Geomstats: A Python Package for Riemannian Geometry in Machine Learning - Archive ouverte HAL
Article Dans Une Revue Journal of Machine Learning Research Année : 2020

Geomstats: A Python Package for Riemannian Geometry in Machine Learning

Nina Miolane
  • Fonction : Auteur
  • PersonId : 951696
  • IdRef : 199540519
Benjamin Hou
  • Fonction : Auteur
  • PersonId : 1086602
Yann Thanwerdas
Stefan Heyder
Hadi Zaatiti
Hatem Hajri
  • Fonction : Auteur
  • PersonId : 888500
  • IdRef : 156227835
Yann Cabanes
Thomas Gerald
Paul Chauchat
Christian Shewmake
Daniel Brooks
Bernhard Kainz
Claire Donnat
Susan Holmes
  • Fonction : Auteur
  • PersonId : 943876

Résumé

We introduce Geomstats, an open-source Python toolbox for computations and statistics on nonlinear manifolds, such as hyperbolic spaces, spaces of symmetric positive definite matrices, Lie groups of transformations, and many more. We provide object-oriented and extensively unit-tested implementations. Among others, manifolds come equipped with families of Riemannian metrics, with associated exponential and logarithmic maps, geodesics and parallel transport. Statistics and learning algorithms provide methods for estimation, clustering and dimension reduction on manifolds. All associated operations are vectorized for batch computation and provide support for different execution backends, namely NumPy, PyTorch and TensorFlow, enabling GPU acceleration. This paper presents the package, compares it with related libraries and provides relevant code examples. We show that Geomstats provides reliable building blocks to foster research in differential geometry and statistics, and to democratize the use of Riemannian geometry in machine learning applications. The source code is freely available under the MIT license at http://geomstats.ai.
Fichier principal
Vignette du fichier
19-027.pdf (1.25 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02536154 , version 1 (08-04-2020)
hal-02536154 , version 2 (21-12-2020)

Licence

Identifiants

  • HAL Id : hal-02536154 , version 2

Citer

Nina Miolane, Nicolas Guigui, Alice Le Brigant, Johan Mathe, Benjamin Hou, et al.. Geomstats: A Python Package for Riemannian Geometry in Machine Learning. Journal of Machine Learning Research, 2020, 21 (223), pp.1-9. ⟨hal-02536154v2⟩
2164 Consultations
2698 Téléchargements

Partager

More