterministic system is
described by the system of partial differential equations, for
all l = 1, 2,
∂tul − div(Dl(x)∇ul) = a3−l(x)u3−l − al(x)ul, x ∈ Ω,

Dl(x)∇ul · ν = 0, x ∈ ∂Ω,

ul(x, 0) = ul0(x), x ∈ Ω,
(17)

where ∂t denotes the derivative with respect to time. The
vector-valued function ν(x) is the outer unit normal defined
for x ∈ ∂Ω. The condition Dl(x)∇ul·ν = 0 is a homogeneous
Neumann boundary condition. The initial data ul, l = 1, 2, is
assumed to be nonnegative. The diffusion coefficients satisfy
Dl(x) ≥ 0 and can be zero on a set with positive measure.
For spatially homogeneous diffusion coefficients Dl(x) =
Dl, x ∈ Ω.

Using the same argument as [26], it follows from the
Langevin approximation in (14) that fluctuations are of the
order of

√
V . This suggests the Gaussian approximation

M l
i (t) ≈ V ul(xi, t) +

√
V Zli(t), (18)

where Zli(t) is a zero-mean Gaussian random variable and xi
is a point inside the i-th voxel. We note that this approximation
can be rigorously justified in the case of chemical reaction
networks [26] via a convergence result in [27]. A similar result
for the reaction-diffusion setting with spatially homogeneous
diffusion and reactions is available in [28].

B. Verification of Assertion 1

The linear noise approximation provides a justification
for the Gaussianity of the stationary distribution required to
establish Assertion 1. However, the mean and the variance
are dependent on the equilibrium solution to the system of
PDEs in (17). At present, for the spatially inhomogeneous
reaction rates and diffusion coefficients, even the existence of
an equilibrium solution has not been rigorously established.

Nevertheless, the ansatz for the mean and variance of the
stationary distribution in Assertion 1 is provided for the related
problem where only the diffusion coefficients are spatially
inhomogeneous; that is, the reaction rates are spatially homo-
geneous or, said in different words, independent of the spatial
coordinates. In this case, it has been established in [29] that
the mean and variance do indeed correspond to those given in
Assertion 1.

To empirically validate the ansatz, we have carried out
Monte Carlo simulations and performed a Kolmogorov-
Smirnov test. Both a standard 2-D scenario and a non-
standard 2-D scenario are considered, illustrated in Fig. 2a
and Fig. 2b, respectively. In the numerical validation, the
following parameters are used: a1 = a2 = 1, ∆ = 600,
VRx = VTx = Vvox = 10−6, N ∈ {60, 100}, Dl(x) = Dl ∈
{4, 40, 400}×10−9, x ∈ Ω, the corresponding diffusive jump
rates κlij = Dl/h

2 for cubic voxels with height h [22].
The first step is to verify that the deterministic system of

differential equation in (17) admits a spatially homogeneous
solution as the time t→∞. To do so, we obtain a numerical
solution using the method in [30], for a range of different
system parameters.

To verify that the mean quantity of molecules is consistent
with Assertion 1, we estimate the mean from a particle-based
simulation. In Fig. 3, there are N = 60 voxels and ∆ = 600
molecules in the system. In the voxels of the transmitter and
the receiver, both S1 and S2 are present. Moreover, since the
reactions a1 = a2, the expected number of molecules at the
equilibrium for each voxel is equal to 600

60+2 = 9.68, which
is consistent with Fig. 3. In Fig. 4, we examine the scenario
where the diffusion coefficient is spatially inhomogeneous and
again observe spatial homogeneity of the equilibrium. Here,
N = 100 and hence the expected number of molecules at the
equilibrium for each voxel is equal to 600

100+2 = 5.88.
In order to verify that the number of observed molecules

is well approximated by the Gaussian law in Assertion 1,
we perform the Kolmogorov–Smirnov test based on particle-
based simulations of the system. In the Kolmogorov-Smirnov
test, H(t) denotes be the emprical distribution function
(estimated from the simulated data) and F (t) denotes the
candidate distribution function (given in Assertion 1). The
Kolmogorov–Smirnov statistic between two distributions is
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(a) Standard 2-D scenario.

(b) Non-standard 2-D scenario.

Fig. 2: Miscellaneous channel models

TABLE II: KS Test for Assertion 1.

Parameters Acceptance Probability p-value
∆ = 60, NVvox/VRx = 10 0.92 0.32
∆ = 100, NVvox/VRx = 10 0.93 0.40
∆ = 600, NVvox/VRx = 10 0.94 0.46
∆ = 100, NVvox/VRx = 20 0.92 0.40
∆ = 600, NVvox/VRx = 20 0.92 0.43
∆ = 600, NVvox/VRx = 100 0.91 0.43

then given by T ∗ = supt(|H(t)−F (t)|). The hypothesis that
the candidate distribution is true is rejected if

α > 1− FKol

(√
UT ∗

)
, (19)

where α ∈ (0, 1) is the significance level (α ≈ 0 corresponds
to high significance), U is the number of samples, and FKol

is the distribution function of Kolmogorov distribution [31].
In our setting, we compare the observations at the receiver

with the Gaussian law in Assertion 1 using the Kolmogorov-
Smirnov test for U = 500. Table II shows the results of the
test with a confidence of α = 0.05. As can be seen in this
table, data obtained from the particle-based simulations is in
good agreement Assertion 1 with high acceptance rate and p-
values significantly larger than the confidence level α = 0.05,
which suggests that Assertion 1 cannot be ruled out.

V. SYSTEM PARAMETER DESIGN

In this section, we focus on the design of key system pa-
rameters including the sampling time, the detection threshold
in the low memory scheme from Sec. III-B. We also develop
an estimation procedure for the container volume, which is
necessary for selecting the decision threshold.

A. Choosing the Sampling Time
The equilibrium signaling scheme is based on the assump-

tion that sampling is performed when the system is nearly in

equilibrium. As such, we now turn to the problem of selecting
the sampling time. We base the analysis on the underlying
deterministic system in (17), which determines the average
behavior of the system governed by the RDME.

As a tractable closed-form solution to (17) is not available,
we introduce a heuristic approach which provides a means
of selecting the sampling time. The analysis is based on a
one dimensional model with a spatially homogeneous diffusion
coefficient for S2. This is in order to obtain a simple heuristic
in order to obtain a sampling time.

Our approach decomposes the kinetics into three phases: a
reaction-limited phase in the transmitter; diffusion of S2 from
the transmitter to the receiver; and a reaction-limited phase in
the receiver. Each phase is formalized in the following, where
we assume a1 = a2 = a and VTx = VRx.

a) Phase A: In the first phase, the system is modeled as
a single container with reaction S1 → S2 and no diffusion. In
particular, the initial concentration of Sl is denoted by u0A,l,
with u0A,1 = ∆ and u0A,2 = 0 , and the concentrations evolve
according the following differential equation

duA,1
dt

= −auA,1(t), (20)

which admits the explicit solution

uA,1(t) = uA,1(0)e−at = ∆e−at. (21)

It is clear that limt→∞ uA,1(t) = 0. On the other hand, for
sufficiently small ε, we can obtain the approximate equilibrium
time for the first phase, tA, by plugging uA,1(t) = ε into (21)
as

tA = −
1

a1
log

(
ε

∆

)
. (22)

b) Phase B: In the second phase, a diffusion-limited
model is adopted, where chemical reactions are ignored. In
this case, the concentration evolves according to

∂uB,2
∂t

(x, t) = D
∂2uB,2
∂x2

(x, t), (23)

where u2,B(x, 0) = ∆δx=0, with δx=0 denoting the Dirac
delta function. The solution to this differential equation is
given by

uB,2(x, t) =
∆√

4πDt
exp

(
− x2

4Dt

)
. (24)

Since at equilibrium, spatial homogeneity is required, the
spatial derivative in (24) should be negligible. This implies
that L2 � 4Dt where L is chosen to be the maximum
distance between the transmitter and the container. Therefore,
the required time for spatial homogeneity, tB , can be expressed
as

L2

4D
� tB . (25)
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(a) D = 4× 10−9 m2/s. (b) D = 40× 10−9 m2/s. (c) D = 400× 10−9 m2/s.

Fig. 3: Solution of (17) for the concentration of S2 for a1 = a2 = 1 s−1, ∆ = 600, VRx = VTx = Vvox = 10−6, N = 100,
D = 4, 40, 400× 10−9.

(a) D(x) = D/(1 + 104x). (b) D(x) = D(1 + e−(x−10−4/2)2). (c) D(x) = D +De(x).

Fig. 4: Solution of (17) for the concentration of S2 for different D(x), a1 = a2 = 1 s−1, ∆ = 600, VRx = VTx = Vvox = 10−6,
N = 100, D = 40× 10−9 m2/s.

c) Phase C: In the third phase, the system is again
modeled as a single container with S2 → S1 and no diffusion.
As in Phase A, the evolution of the concentrations uC,2 is
governed via (20), with cC,2 in place of cA,1 and initial
conditions given by u0C,2 = ∆VRx/(NVvox) (due to spatial
homogeneity in Phase B) and u0C,1 = 0. Hence,

uC,2(t) =
∆VRx

(NVvox)
e−at. (26)

Note that, as discussed in Section III, the expected num-
ber of molecules in the receiver in equilibrium is µr =

∆VRx

NVvox + 2VRx
. The required time tC to decrease from

∆VRx/(NVvox) to
∆VRx

NVvox + 2VRx
can be obtained by using

(26) as

tC = −
1

a2
log

(
NVvox

NVvox + 2VRx

)
. (27)

Let, tr = tA + tB and td = tC denote the required time to
approach equilibrium. A useful heuristic for the required time
to approach equilibrium is then given by

t∗ = tr + td, (28)

which is plotted in Fig. 5 and evaluated for different pa-
rameters in Table III. In the table, Dl(x) = D2(x) = D,
ε = 10−3, r = NVvox/VRx. The time teq corresponds to
when the solution to (17) is first within ε of the equilibrium
concentration. In order to calculate the teq , the system (17) is
solved numerically.
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*
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Fig. 5: Value of t∗ for D = 80 × 10−11, r = 60, a1 = a2 =
a = 1.

B. Optimizing the Threshold for Low Memory Detection
A key parameter for implementing the low memory de-

tection scheme in Section III is the decision threshold. This
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TABLE III: Sampling Time Heuristic teq for ε = 0.01.

Parameters tB tA + tC t∗ teq
D = 80 × 10−9 m2/s, r = 60, a = 0.1 s−1 0.3 s 74.3 s 74.6 s 80.1 s
D = 80 × 10−10 m2/s, r = 60, a = 0.1 s−1 3.6 s 74.3 s 77.9 s 82 s
D = 80 × 10−11 m2/s, r = 60, a = 0.1 s−1 36 s 74.3 s 110.3 s 118 s
D = 80 × 10−11 m2/s, r = 60, a = 1 s−1 36 s 7.4 s 43.4 s 50.9 s
D = 80 × 10−11 m2/s, r = 100, a = 1 s−1 99.4 s 7.4 s 106.8 s 114 s

parameter can be obtained by minimizing the probability of
error, defined by

Pn,me (τ) =
1

2
(Pr (R(n) > τ |sn = 0)

+Pr (R(n) ≤ τ |sn = 1)) , (29)

where n is the symbol index and m is the number of previously
transmitter symbols corresponding to bit 1. This probability of
error is evaluated in Proposition 1.

Proposition 1. Assume that the previous n− 1 symbols have
been correctly decoded, with m transmissions of bit 1. Then,
under Assertion 1, the low memory detector in (13) has a
probability of error for the n-th symbol given by

Pn,me (τ) = 0.5

(
1−Q

(
τ − µr√

(m+ 1)µr +mµr

))

+ 0.5Q

(
τ

√
2mµr

)
,

(30)

where Q(x) =
∫∞
x

1√
2π

exp(− z
2

2 )dz, x ∈ R.

Proposition 1 follows immediately from the Gaussian statis-
tics in Assertion 1. Note that it is necessary to index Pn,me by
n and m due to the fact that the receiver observation statistics
vary as n and m increase. As such, the optimal threshold also
depends in general on n and m.

To proceed, we note that the derivative of Pn,me (τ) is given
by

dP
(n,m)
e

dτ
=

1√
2π(2m+ 1)µr

exp

(
− (τ − µr)2

2(2m+ 1)µr

)
− 1√

4πmµr
exp

(
− τ2

4mµr

)
.

Therefore, for large m,

dP
(n,m)
e

dτ
≈ − 1√

4πmµr
exp

(
− τ2

4mµr

)
+

1√
4πmµr

exp

(
− (τ − µr)2

4mµr

)
.

The threshold minimizing the probability of error for large m
can then be well-approximated by

τ∗ =
µr
2
. (31)

We remark for a sufficiently large number of transmissions,
even if some symbols have been incorrectly decoded, τ∗ in
(31) is a good approximation for the optimal threshold for the
low memory detector.

C. Container Volume Estimation

Key parameters in equilibrium signaling are the relative
volumes of the transmitter and receiver with respect to the
total container volume. For applications in vitro, for example,
the total volume the container and hence the relative volumes
of the transmitter and receiver may not be known a priori. This
is due to the fact that the exact environment of the molecular
communication system may be complex or time varying. As
such, it is highly desirable to estimate the container volume.

Unlike more detailed features of the container—which are
required to optimize decisions in classical CSK—estimating
the container volume is straightforward. Suppose that K trans-
missions of ∆ molecules of S1, corresponding to K time slots,
are allocated to volume estimation. Under Assertion 1, the
observations x1, . . . , xK of the quantity of S1 near equilibrium
are independent with known Gaussian statistics. In particular,
the variance of sample k is then given by kµr, where µr is
given by (7).

Under Assertion 1, the observations are Gaussian and
therefore the maximum likelihood estimator µ̂r for µr is the
solution to

µ̂r = arg max
µr

K∏
k=1

1√
2πkµr

exp

(
− (xk − kµr)2

2kµr

)
, (32)

which admits a solution satisfying

K∑
k=1

k

2
+

K∑
k=1

1

2µ̂r
+

1

2

K∑
k=1

x2k
2kµ̂2

r

= 0. (33)

While the objective in (32) is in general non-convex, it is
twice differentiable and therefore it is straightforward to verify
numerically which of the solutions corresponds to a maximum.

An expression for the relationship between µr and the total
volume of the container NVvox is given in (7). Using this
relationship, the estimator for the volume of the container
NVvox is given by

NVvox =
∆VRx − µ̂r a

1

a2 (VTx + VRx)

µ̂r
. (34)

Fig. 6 shows the impact of increasing the number of samples
on the normalized mean-square error (NMSE). Observe that
using (33), it is possible to estimate the volume of the
container with low NMSE even for small numbers of samples
and regardless of the true value of µr.
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Fig. 6: Plot of NMSE for varying numbers of samples and µr.

VI. NUMERICAL RESULTS

A. Performance Evaluation

In this section, we study the performance of the proposed
equilibrium signaling scheme via particle-based simulations.
Both the near-optimal and low memory schemes are compared,
along with a classical CSK scheme. These comparisons are
based on transmissions of n = 1000 bits. Since the channel
is non-stationary, the performance is evaluated in terms of the
average number of errors in the sequence of n bits. More
formally, let Ei be the error random variable for bit i in the
sequence; that is

Ei =

{
1 ŝi 6= si,
0 ŝi = si,

(35)

where ŝi is the estimate of the transmitted bit si. Then, the
average probability of error is defined as

Pave = E

[
1

n

n∑
i=1

Ei

]
. (36)

In order to estimate Pave, 10000 iterations of the transmission
of n bits are simulated.

The parameters used in the simulations are: a1 = a2 =
1s−1; D1 = D2 = 80 × 10−11 m2/s; Ts = t∗ given in
(28); and VRx = VTx. We remark that very similar results
are obtained with different choices of a1, a2, D1, D2 as long
as the ratio a1/a2 remains constant. This is due to the fact
that µr only depends on the ratio and not the precise values
of a1 and a2.

In the numerical results, five scenarios are considered by
using channel in Fig. 2a:

(i) Near-optimal detection scheme: The average probability
of error for Viterbi-based detection scheme developed
in Sec. III-A is obtained via particle-based simulations.
In particular, the kinetics arising from the RDME model
are simulated using the next reaction algorithm [30].

(ii) Low memory detection scheme: The average probability
of error for the low memory detection scheme developed

in Sec. III-B is obtained via particle-based simulations
in the same manner as for the near-optimal scheme.

(iii) Semi-analytical evaluation: For the low memory detec-
tion scheme developed in Sec. III-B, the observations in
the receiver are simulated based on Assertion 1.

(iv) Analytical evaluation: For the low memory detection
scheme developed in Sec. III-B, the probability of error
is approximated by the expression in Proposition 1.

(v) Classical CSK: The average probability of error for the
classical CSK scheme—where only a single molecule
is employed (see, for example, [32])—is obtained
via particle-based simulations as for the near-optimal
scheme. The sampling time for the classical CSK is also
chosen as t∗ with observations drawn from S2, which is
necessary due to limitations of the biological oscillator
needed to implement sampling.
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(a) VRx/(NVvox) = 0.01.
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(b) VRx/(NVvox) = 0.1.

Fig. 7: BER performance for different VRx/(NVvox).

Fig. 7 plots the average probability of error for varying
quantities of emitted molecules ∆, in each of the five sce-
narios and with varying receiver and transmitter volumes.
As expected, the near-optimal scheme based on the Viterbi
algorithm outperforms the low memory scheme. The perfor-
mance gains depend on the relative volume of the receiver,
ranging from approximately 300 molecules in the case where
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VRX/(NVVox) = 0.05. In general, this suggests a tradeoff
between the complexity of the receiver and available energy
in the transmitter.

Fig. 7 also shows that for the low memory scheme, the
semi-analytical and analytical models well approximate the
results from particle-based simulations. This provides further
evidence for the validity of Assertion 1 and also Proposition 1.

Finally, Fig. 7 shows a dramatic performance gain using
equilibrium signaling over classical CSK under the sampling
time constraint. To gain intuition into why this gain arises,
observe that near equilibrium the average number of molecules
observed in the receiver under classical CSK will be ∆ VRx

NVvox
.

On the other hand, the equilibrium signaling scheme yields on
average the quantity µr given by (7). In any scenario where
the number of voxels comprising the channel is greater than
zero, µr > ∆ VRx

NVvox
, which results in performance gains.

We remark that the gain of equilibrium signaling over
classical CSK may not be present if the sampling time is
optimized for classical CSK. However, realistic biological
circuits place strong constraints on sampling [20] and therefore
such a constraint on the sampling time may be unavoidable.

B. Robustness to Uncertainties in System Geometry

A key motivation for equilibrium signaling is that the
scheme only relies on knowledge of the container volume.
This stands in stark contrast to classical CSK schemes, which
require knowledge of the distance between the transmitter and
the receiver, as well as the shape of the container.

The problem of estimating the distance between a transmit-
ter and receiver has been investigated in [33], [34]. However,
in biological environments, the relative locations of the trans-
mitter and receiver may change relatively often. As a con-
sequence, the estimation procedure may need to be repeated
regularly, which leads to additional energy expenditure.

If the distance is not perfectly known, then there is a
degradation in performance. This is illustrated in Fig. 8 for
the conventional CSK presented in [9], where small errors in
distance estimation can lead to significant performance losses
in terms of the probability of error.

On the other hand, our proposed equilibrium schemes are
not affected by errors in distance estimation or even the shape
of the container. For example, it is straightforward to optimize
the receiver for both of the scenarios in Fig. 1, as long as the
relative volumes of the transmitter and the receiver are known.

As noted in Sec. V-C, there exists a simple strategy for
estimating the container volume. With a sufficient number of
samples, a very low volume estimation error can be obtained.
It is clear that, any error in the volume estimate will lead to
performance losses, which is illustrated in Fig. 9. Observe that,
even for the highest estimation error on µr (from Fig. 6, one
can observe that for small K, the maximum NMSE is around
0.01) there is not a significant performance loss in terms of
BER.

VII. CONCLUSION

A key challenge for molecular communications, particularly
in biological environments, is uncertainty in the geometry of
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Fig. 8: BER vs error in distance for classical CSK [9].
Parameters: D = 80 × 10−12 m2/s, the correct distance is
10−5 m, Ts = 0.25 s.
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Fig. 9: BER vs estimation error in µr

the environment. This uncertainty may take the form of the
shape of the environment, or the distance between the trans-
mitter and the receiver. As it is not necessarily straightforward
to estimate parameters of the environment and schemes such
as classical CSK are not robust to changes in the geometry, it
is highly desirable to develop schemes that are in fact robust.

In this paper, we proposed equilibrium signaling, which
only requires knowledge of the container volume in order
to develop near-optimal detection schemes. This robustness
comes at the cost of large sampling times; however, it is
necessary in some applications to exploit biological oscillators
in order to obtain samples. As such, the requirement of long
sampling periods may in fact be a realistic system constraint.

This work raises several new questions. From an engineer-
ing perspective, it is desirable to develop complete biological
circuits in order to implement coding and detection tailored
to equilibrium signaling. Another direction is to establish a
rigorous characterization of the deterministic limit used to
obtain the statistics for the receiver observations.
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[33] M. Turan, B. C. Akdeniz, M. Ş. Kuran, H. B. Yilmaz, I. Demirkol, A. E.
Pusane, and T. Tugcu, “Transmitter localization in vessel-like diffusive
channels using ring-shaped molecular receivers,” IEEE Communications
Letters, vol. 22, no. 12, pp. 2511–2514, 2018.

[34] A. Noel, K. C. Cheung, and R. Schober, “Joint channel parameter
estimation via diffusive molecular communication,” IEEE Transactions
on Molecular, Biological and Multi-Scale Communications, vol. 1, no. 1,
pp. 4–17, 2015.


