Chen-Yuan Hsu

Li-Yi Wei

Lihua You

Jian Jun Zhang

Autocomplete Element Fields

Keywords: element, field, synthesis, anisotropy, interface, modeling, Human-centered computing → Interactive systems and tools;, Computing methodologies → Texturing;

).

INTRODUCTION

Aggregate elements are widely used in various applications such as rendering [START_REF] Meng | Multi-scale Modeling and Rendering of Granular Materials[END_REF][START_REF] Muller | Efficient Rendering of Heterogeneous Polydisperse Granular Media[END_REF], modeling [START_REF] Ma | Discrete Element Textures[END_REF][START_REF] Sakurai | Modelling of Non-Periodic Aggregates Having a Pile Structure[END_REF][START_REF] Roveri | Example Based Repetitive Structure Synthesis[END_REF], simulation [START_REF] Hsu | Piles of Objects[END_REF][START_REF] Hsu | Automated Constraint Placement to Maintain Pile Shape[END_REF], interaction [START_REF] Habib Kazi | Vignette: Interactive Texture Design and Manipulation with Freeform Gestures for Pen-and-ink Illustration[END_REF][START_REF] Habib Kazi | Draco: Bringing Life to Illustrations with Kinetic Textures[END_REF], and design [START_REF] Kim | Jigsaw Image Mosaics[END_REF][START_REF] Gal | 3D Collage: Expressive Non-realistic Modeling[END_REF][START_REF] Zou | Legible Compact Calligrams[END_REF][START_REF] Chung Kwan | Pyramid of Arclength Descriptor for Generating Collage of Shapes[END_REF]. However, interactively authoring such elements with varying anisotropy and deformability for ordinary users still remains challenging, especially in 3D domains [START_REF] Han Cho | Anyone Can Cook -Inside Ratatouille's Kitchen[END_REF].

Manual creation of aggregate elements allows full control but can require high artistic skills and manual labor, while automatic batch synthesis can apply in 2D or 3D (e.g. [START_REF] Ma | Discrete Element Textures[END_REF][START_REF] Sakurai | Modelling of Non-Periodic Aggregates Having a Pile Structure[END_REF][START_REF] Saputra | RepulsionPak: Deformation-Driven Element Packing with Repulsion Forces[END_REF]) but might not provide sufficient freedom and interactivity. Although there exist methods to automate interactive authoring of 2D elements (e.g. [START_REF] Habib Kazi | Vignette: Interactive Texture Design and Manipulation with Freeform Gestures for Pen-and-ink Illustration[END_REF][START_REF] Habib Kazi | Draco: Bringing Life to Illustrations with Kinetic Textures[END_REF]), users still need to place all broad strokes or position element collections step by step. Efficiently authoring elements with general shapes, distributions, and alignments in various output domains is significantly harder and lacks good solution so far. The ideal system should be user-friendly without requiring significant expertise or efforts and yet efficient and general enough to interactively design and explore diverse outcomes.

We propose an autocomplete system for interactive authoring of aggregate elements within different output domains including 2D planes, 3D surfaces, and 3D volumes (Figure 1). Analogous to conventional painting workflows, through a brushing interface, users can select and even mix distinct types of elements from an element palette, brush the selected elements over the output domain (e.g. 2D planar canvas or 3D object surface) and see the corresponding outcomes interactively.

To better orient aggregate elements, existing methods often need to incorporate full direction/scalar fields, but to obtain such fields across domains either manually or automatically can be challenging for ordinary users. The input fields, even when automatically computed, may also force undesirable artifacts, such as singularities which cannot be entirely avoided [56]. To reduce input workload and enhance output quality, we formulate element fields that can smoothly orient the whole elements following partial inputs (e.g. user strokes) based on inter-and intra-element relationships as illustrated in Figure 2. Since to optimally compute an accurate layout for arbitrary mixtures can be time-consuming as described in [START_REF] Chung Kwan | Pyramid of Arclength Descriptor for Generating Collage of Shapes[END_REF][START_REF] Saputra | RepulsionPak: Deformation-Driven Element Packing with Repulsion Forces[END_REF] and the computational complexity can further increase by element anisotropy and deformability as well as domain dimension, our algorithm is designed to balance between quality and interactivity. We thus devise an element representation that can better characterize elements with varying anisotropy and deformability to strengthen connection and reduce penetration.

Our procedural approach can effectively synthesize aggregate elements based on user specifications and directly create novel mixtures from individual elements without the need to prepare input exemplars used in the data-driven methods (e.g. [START_REF] Ma | Discrete Element Textures[END_REF]).

The developed system, centered on the idea of element fields, can handle elements with general shapes, distributions, and alignments, offer more usability and interactivity than existing practices and enable users to create compelling artwork like Figure 1b without requiring significant expertise or efforts. We evaluate our prototype system with a pilot user study and show applications for both interactive design and collage as well as batch modeling, with partial or full input fields.

RELATED WORKS Element packing

A variety of algorithms have been proposed to pack elements for various applications such as mosaics [START_REF] Hausner | Simulating Decorative Mosaics[END_REF][START_REF] Kim | Jigsaw Image Mosaics[END_REF][START_REF] Dalal | A Spectral Approach to NPR Packing[END_REF][START_REF] Hu | Surface Mosaic Synthesis with Irregular Tiles[END_REF], collages [START_REF] Gal | 3D Collage: Expressive Non-realistic Modeling[END_REF][START_REF] Huang | Arcimboldo-like Collage Using Internet Images[END_REF][START_REF] Huang | Structured Mechanical Collage[END_REF][START_REF] Chung Kwan | Pyramid of Arclength Descriptor for Generating Collage of Shapes[END_REF][START_REF] Saputra | RepulsionPak: Deformation-Driven Element Packing with Repulsion Forces[END_REF], glyphs [START_REF] Xu | Calligraphic Packing[END_REF][START_REF] Zou | Legible Compact Calligrams[END_REF] and artistic layouts [START_REF] Schiftner | Packing Circles and Spheres on Surfaces[END_REF][START_REF] Reinert | Interactive By-example Design of Artistic Packing Layouts[END_REF][START_REF] Saputra | FLOWPAK: Flow-based Ornamental Element Packing[END_REF] in different domains. These algorithms optimize packing layouts without considering interactivity or user-specified element distributions, orientations and scales.

Element modeling

Modeling aggregate elements considering individual shapes and distributions can be achieved via data-driven methods [START_REF] Ijiri | An Example-based Procedural System for Element Arrangement[END_REF][START_REF] Ma | Discrete Element Textures[END_REF][START_REF] Almeraj | Patch-based Geometric Texture Synthesis[END_REF][START_REF] Landes | A Shape-aware Model for Discrete Texture Synthesis[END_REF][START_REF] Roveri | Example Based Repetitive Structure Synthesis[END_REF][START_REF] Guérin | Efficient modeling of entangled details for natural scenes[END_REF][START_REF] Davison | Interactive example-palettes for discrete element texture synthesis[END_REF] or procedural approaches [START_REF] Peytavie | Procedural generation of rock piles using aperiodic tiling[END_REF][START_REF] Li | Geometry Synthesis on Surfaces Using Field-Guided Shape Grammars[END_REF][START_REF] Loi | Discrete Texture Design Using a Programmable Approach[END_REF][START_REF] Sakurai | Modelling of Non-Periodic Aggregates Having a Pile Structure[END_REF][START_REF] Santoni | gTangle: A Grammar for the Procedural Generation of Tangle Patterns[END_REF]. By allowing merging or overlapping the elements, structures with desired appearance can be formed for practical manufacturing [START_REF] Zhou | Topology-constrained Synthesis of Vector Patterns[END_REF][START_REF] Zehnder | Designing Structurally-sound Ornamental Curve Networks[END_REF][START_REF] Chen | Fabricable Tile Decors[END_REF][START_REF] Dumas | Printable Aggregate Elements[END_REF]. However, these approaches mainly focus on automatic computation without providing sufficient user interaction (e.g. element mixing) and require fully specified input fields for appropriate element arrangements.

Unlike existing packing and modeling algorithms, our method can automatically optimize element distributions, orientations and scales with user specifications, and through a brushing interface, ordinary users can interactively arrange element collections over various output domains in an intuitive manner.

Anisotropic element placement

Placing anisotropic elements has various applications such as hatching [START_REF] Hertzmann | Illustrating Smooth Surfaces[END_REF][START_REF] Palacios | Rotational Symmetry Field Design on Surfaces[END_REF][START_REF] Kalogerakis | Learning Hatching for Pen-and-ink Illustration of Surfaces[END_REF], ornaments [START_REF] Saputra | FLOWPAK: Flow-based Ornamental Element Packing[END_REF], calligrams [START_REF] Maharik | Digital Micrography[END_REF], solids [START_REF] Takayama | Lapped Solid Textures: Filling a Model with Anisotropic Textures[END_REF][START_REF] Zhang | Sketch guided solid texturing[END_REF], and visualization [56]. The anisotropic elements often need to follow certain direction fields, whose topology and resolution can directly influence the quality of the resulting outputs. Existing methods predominantly preprocess a full direction field and then force elements to follow. For better synthesis quality and user efficiency, our approach can directly compute smooth element fields (e.g. Figure 2b) according to user intention (e.g. partial user strokes) without requiring fully specified input fields from users in any algorithmic step.

Interactive design

Interactive design systems have been presented for patterns [START_REF] Ritter | Painting with Texture[END_REF][START_REF] Lu | HelpingHand: Example-based Stroke Stylization[END_REF][START_REF] Lu | RealBrush: Painting with Examples of Physical Media[END_REF][START_REF] Lukáč | Painting by Feature: Texture Boundaries for Example-based Image Creation[END_REF][START_REF] Lu | DecoBrush: Drawing Structured Decorative Patterns by Example[END_REF][START_REF] Lukáč | Brushables: Example-based Edge-aware Directional Texture Painting[END_REF], elements [START_REF] Habib Kazi | Vignette: Interactive Texture Design and Manipulation with Freeform Gestures for Pen-and-ink Illustration[END_REF][START_REF] Habib Kazi | Draco: Bringing Life to Illustrations with Kinetic Textures[END_REF], streamlines [START_REF] Schroeder | Drawing with the Flow: A Sketch-based Interface for Illustrative Visualization of 2D Vector Fields[END_REF][START_REF] Chen | Design of 2D Time-Varying Vector Fields[END_REF], distributions [START_REF] Emilien | WorldBrush: Interactive Example-based Synthesis of Procedural Virtual Worlds[END_REF][START_REF] Davison | Interactive example-palettes for discrete element texture synthesis[END_REF], geometric textures [START_REF] Buron | Dynamic On-mesh Procedural Generation[END_REF][START_REF] Guérin | Efficient modeling of entangled details for natural scenes[END_REF][START_REF] Frehse | AutoModeller Pro[END_REF], and dynamic effects [START_REF] Xing | Energy-Brushes: Interactive Tools for Illustrating Stylized Elemental Dynamics[END_REF], but these proposed interfaces are tailored for specific applications in 2D planes and 3D surfaces.

Interactive texturing with a general interface for applications across different output domains is a more challenging problem and has received less attention so far, especially in 3D volumes. Although a 3ds Max plugin [START_REF] Gay | PhysX Painter[END_REF] aims for interactive placement and simulation of rigid objects in 3D domains, similar to element packing, elements following directions are not considered aside from basic gravity and collision.

Analogous to a canvas-based palette tool [START_REF] Schwarz | Modeling with Rendering Primitives: An Interactive Non-photorealistic Canvas[END_REF], our brushing interface offers general and intuitive controls that enable users to interactively produce desired outcomes following their intention for various applications within different domains. Like common color mixing in [START_REF] Shugrina | Playful Palette: An Interactive Parametric Color Mixer for Artists[END_REF], user-interactive element mixing can also be achieved via the interface. Our proposed system can not only more naturally fit element synthesis with interactive authoring but also provide higher functionality for users.

SYSTEM DESIGN RATIONALE

We recap our system design rationale for element synthesis as follows. Manual placement offers full authoring freedom but can require heavy efforts and expertise, while prior practices need full input fields for arrangements but such fields can be hard for users to specify. Even if the fields can be supplied, the final outputs (e.g. Figure 2d) might not fit user intention. We thus aim for an interactive system that retains full user control and yet can smoothly synthesize distinct types of elements with partial user specifications. Through our system, users can iteratively design diverse compositions with reduced workload and enhanced quality under the same brushing workflow without needing to learn any field design systems like [56].

USER INTERFACE

As illustrated in Figure 4, our brushing interface is directly implemented into Autodesk Maya to leverage its overall system manipulation such as camera control. Users can choose and mix different elements from the element palette, tune relative parameters from the control panel, and perform corresponding brush operations to create desired works through the brushing canvas. The basic workflow is exemplified in Figure 3.

Brushing canvas

Analogous to traditional painting interface, we provide a brushing canvas for users to interactively arrange elements. Users can brush a few strokes of elements, and click a button to let our system autocomplete the rest. The output domain can be a 2D plane, 3D surface, or 3D volume for various applications.

Element palette

Users can directly select single or mix multiple input elements and set various properties such as scale and rigidity respectively via the element palette (Figure 5). The combination of the selected elements can be saved as a new palette entry for further use and remix analogous to color palettes [START_REF] Shugrina | Playful Palette: An Interactive Parametric Color Mixer for Artists[END_REF]. Brush operations

In our system, we offer add, erase, and replace brush operations for interactive authoring. The add operation enables users to directly place elements across the domain while the erase operation can remove the already placed elements. The replace operation is a combination of erase and add operations. For automatic completion, the user-specified strokes (e.g. Figure 3c) can indicate the intended overall element orientations and scales, and instead of keeping these strokes unchanged, our autocomplete system optimizes the entire interand intra-element relationships (e.g. Figure 3d) to improve total synthesis quality and produce smoother results while adequately observing and reflecting the original user intention.

FORMULATION

Given input element exemplars I = {e 1 , . . . , e l }, an output domain D, and a partially specified direction or scalar field O over D, our goal is to automatically compute an output X composed of I such that all elements e ∈ I are well distributed within D and have coherent orientations or scales with O.

Element Representation

We represent each element e by a set of samples {s 1 , . . . , s m } as [START_REF] Ma | Discrete Element Textures[END_REF][START_REF] Ma | Dynamic Element Textures[END_REF]. However, only using samples is not enough to properly depict elements with varying anisotropy and deformability. We thus extend the representation with weights and graphs.

Sampling

Since elements are represented by samples, the number and locations of these samples are important. Ideally, we would like to use as few samples as possible while representing the elements as accurately as possible. As illustrated in Figure 6, instead of using unweighted samples in [START_REF] Ma | Discrete Element Textures[END_REF][START_REF] Ma | Dynamic Element Textures[END_REF], we adopt fewer weighted samples to better characterize distinct types of elements. Moreover, a graph structure G inspired by Sumner et al. [START_REF] Sumner | Embedded Deformation for Shape Manipulation[END_REF] is further employed to indicate the connectivity among samples and their relationship with element shapes.

Sample attributes

In addition to the sample weight w s , each sample s contains individual attributes such as spatial position p, orientation matrix o and scale c. In our formulation, the attributes p, o and c are variables to optimize for element synthesis.

Element Distribution

In order to well distribute aggregate elements, we devise a distribution objective E e to effectively handle both inter-and intra-element relationships. E e consists of a sample distribution E d term, a conflict check E k term, and a graph similarity E g term. E d and E k measure the quality of inter-element distributions, and E g preserves the intra-element connections for elements composed of multiple samples.

Sample distribution

To properly position elements within the given domain, we can calculate a balanced distance between each sample to evenly maintain their inter-element distributions. We utilize a power diagram [START_REF] Aurenhammer | Power Diagrams: Properties, Algorithms and Applications[END_REF] that partitions the domain based on the weighted samples of elements to obtain a potential position for each sample. As demonstrated in Figure 7, analogous to general Lloyd-like methods, we can move each sample to the centroid of its power cell to acquire evenly-distributed samples. Hence, the sample distribution E d term can be formulated as:

E d (X) = ∑ s∈X |p (s) -centroid (s)| 2 , (1)
where centroid(s) represents the centroid of s's power cell.

Here we quantify sample distributions procedurally instead of from input exemplars (like in [START_REF] Hsu | Brushing Element Fields[END_REF]) to facilitate faster computation and more flexible manipulations (e.g. element mixing).

Conflict check

Mixtures consisting of elements with distinct sizes or shapes (e.g. Figure 1a) might not have the relevant distribution space partitioned by the power diagram. In order to increase synthesis quality for arbitrary mixtures, E k is exploited to avoid the conflicts between samples by checking the distances between the weighted samples. Since the distance between two samples should not be less than the sum of their weights, we can formulate the conflict check E k term as:

E k (X) = ∑ s∈X ∑ s ∈N s w k s, s p s , s -w s, s p s , s 2 , w k s, s = 1 if w (s, s) > 1 and s ∈ e, s ∈ e , e e 0 if w (s, s) ≤ 1 or s, s ∈ e , w s, s = c(s)w s (s)+c(s)w s (s) | p(s ,s)| , (2)
where N s denotes a set of all neighboring samples of s derived from a triangulation (Figure 7b), p is the displacement between s and s we want to solve, and p means the current displacement between s and s treated as a constant during optimization. Note that since elements might be represented by overlapping samples, E k ignores samples in the same element.

Graph similarity

Elements consisting of multiple samples should keep similar graph structures. To appropriately preserve the intra-element connections for such elements, we can measure the distance between the current graph G(s) and the original graph G (s) for each sample s to consistently maintain the graph structure of each element and define the graph similarity E g term as:

E g (X) = ∑ s∈X d G(s), G (s) , d G(s), G (s) = ∑ s ∈G s p s , s -c(s)o(s) p s , s 2 , (3)
where G s denotes a set of all connected samples of s, p is the same as in Equation (2), and p represents the displacement between s and s in the original graph treated as a constant.

Putting everything together, we have:

E e = (E d + E k) ⊕ w g E g , (4)
where + means that E d and E k are minimized together, ⊕ indicates that E g is minimized separately during optimization, and w g is a relative weight set to 100 from our experiment to firmly restructure the graphs from unexpected sample distributions.

Element Fields

In addition to forming well-distributed elements, these synthesized elements should also match the user-specified field O while behaving reasonably well in the unspecified portions of the output domain D. We design a field objective E f for both scalar and direction fields to include: a field alignment E a term to effectively align the elements with O in the specified areas, a field continuity E c term to smoothly orient all the elements over D, and an element rigidity E r term to determine the element deformability. Each term is also formulated in samples for consistency. Here we first define the distance between two scales c and c for scalar fields and the distance between two orientation matrices M and M for direction fields as:

d c, c = c -c 2 ;
(5)

d M, M = n ∑ i=1 M i -M i 2 , (6)
where n denotes the domain dimension, and M i and M i represent the i-th column vectors of M and M respectively. Below we mainly detail the direction field objective E d f and then briefly describe the scalar field objective E s f .

E a (o, O) = ∑ s∈X w a (s) d (o(s), O(p)) , w a (s) =    π(c(s)w s (s)) 2 A in 2D 4 3 π(c(s)w s (s)) 3 V in 3D , (7)
where w a is a confident weight which means larger samples dominating larger domain spaces should contribute more influences than smaller samples, and A and V are the 2D area and 3D volume of a domain unit (e.g. pixel/voxel) respectively.

Field continuity

To fully complete the element alignments (including regions with or without user-specified O), we orient nearby samples as similarly as possible. Additionally, the effect of field continuity for each pair of samples with a closer distance or similar orientations should be increased accordingly in order to smoothly fit all the samples with their nearby samples. As a result, the field continuity E c term can be formulated as:

E c (o) = ∑ s∈X ∑ s ∈N s w c s, s n ∑ i=1 w o s, s , i o i (s) -o i (s) 2 , w c s, s = 1 1+(w (s,s) -1) 2 , w o s, s , i = 1 + o i (s) • o i (s) , (8)
where w c is an inverse quadratic radial basis function used to adaptively adjust the effect according to w (s, s) -1 in Equation (2) (i.e. the inter-distance between s and s altered based on both w s and c), w o aims to better orient samples with their nearby samples which have similar orientations, o i represents the i-th column vector of o as in Equation (6), and o i treated as a constant here denotes the i-th column vector of the current orientation matrix o of a sample. For dimension reduction, we optimize the closest three/four neighboring samples s chosen from N s for each sample s in 2D/3D according to w (s, s) -1 .

Element rigidity

If the element e is rigid, all samples s ∈ e should have identical local orientations o(s) = o(s), ∀s, s ∈ e. If e is deformable, all samples s ∈ e might have different local orientations. Hence, to distinguish between rigid and deformable elements, the element rigidity E r term is consequently formulated as:

E r (o) = ∑ s∈X ∑ s ∈G s w r (e) d o(s), o(s) , (9)
where w r (e) is the weight of element rigidity which can be defined by users via the element palette (e.g. 0 for deformable elements and 100 for rigid elements in our implementation).

Since we define the local orientation o as a rotation matrix, in order to penalize the deviation of o to well keep a pure rotation matrix during the optimization as in [START_REF] Sumner | Embedded Deformation for Shape Manipulation[END_REF], we apply an extra constraint E o term for the direction field objective E d f as:

E o (o) = ∑ s∈X R (o(s)) , (10)
where

R (o) = (o 1 • o 1 -1) 2 + (o 2 • o 2 -1) 2 + (o 3 • o 3 -1) 2 + (o 1 • o 2) 2 + (o 2 • o 3) 2 + (o 3 • o 1) 2 ,
E d f = E a + α 2 E c + E r + E o . (11)
Replacing Equation (6) by Equation [START_REF] Chen | Design of 2D Time-Varying Vector Fields[END_REF] in Equations (7) to [START_REF] Cunningham | How to Create Seamless Patterns in Illustrator[END_REF] and removing w o from Equation (8), we represent the scalar field objective E s f as follows:

E s f = E a + β 2 E c + E r . (12
)
Note that α and β (both default values = 1) are parameters that users can tune for specific scenarios/applications (Figure 9).

SOLVER

We optimize the set of samples for the objectives E e and E f respectively through a combination of the Lloyd-like method and gradient-based optimization in an iterative way. The overall optimization process is exemplified in Figure 8.

Initialization

We randomly place individual elements into the output domain, and the orientations and scales of samples of each element are initially set to the stroke direction and brush size captured in the closest user-specified domain point to the element.

Iterations

In each iteration, we take a distribution step, an orientation step, and a scale step for different objectives, and each step optimizes only one variable (e.g. p, o, or c) at a time. At the beginning, each sample's neighborhood is built via the power diagram (Figure 7). Based on this, we first carry out the scale step for E s f and then run the orientation step for E d f . The distribution step is fulfilled for E e at the end of each iteration.

In the scale step, c is the variable, and we can directly solve E s f via linear least squares. In the orientation step, o is the variable, and due to the E o term, we optimize E d f via the Levenberg-Marquardt method [START_REF] Madsen | Methods for Non-Linear Least Squares Problems[END_REF] to solve this nonlinear least squares problem. Finally, in the distribution step, p is the variable, and we first solve E d and E k together to optimally rearrange the inter-element distributions via linear least squares. While the elements are composed of multiple samples, to precisely structure the intra-element connections, E g multiplied by w g can be solved according to the optimized positions, orientations and scales of samples via linear least squares as well.

IMPLEMENTATION

To obtain a brushing canvas, we voxelize the selected object and employ a sparse octree to indicate all the voxels similar to [START_REF] Kim | Dynamic Deep Octree for High-resolution Volumetric Painting in Virtual Reality[END_REF]. Each voxel also represents a domain point p and captures relevant information such as stroke direction and brush size. We also calculate the volume of each input element by voxels in preprocessing, so the total number of elements placed into the domain can be proportionally estimated according to the number of domain voxels. During the initialization, a k-d tree is utilized for the nearest domain point search. Furthermore, we extend Voro++ [START_REF] Rycroft | Voro++: A three-dimensional Voronoi cell library in C++[END_REF] to compute the power diagram in parallel and construct the sample neighborhoods. By adding extra fixed samples to the boundary voxels of the selected object, we can apply the conflict check term to the boundary samples and their nearby element samples, and thus boundary condition for various domain shapes can be efficiently handled. For the final output, the element samples can be used as control points to regularize the mesh vertices of elements as in [START_REF] Sumner | Embedded Deformation for Shape Manipulation[END_REF].

EVALUATION

Element manipulation

Since previous algorithms either only work for rigid elements (e.g. [START_REF] Reinert | Interactive By-example Design of Artistic Packing Layouts[END_REF][START_REF] Chung Kwan | Pyramid of Arclength Descriptor for Generating Collage of Shapes[END_REF]) or need extra schemes such as physics solvers for deformable elements (e.g. [START_REF] Ma | Discrete Element Textures[END_REF][START_REF] Saputra | RepulsionPak: Deformation-Driven Element Packing with Repulsion Forces[END_REF]), the capability of freely mixing user-specified elements is confined. Although an earlier version of our method [START_REF] Hsu | Brushing Element Fields[END_REF] allows users to mix different elements from user-prepared input exemplars (Figure 11), its data-driven process can significantly slow down computation and thus compromise both usability and interactivity, and the prepared exemplars can also heavily limit the synthesis quality as well as the freedom of element distributions. In contrast, our procedural approach can enable users to individually mix distinct types of elements from the element palette without the necessity of preparing the input exemplars in advance and directly bring novel mixtures into existence as users desire as possible in high quality and efficiency without requiring extra schemes. Moreover, by assigning the samples of each element arbitrary local orientations and scales via the interface, users can further randomly orient, distort and resize the synthesized elements to enrich visual diversity of artworks (Figure 12).

Distribution manipulation

Due to algorithmic limitations (e.g. computational cost), prior approaches cannot let users interactively manipulate element distributions, while our system enables users to freely form diverse compositions, such as spatially-varying element distributions, under the same brushing workflow. More detailedly, we can incorporate an extra density field to spatially vary the density of element distributions as illustrated in Figure 10. To fulfill it, each stroke can be equipped with a density value ρ between 0 and 1, and we directly modify the weights of samples by the given densities ρ(s) but do not change the sizes of elements (e.g. w s (s) = (1 + ρ(s))w s (s)). This optional density field can be optimized individually via the same formulation and step with E s f during the iterations. With toroidal boundary conditions, our method can further generate 2D/3D element tiles to seamlessly tile a large output as shown in Figure 13.

Field manipulation

As exemplified in Figure 9, by tuning α and β from the interface to manipulate the effect of field continuity, different outputs with desired appearances can be designed according to users' personal preferences. Moreover, Figure 14 shows that incoherent user strokes can be well tackled by our method without incorporating any extra processes, and Figure 15 demonstrates that our system can also automatically generate volumetric element distributions from only surface direction fields (a very small subset relative to the whole volume) without predefining the entire field resolution. More examples about field manipulation can be seen in the supplementary document.

(a) input mesh (b) cross section of Figure 1c Figure 15: Sparse input fields. We compute an extrinsically smooth field [START_REF] Huang | Extrinsically smooth direction fields[END_REF] over a sparse set of mesh vertices (a) but apply our method to the entire volume not just the surface. The cross section (b) shows that the full outcome (Figure 1c) can be smoothly constructed from the sparse direction field.

Performance

The synthesis times of our representative works are reported for reference in Table 1. In our current prototype, there exists room to improve the performance. We leave it for future work.

USER STUDY

Our autocomplete system aims for reducing input workload (by partial user specifications) and enhancing output quality (by smooth field topology). To evaluate our system, we have conducted a pilot user study, and the goal of our study procedure was designed to measure how much workload users can reduce via our system while achieving the designated targets.

The study participants included 2 professional artists and 3 novice users without experience in element authoring. 14d respectively.

Procedure

The study includes four sessions: warm-up, target brush, open brush, and final interview. All tasks were conducted on a desktop computer with a mouse and a Wacom tablet, and the whole study took around 2 hours per participant on average.

Warm-up session

This session aims to help the novice users have basic understanding of Autodesk Maya such as camera control and familiarize all the participants with our system. The process consists of interactive authoring and automatic completion for given 2D and 3D objects. One of the authors helped the participants to realize the brushing workflow through the session.

Target brush session

In this session, we aim to measure the usability of our brushing interface for the participants with different levels of expertise.

During the session, each participant was asked to create similar outcomes to the designated targets (Figure 16). Although the 2D target (Figure 16a) can be achieved by Adobe Photoshop or Illustrator (e.g. [START_REF] Levis | Tutorial on How to do a typography design of a woman's face in Photoshop CC[END_REF][START_REF] Videolot | Adobe Illustrator Cs6 | Typography Portrait | Bruno Mars[END_REF]) and the 3D target (Figure 16b) can be fulfilled by PhysX Painter (e.g. [START_REF] Gay | PhysX Painter Teaser[END_REF]) plus manual placements, it can require significant artistic skills and manual labor from users in a time-consuming procedure. Thus, instead of asking the participants to achieve the designated outputs by In (e), the participants marked our autocomplete system in terms of utility, easy to use, quality, efficiency, and satisfaction , and all quantities are expressed in a 7-point Likert scale.

existing tools, we let our participants directly create results through our system under two conditions: autocomplete on, and autocomplete off (i.e. synthesizing elements only under the user strokes). We then recorded the production time and the total number of user strokes for each task respectively.

Open brush session

To identify possible usability, we encouraged the participants to freely create other works and observed their behavior for potential improvement in the session. One of the authors also accompanied the participants, provided related supports, and discussed conceivable usage with them throughout the process.

Outcome

Figures 16c and 16d offer quantitative measures of production time and stroke counts for each target task. The outcome statistics demonstrate that our system can significantly reduce both the production time and the number of user strokes for either artists or novices. Please refer to Figures 27 and 28 for the sample user study outputs. Below we highlight the participants' authoring behaviors from our observation.

For the 2D target, without the autocomplete mode, the participants had to frequently adjust the brush size and place strokes following the target's element directions one by one to fill the entire domain. Even if they could quickly and intuitively brush all over the domain through our interface, like common sketching and painting, to perfectly place the strokes side by side was not easy to them as the brushing paths could be a little tilted. Hence, the outputs about manual brushing can contain some obvious gaps and the orientations and scales of elements are not smooth enough either. While with the autocomplete mode, the participants placed a few strokes around the singularity and some other evenly spaced strokes within the remaining domain for automatic completion. The results created by our autocomplete method can have smoother element distributions, orientations and scales as well as similar appearances to the 2D target even if the partially specified strokes are not the same. In general, some of the user strokes might follow the target's outline but the outline did not actually affect their authoring strategies, while the target's element directions could affect where to place the strokes for automatic completion.

Similar outputs to the 3D target could be made via both without and with the autocomplete mode as the participants did not need to consider element alignments for the target's shape (i.e. lemons and bananas), but it can be seen that with the mode, the outcomes can have overall tighter element distributions. An interesting situation is that since the target's nose (i.e. cucumbers) has precise element alignments (i.e. horizontal directions), to avoid obvious element misalignments appearing at the target's nose, multiple participants demanded to brush more than once for better oriented cucumbers, while the rest (except the target's shape) could be specified with a single brush stroke in most cases. In summary, through our autocomplete system, the participants could more flexibly produce the designated results with reduced user workload and enhanced synthesis quality without compromising their control.

Feedback

Figure 16e summarizes each participant's feedback about our system. Overall, the participants were content with the system and commented that they can easily learn our system and directly produce desirable results without requiring significant practice and expertise as the brushing interface fits the natural artist workflow. They also said that with our system, they only need to design a few specific strokes for automatic completion instead of full element arrangements, and this concept is creative and novel to them. When asked about comparing manual placement with autocomplete, the participants stated that the system can indeed help them reduce workload and obtain smooth layouts in an efficient way, and it can encourage them to explore more interesting experiments. They were happy to see that our system can improve existing production pipelines for artists and benefit more novices in artwork creation.

The participants also made comments related to possible enhancement and usage for our system. The artists recommended that it is desirable to have more advanced brush controls such as a single stroke with varying brush radii for more varied effects, and being able to save the designed strokes as presets for further reuse (i.e. relocating a set of predefined strokes at a desired position) may be handier. Some participants expressed that after automatic completion, to let users slightly adjust a few elements with specified orientations or scales as partial inputs for local optimization can be an alternative for local field manipulation as it can still work under our formulation, and this may benefit some scenarios which need more precise control of flow directions. Since our current prototype is a general interface for interactive texturing across different domains, we believe that their advice can be integrated into our framework for tailored applications according to demand.

OTHER APPLICATIONS

In addition to graphic design, artistic collage, and aggregate modeling, below we show more applications from our system.

Pattern design

Element arrangements are important for pattern design [START_REF] Loi | Programmable 2D Arrangements for Element Texture Design[END_REF], but interactively designing tile-based patterns still remains challenging since existing tools require tedious manual process (see [START_REF] Cunningham | How to Create Seamless Patterns in Illustrator[END_REF][START_REF] Purdy | Make It, Sell It: Repeating Patterns in Adobe Illustrator[END_REF]). As shown in Figure 17, our autocomplete system can form tileable patterns with a variety of element distributions without requiring a great deal of labor from users.

Solid texturing

Since most proposed algorithms [START_REF] Jagnow | Stereological Techniques for Solid Textures[END_REF][START_REF] Qin | Aura 3D Textures[END_REF][START_REF] Kopf | Solid Texture Synthesis from 2D Exemplars[END_REF][START_REF] Du | Semiregular Solid Texturing from 2D Image Exemplars[END_REF] create solid textures from 2D input exemplars such as photos, the exemplars with specific structures might not be well synthesized.

There is also a lack of algorithms which can generate tile-based solid textures from user-specified elements. As illustrated in Figure 18, our method can not only create such solids from specific elements but also maintain the element configuration.

Field visualization

As demonstrated in Figure 19, by properly aligning anisotropic elements with underlying fields, our algorithm can be considered as a geometry-based field visualization technique.

LIMITATIONS AND FUTURE WORK

Since we randomly place elements into the output domain for fast initialization, the distribution optimization might be trapped in a local minimum when the elements are highly anisotropic and the domain is irregular. As in Figure 1a, the distribution densities in the four feet are slightly different, but this can be relieved via a teleportation scheme like [START_REF] Cohen-Steiner | Variational Shape Approximation[END_REF] or a progressive initialization like [START_REF] Davison | Interactive example-palettes for discrete element texture synthesis[END_REF]. In addition, our approach cannot entirely avoid interpenetrations or floating elements, but the issue is not visually obvious in our results and it is also feasible to integrate physics solvers into our framework if necessary. While autocompleting large outputs (e.g. Figure 12), our system may lack interactive speed. To incorporate GPU computing for further speedup can be an alternative solution.

For future work, since our current prototype does not consider continuous elements [START_REF] Roveri | Example Based Repetitive Structure Synthesis[END_REF] due to the difficulty of mixing such elements, a potential direction is to extend our algorithm with [START_REF] Roveri | Example Based Repetitive Structure Synthesis[END_REF] for continuous element synthesis. Additionally, VR brushing has recently received significant attention as it provides an immersive environment for 3D painting and modeling. We plan to implement our method under VR and offer a user interface for interactive authoring in immersive environments. Our formulation can also tackle dynamic input fields. The process is that we generate the output for the first frame and take this output as the initialization for the next frame. Please refer to the supplementary video for animations. In the video, the outputs are produced by 100 iterations for the first frame and 20 iterations for the rest of frames respectively. We plan to more fully explore dynamic fields and believe this feature can be further extended for motion graphics and element animations as future work.

Figure 2 :

 2 Figure 2: Element fields. Our method can directly compute smoother element fields (b) from a partial input (a) and more adaptively fit different elements with (a) than (d) preprocessing a full input (c) from (a) via Laplacian interpolation [56].

Figure 3 :

 3 Figure 3: Workflow. Users can select single or multiple input elements (a), brush the chosen inputs over the domain (b) and see the brushing results (c) interactively. According to (c), our system can automatically create the full output (d) with intended element orientations and scales. The users can further arrange the elements for the final outcome (e) via corresponding brush operations.

Figure 4 :

 4 Figure 4: User interface. The element palette and the control panel are on the left. The brushing canvas is in the middle.

Figure 5 :

 5 Figure 5: Element palette. Through the element palette (a), several kinds of music symbols can be chosen by users to form a shoeprint consisting of only two types (b) or eight types (c).

Figure 6 :

 6 Figure 6: Element representation. The black dots indicate the sample positions. The radii of the yellow circles represent the sample weights w s . The blue lines denote the element graphs. The sampling can be sparse (a), dense (b), overlapping (c) or hybrid (d). These samples can be either manually placed by designers or assisted by algorithms [2, 77, 75, 41].

Figure 7 :

 7 Figure 7: Power diagram. In (a), a potential position (purple) for a sample (red) can be derived from the centroid of the sample's power cell. A weighted Delaunay triangulation (b), which is the dual graph of the power diagram, can be further used to construct neighborhood information for each sample.

 Field alignment Since each sample s ∈ e is associated with a local orientation o, the sample orientation o(s) in the specified domain should be properly aligned with the given field orientation O(p), where O(p) means the orientation matrix of O at p which is the closest specified domain point to the sample s. Hence, the distance between o(s) and O(p) for each sample s in the specified areas should be minimized for the field alignment E a term as:

Figure 8 :

 8 Figure 8: Optimization process. Our solver iteratively optimizes the scale, orientation and position of each element sample. The number of iterations for automatic completion can range from 5 to 100 depending on the number of elements, the completeness of fields, the complexity of mixtures, and the domain size and shape. Users can use fewer iterations (e.g. (d)) for fast previews during the iterative design procedure and utilize more iterations (e.g. (e)) for final designed outcomes or more complicated scenarios.

10 Figure 9 :

 109 Figure 9: Field continuity. By increasing α and β via our interface, it can encourage smoother element orientations and scales. Our system can observe the user intention to optimize overall synthesis quality with the tuned values accordingly.

Figure 10 :

 10 Figure 10: Varying distributions. Users can directly specify strokes (a) with density values to obtain a partial density field (b) via the same brush operations. Without adopting (b), dense (c) or sparse (d) element distributions can be uniformly formed by adjusting the number of elements placed into the domain. By incorporating (b), the elements can be distributed non-uniformly (e).

Figure 11 :

 11 Figure 11: Solver comparison. Our procedural approach (b) can more uniformly distribute elements in better performance than the data-driven method (c). Both contain the same 689 elements and 1598 samples, and the synthesis times of (b) and (c) are 9 and 44 seconds respectively in 100 iterations.

Figure 12 :

 12 Figure 12: Element mixing. Users can create compelling mixtures composed of user-specified elements with chaotic alignments (a), distorted shapes (b) or varying sizes (Figure 1c).

Figure 13 :

 13 Figure 13: Tile-based distributions. Our system can produce various element tiles. Note that in (b), we randomly align the music symbols, while the words follow the stroke directions.

Figure 14 :

 14 Figure 14: Incoherent user strokes. Our method can well handle overlapping (a), intertwined (b) and distorted (c) user strokes with incoherent directions or scales for desirable results (d), while to deal with such cases can be hard for users via existing methods.

Figure 16 :

 16 Figure 16: User study targets, outcome statistics, and user feedback. Similar outputs to (a) and (b) were produced by the participants during the study procedure. The production time (c) and the total number of user strokes (including both placed and erased strokes) (d) for each target were measured individually.In (e), the participants marked our autocomplete system in terms of utility, easy to use, quality, efficiency, and satisfaction , and all quantities are expressed in a 7-point Likert scale.

Figure 17 :

 17 Figure 17: Pattern design. Tileable patterns with dense (a), evenly overlapping (b) or spatially-varying (c) element distributions can be formed by relevant user specifications via our system. Note that in (c), we utilize the user stroke in Figure 13c and a tileable density map to generate the pattern. The input elements used here are designed by Freepik [15].

Figure 18 :

 18 Figure 18: Solid texturing. By randomly resizing and orienting a few elements, tile-based solid textures can be created for concrete (a), eroded (b) and colloidal (c) structures. Note that in (b), the elements are used as cutting objects to trim models.

Figure 20 :

 20 Figure 20: Ablation study. To demonstrate the effect of our objective functions, we densely and sparsely distribute rigid and deformable elements respectively and study the sample distribution E d term and the conflict check E k term in different cases. Without E k , anisotropic elements might overlap when the elements are distributed densely as in (b) and (h). Without E d , the elements do not overlap but can be distributed unevenly as in (c), (f), (i) and (l).

Figure 21 :

 21 Figure 21: Field comparison. Our method can directly complete element fields (b) and (f) from partially user-specified strokes (a) and (e) in a one-step automatic optimization process. As compared with (d) and (h) computed via a two-step process, which needs to first produce full input fields (c) and (g) from (a) and (e) respectively via Laplacian interpolation and forces elements to follow, our one-step process can more smoothly orient the elements all over the domain.

 (a) user stroke (b) one-step process in different views (c) two-step process in different views

Figure 22 :

 22 Figure 22: Domain boundary normals. Given a small user stroke (a), our one-step process can also combine the domain boundary normals as another partial input field and generate smoother results (b) than the two-step process (c) which can cause discontinuous element alignments. Please refer to the accompanying video for more views.

20 Figure 23 :

 2023 Figure 23: Singularity handling. Given an input field with singularities (a), by tuning α to increase the effect of field continuity, our method can directly hide the undesired singularities without changing the underlying field. Note that the orientations of elements near the boundary can still remain almost consistent.

Figure 24 :

 24 Figure 24: Chaotic input fields. The input field (a) is generated by adding random noise to the field in Figure23a. By increasing α to enhance the effect of field continuity as in Figure23, the noise effect can be reduced accordingly as well.

Figure 25 :

 25 Figure25: Dynamic input fields. Our formulation can also tackle dynamic input fields. The process is that we generate the output for the first frame and take this output as the initialization for the next frame. Please refer to the supplementary video for animations. In the video, the outputs are produced by 100 iterations for the first frame and 20 iterations for the rest of frames respectively. We plan to more fully explore dynamic fields and believe this feature can be further extended for motion graphics and element animations as future work.

Figure 26 :

 26 Figure 26: The w o effect for the field continuity E c term. It can be seen that with w o , the elements near the singularity (near the heart's center) can be better stabilized after 70 iterations, whereas without w o , the element distributions around the singularity can still remain unsteady throughout. The supplementary video is also available for illustration.

Figure 27 :

 27 Figure 27: Sample user study outputs for the 2D target. Each group contains the partially specified user strokes for autocomplete, the autocomplete result computed from the user strokes, and the output created by fully manual brushing.

Figure 28 :

 28 Figure28: Sample user study outputs for the 3D target. Each group contains the autocomplete result with partially manual brushing and the output created by fully manual brushing. With the autocomplete mode as in (b), (d), (f), (h) and (j), the lemons and bananas were automatically synthesized by our system within the target. Without the autocomplete mode as in (c), (e), (g), (i) and (k), the lemons and bananas were interactively brushed by the participants over the target.

 and o 1 , o 2 and o 3 are the corresponding column vectors of o. As a result, the direction field objective E d f is a summation of E a , E c , E r and E o as:

Table 1 :

 1 Synthesis timing. The CPU we use is Intel ® Xeon

® E5-1650 3.20GHz. Note that Figures 9b to 9e have similar synthesis times as well as the same numbers of elements and samples, and Figures 14a to 14c here represent the corresponding outputs in Figure