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Quotient of Bergman kernels on punctured Riemann surfaces

In this paper we consider a punctured Riemann surface endowed with a Hermitian metric that equals the Poincaré metric near the punctures, and a holomorphic line bundle that polarizes the metric. We show that the quotient of the Bergman kernel of high tensor powers of the line bundle and of the Bergman kernel of the Poincaré model near the singularity tends to one up to arbitrary negative powers of the tensor power.

Introduction

In this paper we study the asymptotics of Bergman kernels of high tensor powers of a singular Hermitian line bundle over a Riemann surface under the assumption that the curvature has singularities of Poincaré type at a finite set. We show namely that the quotient of these Bergman kernels and of the Bergman kernel of the Poincaré model near the singularity tends to one up to arbitrary negative powers of the tensor power. In our previous paper [START_REF] Auvray | Bergman kernels on punctured Riemann surfaces[END_REF] (see also [START_REF] Auvray | Bergman kernels on punctured Riemann surfaces[END_REF]) we obtained a weighted estimate in the C m -norm near the punctures for the difference of the global Bergman kernel and of the Bergman kernel of the First author is partially supported by ANR contract ANR-14-CE25-0010. Second author is partially supported by NNSFC No. 11829102 and funded through the Institutional Strategy of the University of Cologne within the German Excellence Initiative. Third author is partially supported by CRC TRR 191.

Poincaré model near the singularity, uniformly in the tensor powers of the given bundle. Our method is inspired by the analytic localization technique of Bismut-Lebeau [START_REF] Bismut | Complex immersions and Quillen metrics[END_REF].

There exists a well-known expansion of the Bergman kernel on general compact manifolds [START_REF] Bouche | Convergence de la métrique de Fubini-Study d'un fibré linéaire positif[END_REF][START_REF] Catlin | The Bergman kernel and a theorem of Tian[END_REF][START_REF] Dai | On the asymptotic expansion of Bergman kernel[END_REF][START_REF] Hsiao | Projections in several complex variables[END_REF][START_REF] Ma | Holomorphic Morse inequalities and Bergman kernels[END_REF][START_REF] Ma | Generalized Bergman kernels on symplectic manifolds[END_REF][START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF][START_REF] Zelditch | Szegő kernels and a theorem of Tian[END_REF] with important applications to the existence and uniqueness of constant scalar curvature Kähler metrics [START_REF] Donaldson | Scalar curvature and projective embeddings. I[END_REF][START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF] as part of the Tian-Yau-Donaldson's program. Coming to our context, a central problem is the relation between the existence of special complete/singular metrics and the stability of the pair (X, D) where D is a smooth divisor of a compact Kähler manifold X; see e.g. the suggestions of [26, §3.1.2] for the case of "asymptotically hyperbolic Kähler metrics", which naturally generalize to higher dimensions the complete metrics ω Σ studied here. Moreover, the technique developed here can be extended to the higher dimensional situation in the case of Poincaré type Kähler metrics with reasonably fine asymptotics on complement of divisors, see the construction of [2, §1.1] and [START_REF] Auvray | Asymptotic properties of extremal Kähler metrics of Poincaré type[END_REF]Theorem 4].

The Bergman kernel function of a singular polarization is of particular interest in arithmetic situations [START_REF] Bruinier | Borcherds products and arithmetic intersection theory on Hilbert modular surfaces[END_REF][START_REF] Burgos Gil | Arithmetic characteristic classes of automorphic vector bundles[END_REF][START_REF] Berman | An arithmetic Hilbert-Samuel theorem for singular Hermitian line bundles and cusp forms[END_REF]. In [START_REF] Auvray | Bergman kernels on punctured Riemann surfaces[END_REF] we applied the precise asymptotics of the Bergman kernel near the punctures in order to obtain optimal uniform estimates for the supremum of the Bergman kernel, relevant in arithmetic geometry [START_REF] Abbes | Comparaison des métriques d'Arakelov et de Poincaré sur X 0 (N )[END_REF][START_REF] Jorgenson | the sup-norm of automorphic forms[END_REF][START_REF] Friedman | Uniform sup-norm bounds on average for cusp forms of higher weights[END_REF]. There are also applications to "partial Bergman kernels", see [START_REF] Coman | On the first order asymptotics of partial Bergman kernels[END_REF].

We place ourselves in the setting of [START_REF] Auvray | Bergman kernels on punctured Riemann surfaces[END_REF] which we describe now. Let Σ be a compact Riemann surface and let D = {a 1 , . . . , a N } ⊂ Σ be a finite set. We consider the punctured Riemann surface Σ = Σ D and a Hermitian form ω Σ on Σ. Let L be a holomorphic line bundle on Σ, and let h be a singular Hermitian metric on L such that:

(α) h is smooth over Σ, and for all j = 1, . . . , N , there is a trivialization of L in the complex neighborhood V j of a j in Σ, with associated coordinate z j such that |1| 2 h (z j ) = log(|z j | 2 ) . (β) There exists ε > 0 such that the (smooth) curvature R L of h satisfies iR L ≥ εω Σ over Σ and moreover, iR L = ω Σ on V j := V j {a j }; in particular, ω Σ = ω D * in the local coordinate z j on V j and (Σ, ω Σ ) is complete.

Here ω D * denotes the Poincaré metric on the punctured unit disc D * , normalized as follows:

(1.1) ω D * := idz ∧ dz |z| 2 log 2 (|z| 2 )

•

For p ≥ 1, let h p := h ⊗p be the metric induced by h on L p | Σ , where L p := L ⊗p . We denote by H 0 (2) (Σ, L p ) the space of L 2 -holomorphic sections of L p relative to the metrics h p and ω Σ ,

(1.2) H 0 (2) (Σ, L p ) = S ∈ H 0 (Σ, L p ) : S 2 L 2 := Σ |S| 2 h p ω Σ < ∞ ,
endowed with the obvious inner product. The sections from H 0 (2) (Σ, L p ) extend to holomorphic sections of L p over Σ, i. e., (see [22, (6.2.17)])

(1.3) H 0 (2) (Σ, L p ) ⊂ H 0 Σ, L p .
In particular, the dimension d p of H 0 (2) (Σ, L p ) is finite.

We denote by B p ( • , • ) and by B p ( • ) the (Schwartz-)Bergman kernel and the Bergman kernel function of the orthogonal projection B p from the space of L 2 -sections of L p over Σ onto H 0 (2) (Σ, L p ). They are defined as follows: if {S p ℓ } dp ℓ=1 is an orthonormal basis of H 0

(2) (Σ, L p ), then Note that these are independent of the choice of basis (see [22, (6.1.10)] or [START_REF] Coman | Equidistribution results for singular metrics on line bundles[END_REF]Lemma 3.1]). Similarly, let B D * p (x, y) and B D * p (x) be the Bergman kernel and Bergman kernel function of D * , ω D * , C, log(|z| 2 ) p h 0 ) with h 0 the flat Hermitian metric on the trivial line bundle C.

Note that for k ∈ N, the

C k -norm at x ∈ Σ is defined for σ ∈ C ∞ (Σ, L p ) as |σ| C k (h p ) (x) = |σ| h p + ∇ p,Σ σ h p ,ω Σ + . . . + (∇ p,Σ ) k σ h p ,ω Σ (x), (1.5)
where ∇ p,Σ is the connection on (T Σ) ⊗ℓ ⊗ L p induced by the Levi-Civita connection on (T Σ, ω Σ ) and the Chern connection on (L p , h p ), and the pointwise norm | • | h p ,ω Σ is induced by ω Σ and h p . In the same way we define the

C k -norm |f | C k (x) at x ∈ Σ of a smooth function f ∈ C ∞ (Σ, C) by using the Levi-Civita connection on (T Σ, ω Σ ).
We fix a point a ∈ D and work in coordinates centered at a. Let e L be the holomorphic frame of L near a corresponding to the trivialization in the condition (α). By assumptions (α) and (β) we have the following identification of the geometric data in the coordinate z on the punctured disc D * 4r of radius 4r centered at a, via the trivialization e L of L,

Σ, ω Σ , L, h D * 4r = D * , ω D * , C, h D * = log(|z| 2 ) • h 0 D * 4r , with 0 < r < (4e) -1 . (1.6)
In [START_REF] Auvray | Bergman kernels on punctured Riemann surfaces[END_REF]Theorem 1.2] we proved the following weighted diagonal expansion of the Bergman kernel:

Theorem 1.1. Assume that (Σ, ω Σ , L, h) fulfill conditions (α) and (β). Then the following estimate holds: for any ℓ, k ∈ N, and every δ > 0, there exists C = C(ℓ, k, δ) > 0 such that for all p ∈ N * , and

z ∈ V 1 ∪ • • • ∪ V N with the local coordinate z j , (1.7) B p -B D * p C k (z j ) ≤ Cp -ℓ log(|z j | 2 ) -δ ,
with norms computed with help of ω Σ and the associated Levi-Civita connection on D * 4r . Note that in [START_REF] Auvray | Bergman kernels on punctured Riemann surfaces[END_REF]Theorem 1.1] we also established the off-diagonal expansion of the Bergman kernel B p ( • , • ). The main result of the present paper is the following estimate of the quotient of the Bergman kernels from (1.7):

Theorem 1.2. If (Σ, ω Σ , L, h) fulfill conditions (α) and (β), then (1.8) sup z∈V 1 ∪...∪V N B p B D * p (z) -1 = O(p -∞ ) ,
i.e., for any ℓ > 0 there exists C > 0 such that for any p ∈ N * we have

(1.9) sup z∈V 1 ∪...∪V N B p B D * p (z) -1 ≤ Cp -ℓ .
Theorem 1.2 is related to estimates in exponentially small neighborhoods of the punctures obtained in [START_REF] Sun | Estimations of the Bergman kernel of the punctured disc[END_REF]Theorem 1.6] and [START_REF] Sun | Projective embedding of log Riemann surfaces and K-stability[END_REF]Lemma 3.3].

For each p ≥ 2 fixed (|z| 2 log(|z| 2 ) p ) -1 B D * p (z) is smooth and strictly positive on D 4r , as follows from (2.7). By [START_REF] Auvray | Bergman kernels on punctured Riemann surfaces[END_REF]Remark 3.2], any holomorphic L 2 -section of L p over Σ extends to a homomorphic section on Σ (see the inclusion (1.3)) vanishing at 0 in D 4r . Thus by the formula (1.4) for B p we see that the quotient 

(1.10) sup z∈V 1 ∪...∪V N (D 1 • • • D k ) B p B D * p (z) = O(p -∞ ).
Remark 1.4. Theorem 1.1 admits a generalization to orbifold Riemann surfaces. Indeed, assume that Σ is a compact orbifold Riemann surface such that the finite set D ⊂ Σ does not meet the (orbifold) singular set of Σ. Then by the same argument as in [5, Remark 1.3] (using [START_REF] Dai | On the asymptotic expansion of Bergman kernel[END_REF][START_REF] Dai | A remark on weighted Bergman kernels on orbifolds[END_REF]) we see that Theorems 1.2 and 1.3 still hold in this context.

Note that the C k -norm used in (1.7) is induced by ω D * , roughly the sup-norm with respect to the derivatives defined by the vector fields z log(|z| 2 ) ∂ ∂z and z log(|z| 2 ) ∂ ∂z , which vanish at z = 0. Hence the norm in (1.10) is stronger than the C k -norm used in (1.7), because the norm in (1.10) is defined by using derivatives along the vector fields ∂ ∂z and ∂ ∂z .

Let us mention at this stage that even if the results above follow from our work [START_REF] Auvray | Bergman kernels on punctured Riemann surfaces[END_REF], relying more precisely on [5, Theorem 1.2], the proofs are by no means an obvious rewriting of [5, Theorem 1.2] (for instance), since B D * p ( • ) takes extremely small values arbitrarily near the origin. This can be seen in [5, §3.2] and it is specific to the non-compact framework. What estimate (1.8) says is that B p ( • ) follows such a behaviour very closely in the corresponding regions of Σ via the chosen coordinates.

Here is a general strategy of our approach for Theorems 1.2 and 1.3. We choose a special orthonormal basis {σ

(p) ℓ } dp ℓ=1 of H 0 (2) (Σ, L p ) starting from z l on D * 4r for 1 ≤ l ≤ δ p with 0 < α < δ p /p < α 1 < 1. Our choice of σ (p) ℓ
implies that the coefficients of the expansion

σ (p) ℓ (z) = ∞ j=1 a (p) jℓ z j of σ (p) ℓ on D * 4r satisfy a (p) jℓ = 0 if j < δ p and j < l ≤ d p (cf. (2.32)). Now we separate the contribution of σ (p) ℓ , c (p) ℓ (cf. (2.6)), a (p) jℓ in B p , B D *
p in two groups: 1 ≤ j, ℓ ≤ δ p ; max{j, ℓ} ≥ δ p + 1. The contribution corresponding to 1 ≤ j, ℓ ≤ δ p , will be controlled by using Lemma 2.1 (or 3.1). The contribution corresponding to max{j, ℓ} ≥ δ p + 1 will be handled by a direct application of Cauchy inequalities (2.23). It turns out that by suitably choosing c, A > 0 this contribution has uniformly the relative size 2 -αp compared to

B D * p on |z| ≤ cp -A .
This paper is organized as follows. In Section 2, we establish Theorem 1.2 based on the off-diagonal expansion of Bergman kernel from [5, §6]. In Section 3, we establish Theorem 1.3 by refining the argument from Section 2. In Section 4 we give some applications of the main results.

Notation: We denote ⌊x⌋ as the integer part of x ∈ R.

Let L 2 p (Σ) be the • L 2 p (Σ) -completion of C ∞ 0 (Σ, L p )
. By [START_REF] Auvray | Bergman kernels on punctured Riemann surfaces[END_REF]Remark 3.2] the inclusion (1.3) identifies the space H 0

(2) (Σ, L p ) of L 2 -holomorphic sections of L p over Σ to the subspace of H 0 (Σ, L p ) consisting of sections vanishing at the punctures, so it induces an isomorphism of vector spaces

(2.2) H 0 (2) (Σ, L p ) ∼ = H 0 (Σ, L p ⊗ O Σ (-D)),
where O Σ (-D) is the holomorphic line bundle on Σ defined by the divisor -D. By the Riemann-Roch theorem we have for all p with p deg(L) -N > 2g -2,

d p := dim H 0 (2) (Σ, L p ) = dim H 0 (Σ, L p ⊗ O Σ (-D)) = deg(L) p + 1 -g -N, (2.3)
where deg(L) is the degree of L over Σ, and g is the genus of Σ.

The Bergman kernel function (1.4) satisfies the following variational characterization, see e.g. [START_REF] Coman | Equidistribution results for singular metrics on line bundles[END_REF]Lemma 3.1],

B p (z) = sup 0 =σ∈H 0 (2) (Σ,L p ) |σ(z)| 2 h p σ 2 L 2 p (Σ)
, for z ∈ Σ. (2.4) By the expansion of the Bergman kernel on a complete manifold [22, Theorem 6.1.1] (cf. also [5, Theorem 2.1, Corollary 2.4]), there exist coefficients b i ∈ C ∞ (Σ), i ∈ N, such that for any k, m ∈ N, any compact set K ⊂ Σ, we have in the C m -topology on K, 

B p (x) = k i=0 b i (x)p 1-i + O(p -k ) , as p → ∞, (2.5 
ℓ = ℓ p-1 2π(p -2)! 1/2 = z ℓ -1 L 2 p (D * ) ,
and hence (2.7)

B D * p (z) = log(|z| 2 ) p ∞ ℓ=1 (c (p) ℓ ) 2 |z| 2ℓ , for z ∈ D * .
For any m ∈ N, 0 < b < 1 and 0 < γ < 1 2 there exists by [START_REF] Auvray | Bergman kernels on punctured Riemann surfaces[END_REF]Proposition 3.3] 

ǫ = ǫ(b, γ) > 0 such that B D * p (z) - p -1 2π C m ({be -p γ ≤|z|<1},ω D * ) = O e -ǫp 1-2γ as p → +∞ . (2.8)
Taking into account Theorem 1.1 and (2.8) we see that in order to prove Theorem 1.2 it suffices, after reducing to some V j and identifying the geometric data on D * 4r and Σ via (1.6), to show that for some (small) c > 0 and (large) A > 0, and for all l ≥ 0 there exists C = C(c, A, l) > 0 such that for all p ≥ 2, (2.9) sup

0<|z|≤cp -A B p B D * p (z) -1 ≤ Cp -l .
We now start to establish (2.9). In the whole paper we use the following conventions.

We fix 0 < r < (4e) -1 as in (1.6), and 0 < β < 1 such that r β < 2r.

We fix a (non-increasing) smooth cut-off function χ :

[0, 1] → R, satisfying χ(u) = 1 if u ≤ r β and χ(u) = 0 if u ≥ 2r.
We set δ p = p -2 2| log r| for p ∈ N, p ≥ 2.

(2.10)

The choice of δ p will become clear in (2.19) To establish (2.9) we proceed along the following lines: 

j,0 = Span φ (p) 1 , • • • , φ (p) j = Span σ (p) 1 , • • • , σ (p) 
.

4. Finally, we carefully compare B D * p with B p using the three steps of the above construction to get estimate (2.9); of particular importance are the following intermediate estimates which will be deduced from [5, §6]: Lemma 2.1. With the notations above, for all m ∈ N, there exists C = C(m) > 0 such that for all p ∈ N * , p ≥ 2, and all j, ℓ ∈ {1, . . . , δ p },

1 -Cp -m ≤ φ (p) ℓ,0 2 L 2 p (Σ) = c (p) ℓ 2 D * 2r χ 2 (|z|)|z| 2ℓ log(|z| 2 ) p ω D * ≤ c (p) ℓ 2 D * 2r χ(|z|)|z| 2ℓ log(|z| 2 ) p ω D * ≤ 1 , (2.14)
and moreover,

σ (p) ℓ -φ (p) ℓ,0 L 2 p (Σ) ≤ Cp -m , φ (p) j , σ (p) ℓ L 2 p (Σ) -δ jℓ ≤ Cp -m .
(2.15)

The proof of Lemma 2.1 is postponed to Section 2.2. Notice that we take care of stating estimates uniform in j, ℓ ∈ {1, . . . , δ p }. Observe moreover that (2.14), (2.15) are integral estimates, whereas we want to establish pointwise estimates in the end, hence we need an extra effort to convert these (among others) into (2.9).

Let us see now how to build on (2.15) to get the desired (2.9).

First, by (1.4), (2.7), (2.12), and the construction of φ

(p)
ℓ,0 and σ (p)

ℓ we have for z ∈ D * r , B D * p (z) = δp ℓ=1 φ (p) ℓ,0 2 h p ,z + log(|z| 2 ) p ∞ ℓ=δp+1 (c (p) ℓ ) 2 |z| 2ℓ = B p (z) - dp ℓ=δp+1 σ (p) ℓ 2 h p ,z + 2Re δp ℓ=1 σ (p) ℓ , φ (p) ℓ,0 -σ (p) ℓ h p ,z + δp ℓ=1 φ (p) ℓ,0 -σ (p) ℓ 2 h p ,z + log(|z| 2 ) p ∞ ℓ=δp+1 (c (p) ℓ ) 2 |z| 2ℓ .
(2.16)

We deal with the summands of the last three terms separately; we start by claiming that up to a judicious choice of c > 0 and A > 0 we have for 0 < |z| ≤ cp -A :

(2.17)

log(|z| 2 ) p ∞ ℓ=δp+1 (c (p) ℓ ) 2 |z| 2ℓ = O(p -∞ ) • B D * p (z) , as p → ∞, that is, sup 0<|z|≤cp -A B D * p (z) -1 |log(|z| 2 )| p ∞ ℓ=δp+1 (c (p) ℓ ) 2 |z| 2ℓ = O(p -∞ ).
Indeed, we have

ℓ+δp ℓ ≤ δ p + 1 for all ℓ ≥ 1, so by (2.6) we have for z ∈ D * , log(|z| 2 ) p ∞ ℓ=δp+1 (c (p) ℓ ) 2 |z| 2ℓ = log(|z| 2 ) p |z| 2δp 2π(p -2)! ∞ ℓ=1 ℓ + δ p ℓ p-1 ℓ p-1 |z| 2ℓ ≤ (δ p + 1) p-1 |z| 2δp 2π(p -2)! log(|z| 2 ) p ∞ ℓ=1 ℓ p-1 |z| 2ℓ = (δ p + 1 p-1 |z| 2δp B D * p (z). (2.18) 
From (2.11) follows

(2.19) (δ p + 1)|z| 2δp /(p-1) ≤ 1 2 p|z| 2α ≤ 1 2
, for all |z| ≤ p -1/(2α) .

From (2.18) and (2.19) we get (2.17) with c = r and A = 1 2α • In the similar vein we now show the following. Lemma 2.2. For c = r and A = 1 2α , with α satisfying (2.11), we have uniformly in

z ∈ D * cp -A , (2.20 
)

dp ℓ=δp+1 σ (p) ℓ 2 h p ,z = O(p -∞ ) • B D * p (z).
We have uniformly in z ∈ D * cp -A , and ℓ ∈ {1, . . . , δ p }, We have for j ≥ 1 by (1.4), (1.6), (2.5), (2.22) and Cauchy inequalities,

(2.21) σ (p) ℓ -φ (p) ℓ,0 h p ,z = O(p -∞ ) • B D * p (z) 1/2 . Proof. Let p ≥ 2, ℓ ∈ {1, • • • , d p }.
|a (p) jℓ | ≤ (2r) -j sup |z|=2r s (p) ℓ (z) = (2r) -j log(|2r| 2 ) -p/2 sup |z|=2r σ (p) ℓ (z) h p ≤ (2r) -j log(|2r| 2 ) -p/2 sup |z|=2r B p (z) 1/2 ≤ Cp 1/2 (2r) -j log(|2r| 2 ) -p/2 .
(2.23)

Thus by (1.6) and (2.23) we have for z

∈ D * r , ∞ j=δp+1 a (p) jℓ z j h p ≤ C log(|z| 2 ) p/2 ∞ j=δp+1 p 1/2 log(|2r| 2 ) -p/2 |z| 2r j = Cp 1/2 |log(|z| 2 )| |log(|2r| 2 )| p/2 1 - |z| 2r -1 |z| 2r δp+1 .
(2.24) By (2.6) and (2.7) we have

log(|z| 2 ) p/2 |z| = |z| h p D * ≤ z L 2 p (D * ) B D * p (z) 1/2 = (2π(p -2)!) 1/2 B D * p (z) 1/2 . (2.25)
We deduce from (2.24) and (2.25) that there exists C > 0 such that the following estimate holds uniformly in ℓ ∈ {1, . . . ,

d p }, |z| ∈ D * r , (2.26) 
∞ j=δp+1 a (p) jℓ z j h p ≤ Cp -1/2 |z| 2r 2δp/p (p!) 1/p |log(|2r| 2 )| p/2 B D * p (z) 1/2 .

By (2.11) we have for

A = 1 2α , c 0 = re 1/(2α) |log(|2r| 2 )| 1/(2α) > r, and p ≫ 1, |z| 2r 2δp/p 1 |log(|2r| 2 )| ≤ |z| 2r 2α 1 |log(|2r| 2 )| ≤ 2 -2α e p , for |z| ≤ c 0 p -A . (2.27)
Recall that the Stirling formula states

p p p! = (2πp) -1/2 e p 1 + O(p -1 ) as p → +∞. (2.28)
We infer from (2.26), (2.27) and (2.28), that there exists C > 0 such that the following estimate holds uniformly in |z| ≤ r p -A and ℓ ∈ {1, . . . , d p }, are holomorphic, we have for 

∞ j=δp+1 a (p) jℓ z j h p ≤ C 2 -pα B D * p (z) 1/2 . (2.29) Note that φ (p) j -φ (p) j,0 is orthogonal to H 0 (2) (Σ, L p ).
j ∈ {1, • • • , δ p }, ℓ ∈ {1, • • • , d p }, σ (p) ℓ , φ (p) j L 2 p (Σ) = σ (p) ℓ , φ (p) j,0 L 2 p (Σ) = c (p) j a (p) jℓ D * 2r χ(|z|) z j 2 | log(|z| 2 )| p ω D * . (2.30) By (2.13) we have σ (p) ℓ , φ (p) j L 2 p (Σ) = 0 for j ∈ {1, • • • , δ p }, j < ℓ. (2.
σ (p) ℓ -φ (p) ℓ,0 e p L (z) = a (p) ℓℓ -c (p) ℓ z ℓ + ∞ j=1 j =ℓ a (p) jℓ z j e p L .
From Lemma 2.1 and (2.30) we have uniformly for j, ℓ ∈ {1, . . . , δ p },

a (p) jℓ = c (p) j (c (p) j ) 2 D * 2r χ(|z|) z j 2 | log(|z| 2 )| p ω D * -1 σ (p) ℓ , φ (p) j L 2 p (Σ) = (δ jℓ + O(p -∞ ))c (p) j .
( 

jℓ -δ jℓ c (p) j z j 2 ≤ O(p -∞ ) log(|z| 2 ) p δ p δp j=1 (c (p) j ) 2 |z| 2j ≤ δ p O(p -∞ )B D * p (z), Now δ p can be absorbed in the factor O(p -∞ ), since δ p = O(p)
ℓ,0 -σ (p) ℓ h p ,z = O(p -∞ ) • B D * p (z) 1/2 B p (z) 1/2 on D * cp -A . (p) 
This way, putting together (2.16), (2.17), (2.20), (2.21) and (2.36), we obtain (2.37)

1 + O(p -∞ ) • B D * p (z) = B p (z) + O(p -∞ ) • B D * p (z) 1/2 B p (z) 1/2 on D * cp -A ,
and this implies (2.9). The proof of Theorem 1.2 is completed.

Proof of Lemma 2.1

At first, as 0 ≤ χ ≤ 1 and supp(χ) ⊂ D * 2r , we get from (1.6), (2.6) and (2.10),

(2.38) φ (p) ℓ,0 2 L 2 p (Σ) = φ (p) ℓ,0 2 L 2 p (D * ) ≤ (c (p) ℓ ) 2 D * χ(|z|) log(|z| 2 ) p |z| 2ℓ ω D * ≤ (c (p) ℓ ) 2 D * log(|z| 2 ) p |z| 2ℓ ω D * = c (p) ℓ z ℓ 2 L 2 p (D * ) = 1.
This implies the inequalities of the right-hand side of (2.14).

We establish now the lower bound of (2.14). For ℓ ∈ {1, . . . , δ p } we have by (1.1), (2.6), (2.10) and (2.12), (2.39)

1 -φ (p) ℓ,0 2 L 2 p (D * ) = c (p) ℓ 2 D * log(|z| 2 ) p 1 -χ 2 (|z|) |z| 2ℓ ω D * = ℓ p-1 (p -2)! 1 r β log(t 2 ) p t 2ℓ (1 -χ 2 (t)) 2tdt t 2 log(t 2 ) 2 u=-2ℓ log t = 1 (p -2)! 2ℓβ| log r| 0 u p-2 e -u 1 -χ 2 (e -u/(2ℓ) ) du ≤ 1 (p -2)! 2δpβ| log r| 0 u p-2 e -u du.
The function u → log u -u is strictly increasing on (0, 1] and equals -1

at u = 1, hence (2.40) log β -β < -1.
As u p-2 e -u is strictly increasing on [0, p -2], and 2δ p | log r| ≤ p -2 (by (2.10)), so (2.28) and (2.40) imply

1 (p -2)! 2δpβ| log r| 0 u p-2 e -u du ≤ 1 (p -2)! (p-2)β 0 u p-2 e -u du ≤ (p -2) p-2 (p -2)! e (p-2)(log β-β) (p -2)β = p -2 2π 1/2 β 1 + O(p -1 ) e (p-2)(log β-β+1) = O(p -∞ ).
( 

B D * p (x, y) = log(|y| 2 ) p β D * p (x, y) with β D * p (x, y) = 1 2π(p -2)! ∞ ℓ=1 ℓ p-1 x ℓ y ℓ . (2.42) For ℓ ∈ {1, . . . , δ p } set I (p) 1,ℓ (x) = y∈D * 2r log(|y| 2 ) p β Σ p (x, y) -β D * p (x, y) χ(|y|)y ℓ ω D * (y), I (p) 2,ℓ (x) = y∈D * log(|y| 2 ) p β D * p (x, y) χ(|y|) -1 y ℓ ω D * (y), I (p) 3,ℓ (x) = y∈D * log(|y| 2 ) p β D * p (x, y)y ℓ ω D * (y) = x ℓ , (2.43)
where the last equality is a consequence of the reproducing property of the Bergman kernel 

B D * p ( • , • ).
φ (p) ℓ (x) = (B p φ (p) ℓ,0 )(x) = y∈Σ B p (x, y)φ (p) ℓ,0 (y) ω Σ (y) = c (p) ℓ y∈D * 2r log(|y| 2 ) p β Σ p (x, y)χ(|y|)y ℓ ω D * (y) = c ( 
I (p) 1,ℓ (x) ≤ C(m, ν)p -m log(|x| 2 ) -ν-p/2 y∈D * 2r log(|y| 2 ) -ν+p/2 χ(|y|)|y| ℓ ω D * (y) ≤ C(m, ν)p -m log(|x| 2 ) -ν-p/2 • D * log(|y| 2 ) p |y| 2ℓ ω D * (y) 1/2 D * log(|y| 2 ) -2ν χ 2 (|y|) ω D * (y) 1/2 = C ′ (m, ν)p -m log(|x| 2 ) -ν-p/2 (c (p) ℓ ) -1 .
(2.45)

Keeping ν fixed and varying m in (2.45) we obtain the following uniform estimate in ℓ ∈ {1, . . . , δ p },

(2.46) c (p) ℓ I (p) 1,ℓ L 2 p (D * 3r ) = O(p -∞ ).
By circle symmetry first and (2.6), (2.14), (2.42) and (2.43) we obtain,

I (p) 2,ℓ (x) = (c (p) ℓ ) 2 y∈D * log(|y| 2 ) p χ(|y|) -1 |y| 2ℓ ω D * (y) x ℓ = O(p -∞ ) • x ℓ , (2.47) uniformly in ℓ ∈ {1, . . . , δ p }. Since c (p) ℓ x ℓ L 2 p (D * 3r ) ≤ c (p) ℓ x ℓ L 2 p (D * ) = 1, this tells us already that (2.48) c (p) ℓ I (p) 2,ℓ L 2 p (D * 3r ) = O(p -∞ ).
Since 0 ≤ 1 -χ ≤ 1 and 1 -χ(t) = 0 for t ≤ r β , we get by (2.6), (2.41) and (2.43), as in (2.39), that for ℓ ∈ {1, . . . , δ p } the following holds,

(2.49) c (p) ℓ I (p) 3,ℓ (x) -φ (p) ℓ,0 (x) 2 L 2 p (D * 3r ) ≤ c (p) ℓ 1 -χ(|x|) x ℓ 2 L 2 p (D * ) = ℓ p-1 (p -2)! 1 r β log(t 2 ) p t 2ℓ (1 -χ(t)) 2 2tdt t 2 log(t 2 ) 2 u=-2ℓ log t = 1 (p -2)! 2ℓβ| log r| 0 u p-2 e -u 1 -χ(e -u/(2ℓ) ) 2 du ≤ 1 (p -2)! 2δpβ| log r| 0 u p-2 e -u du = O(p -∞ ).
By (2.44), (2.46), (2.48) and (2.49) we get the following estimate uniformly in ℓ ∈ {1, . . . , δ p },

(2.50) φ (p) ℓ,0 -φ (p) ℓ L 2 p (D * 3r ) = O(p -∞ ).
A weak form of [5, Corollary 6.1] tells us that for any k ∈ N, ε > 0, there exists C > 0 such that 

|B p (x, y)| ≤ Cp -k for d(x, y) > ε, p ≥ 2. ( 2 
φ (p) ℓ 2 L 2 p (Σ D * 3r ) ≤ Cp -2k Σ\D * 3r ω Σ D * 2r |φ p ℓ,0 (y)| 2 h p ω Σ (y) ≤ Cp -2k Σ ω Σ .
From (2.50) and (2.52) we have uniformly in ℓ ∈ {1, . . . , δ p },

(2.53) φ (p) ℓ -φ (p) ℓ,0 2 L 2 p (Σ) = φ (p) ℓ -φ (p) ℓ,0 2 L 2 p (D * 3r ) + φ (p) ℓ 2 L 2 p (Σ D * 3r ) = O(p -∞ ).
By (2.14) and (2.53), as φ

(p) j -φ (p) j,0 is orthogonal to H 0 (2) (Σ, L p ), we have uniformly in j, ℓ ∈ {1, . . . , δ p }, φ (p) j , φ (p) ℓ L 2 p (Σ) = φ (p) j,0 , φ (p) ℓ L 2 p (Σ) = φ (p) j,0 , φ (p) ℓ,0 L 2 p (D * 2r ) + φ (p) j,0 , φ (p) ℓ -φ (p) ℓ,0 L 2 p (Σ) = δ jℓ + O(p -∞ ).
(2.54)

Note that the circle symmetry and (2.12) imply that φ

(p) j,0 , φ (p) ℓ,0 L 2 p (D * 2r ) = 0 if j = ℓ.
We now observe that the Gram-Schmidt orthonormalization (σ 

(p) ℓ ) 1≤ℓ≤δp of the "almost- orthonormal" family (φ (p) ℓ ) 1≤ℓ≤δp is the normalization of (2.55) σ ′ (p) ℓ = φ (p) ℓ - ℓ-1 k=1 φ (p) ℓ , φ (p) k L 2 p (Σ) φ (p) k , φ (p) k L 2 p (Σ) φ (p) k . Now (2.

C k -estimate of the quotient of Bergman kernels

The proof of Theorem 1.3 follows the same strategy as in Section 2 (use of the orthonormal basis (σ

(p) j ) 1≤j≤dp
), but with some play on the parameters (in particular, the truncation floor δ p of Step 1. in the outline of the proof of Theorem 1.2). Some precisions on this basis are also needed: we'll see more precisely that in some sense, and provided relevant choices along the construction, the head terms σ

(p) ℓ , 1 ≤ j ≤ δ p are much closer to their counterparts c (p)
ℓ z ℓ of D * than sketched above. This section is organized as follows. In Section 3.1, we establish a refinement of the integral estimate Lemma 2.1 which is again deduced from [START_REF] Auvray | Bergman kernels on punctured Riemann surfaces[END_REF]. In Section 3.2, we establish Theorem 1.3 by using Lemma 3.1.

A refined integral estimate

To establish Theorem 1.3, we follow Steps 1. to 4. in the outline of the proof of Theorem 1.2 by modifying δ p , thus refining Lemma 2.1 to Lemma 3.1 below.

Let κ > 0 fixed. We start by choosing c(κ) ∈ (0, e -1 ) so that

(3.1) log(c(κ)) ≤ -1 -2κ.
Then we replace δ p in (2.10) by

(3.2) δ ′ p = δ ′ p (κ) = (p -2)c(κ) 2|log r| -2.
Lemma 3.1. There exists C = C(κ) > 0 such that for all p ≫ 1 and ℓ ∈ {1, . . . , δ ′ p },

(3.3) σ (p) ℓ -c (p) ℓ χ(|z|)z ℓ e p L L 2 p (Σ)
≤ Cp e -κp .

Moreover, (σ As will be seen, estimate (3.3) is directly related to the play on δ ′ p , whereas the echelon property as such is not, and (3.4), (3.5) are a direct consequence of (2.30) and (2.31). Moreover, no estimate is given on the σ (p) ℓ for ℓ ≥ δ ′ p + 1 in the above statement; as in the proof of Theorem 1.2, it turns out that we content ourselves with rather rough estimates on these tail sections.

Proof of Lemma 3.1. Let ∂ L p * be the formal adjoint of ∂

L p on (C ∞ 0 (Σ, L p ), L 2 p (Σ) ). Then p = ∂ L p * ∂ L p : C ∞ 0 (Σ, L p ) → C ∞ 0 (Σ, L p
) is the Kodaira Laplacian on L p and

ker p = H 0 (2) (Σ, L p ). (3.6)
Observe that the construction of the φ Step 1'. We compute, by (2.6) and (2.10), as in (2.39), for ℓ = 1, . . . , δ ′ p , (3.8)

0 ≤ 1 -c (p) ℓ z ℓ χ(|z|)e p L 2 L 2 p (Σ) = 1 (p -2)! 2ℓβ| log r| 0 u p-2 e -u 1 -χ 2 (e -u/(2ℓ) ) du ≤ 1 (p -2)! 2δ ′ p β| log r| 0 u p-2 e -u du.
As u p-2 e -u is strictly increasing on [0, p-2] and log β < 0, and from (3.2), 2(δ ′ p +2)| log r| ≤ (p -2)c(κ), by (2.28), (3.1), we get a refinement of (2.41),

1 (p -2)! 2δ ′ p β| log r| 0 u p-2 e -u du ≤ 1 (p -2)! (p-2)c(κ)β 0 u p-2 e -u du ≤ (p -2) p-2 (p -2)! e (p-2)(log(c(κ)β)-c(κ)β) (p -2)c(κ)β = p -2 2π 1/2 c(κ)β 1 + O(p -1 ) e (p-2)(log(c(κ)β)-c(κ)β+1)
= O(e -2κ p ).

(3.9)

From (3.8) and (3.9), uniformly in ℓ ∈ {1, . . . , δ ′ p }, 

(3.10) φ (p) 0,ℓ 2 L 2 p (Σ) = c (p) ℓ z ℓ χ(|z|)e p L 2 L 2 p (Σ) = 1 + O(e -2κp
p ( • e p L ) = -|z| 2 log 2 (|z| 2 ) ∂ 2 • ∂z∂ z -pz log(|z| 2 ) ∂ • ∂ z e p L .
Hence we obtain from (3.7) and (3.11), for ℓ = 1, . . . , δ ′ p , (3.12) p φ

(p) 0,ℓ = c (p) ℓ -|z| 2 log 2 (|z| 2 ) ∂ 2 ∂z∂ z χ(|z|)z ℓ -p z log(|z| 2 ) ∂ ∂ z χ(|z|)z ℓ e p L . Since ∂ ∂ z [χ(|z|)z ℓ ] = ∂ ∂ z χ(|z|) z ℓ = |z| 2z χ ′ (|z|)z ℓ , we have (3.13) ∂ 2 ∂z∂ z χ(|z|)z ℓ = 2ℓ + 1 4|z| z ℓ χ ′ (|z|) + 1 4 z ℓ χ ′′ (|z|), which yields (3.14) p φ (p) 0,ℓ = c (p) ℓ - 2ℓ + 1 4 |z|z ℓ log 2 (|z| 2 )χ ′ (|z|) - 1 4 |z| 2 z ℓ log 2 (|z| 2 )χ ′′ (|z|) - p 2 |z|z ℓ log(|z| 2 )χ ′ (|z|) e p L
on D * 2r , and this readily extends to the whole Σ. Therefore,

(3.15) p φ (p) 0,ℓ L 2 p (Σ) ≤ c (p) ℓ 2ℓ + 1 4 |z| ℓ+1 log 2 (|z| 2 )χ ′ (|z|) L 2 p (D * ) + 1 4 |z| ℓ+2 log 2 (|z| 2 )χ ′′ (|z|) L 2 p (D * ) + p 2 |z| ℓ+1 log(|z| 2 )χ ′ (|z|) L 2 p (D * )
. Using nonetheless arguments similar to those of Step 1'. above, we claim that there exists C > 0 such that for all p ≫ 1 and ℓ = 1, . . . , δ ′ p ,

)

|z| ℓ+1 log 2 (|z| 2 )χ ′ (|z|) L 2 p (D * ) ≤ C(c (p+4) ℓ+1 ) -1 e -κp , |z| ℓ+2 log 2 (|z| 2 )χ ′′ (|z|) L 2 p (D * ) ≤ C(c (p+4) ℓ+2 ) -1 e -κp , |z| ℓ+1 log(|z| 2 )χ ′ (|z|) L 2 p (D * ) ≤ C(c (p+2) ℓ+1 ) -1 e -κp .
Indeed, from (3.2) and since 2(δ ′ p + 2)| log r| ≤ (p -2)c(κ), applying (3.9) for p + 4 as in (2.39), we get with

C 0 = sup [0,1] |χ ′ |, c (p+4) ℓ+1 |z| ℓ+1 log 2 (|z| 2 )χ ′ (|z|) 2 L 2 p (D * ) = (c (p+4) ℓ+1 ) 2 1 r β log(t 2 ) p+4 t 2ℓ+2 χ ′ (t) 2 4πtdt t 2 log(t 2 ) 2 u=-2(ℓ+1) log t == 1 (p + 2)! 2(ℓ+1)β| log r| 0 u p+2 e -u χ ′ e -u 2(ℓ+1) 2 du ≤ C 2 0 (p + 2)! 2(δ ′ p +1)β| log r| 0 u p+2 e -u du ≤ C 2 0 (p + 2)! (p+2)c(κ)β 0 u p+2 e -u du = O(e -2κ p ).
(3.17)

Consequently, by (3.15) and (3.16), there exists C > 0 such that for all p ≫ 1 and ℓ = 1, . . . , δ ′ p ,

p φ (p) 0,ℓ L 2 p ≤ Cc (p) ℓ ℓ(c (p+4) ℓ+1 ) -1 + (c (p+4) ℓ+2 ) -1 + p(c (p+2) ℓ+1 ) -1 e -κp = C ℓ p-1 (p -2)! 1 2 ℓ (p + 2)! (ℓ + 1) p+3 1 2 + (p + 2)! (ℓ + 2) p+3 1 2 + p p! (ℓ + 1) p+1 1 2 e -κp ≤ Cp 2 e -κp .
(3.18)

Step 3'. Recall that the spectral gap property [START_REF] Auvray | Bergman kernels on punctured Riemann surfaces[END_REF]Corollary 5.2] tells us that there exists C 1 > 0 such that for all p ≫ 1 we have 

Spec( p ) ⊂ {0} ∪ [C 1 p, +∞). (3.19) For ℓ ∈ {1, . . . , δ ′ p } let ψ (p) 0,ℓ ∈ L 2 p (Σ) such that ψ (p) 0,ℓ ⊥ H 0 (2) (Σ, L p
φ (p) ℓ -φ (p) 0,ℓ L 2 p (Σ) = ψ (p) 0,ℓ L 2 p (Σ) ≤ (C 1 p) -1 p φ (p) 0,ℓ L 2 p (Σ) ≤ CC -1 1 p e -κp ,
uniformly in ℓ = 1, . . . , δ ′ p . Note that (3.10) can be reformulated as

(3.22) φ (p) 0,ℓ , φ (p) 0,j L 2 p (Σ) = δ jℓ 1 + O(e -2κp
) , (the case ℓ = j provides 0 by circle symmetry). Thus (3.20), (3.21) and (3.22) entail (3.23) φ

(p) ℓ , φ (p) j L 2 p (Σ) = φ (p) 0,ℓ , φ (p) 0,j L 2 p (Σ) -ψ (p) 0,ℓ , ψ (p) 0,j L 2 p (Σ) = δ jℓ + O(p 2 e -2κp ), uniformly in ℓ, j = 1, . . . , δ ′ p . Because (σ (p) ℓ ) 1≤ℓ≤δ ′ p is obtained by the Gram-Schmidt orthonormalisation of (φ (p) ℓ ) 1≤ℓ≤δ ′ p (which is a δ ′ p = O(p) process)
we infer from (2.55) and (3.23) that (3.24) σ

′(p) ℓ -φ (p) ℓ L 2 p (Σ) = O(p 3 e -2κp ), σ ′(p) ℓ L 2 p (Σ) = 1 + O(p 3 e -2κp
).

Since σ

(p) ℓ = σ ′(p) ℓ / σ ′(p) ℓ L 2 
p (Σ) , we conclude from (3.24) that there exists C > 0 such that for p ≫ 1,

(3.25) σ (p) ℓ -φ (p) ℓ L 2 p (Σ) ≤ σ ′(p) ℓ L 2 p (Σ) -1 + σ ′(p) ℓ -φ (p) ℓ L 2 p (Σ) ≤ Cp 3 e -2κp ,
hence, by (3.21) and (3.25) that we have uniformly in ℓ = 1, . . . , δ ′ p for p ≫ 1,

(3.26) σ (p) ℓ -c (p) ℓ χ(|z|)z ℓ e p L L 2 p (Σ) = σ (p) ℓ -φ (p) 0,ℓ L 2 p (Σ) ≤ Cp e -κp .
Echelon property. -We use the expansion (2.22) of σ p ℓ on D * 4r . By construction, φ

(p) j ∈ Span{σ (p) 1 , . . . , σ (p) j } for 1 ≤ j ≤ δ ′ p , so if j < ℓ, then φ (p) j ⊥ L 2 p (Σ) σ (p) ℓ , as φ (p) j is the L 2 p (Σ)-projection of φ (p)
0,j on holomorphic sections. Hence we have as in (2.31) that 

(3.27) σ (p) ℓ , φ (p) 0,j L 2 p (Σ) = σ (p) ℓ , φ (p) j L 2 p (Σ) = 0 , if j <
ℓ , φ (p) j L 2 p (Σ) = σ (p) ℓ , φ (p) 0,j L 2 p (Σ) = σ (p) ℓ -φ (p) 0,ℓ , φ (p) 0,j L 2 p (Σ) + φ (p) 0,ℓ , φ (p) 0,j L 2 p (Σ)
. Further, (3.3), (3.22) and (3.30) imply (3.31) σ

(p) ℓ , φ (p) j L 2 p (Σ) = O(pe -κp ) + δ jℓ 1 + O(e -2κp
) . By (2.38) and (3.10) we have uniformly on j ∈ {1, . . . , δ ′ p },

(3.32) (c (p) j ) 2 D * 2r log(|z| 2 ) p |z| 2j χ(|z|) ω D * = 1 + O(e -2κp
).

The first equality of (2.34), (3.28), (3.31) and (3.32) entail (3.29).

Proof of Theorem 1.3

We show now how to establish Theorem 1.3 by using Lemma 3.1. It can be noticed here that while estimate (3.3) is essential in establishing Theorem 1.3, the echelon property is not, but helps nonetheless clarify some of the upcoming computations.

The proof goes as follows: we start by explicit computations, then use Lemma 3.1 to lead a precise analysis of head terms, i.e., all its indices ≤ δ ′ p ; and recall some rough estimates of tail terms, i.e., some of its indices ≥ δ ′ p + 1. On some shrinking disc family {|z| ≤ c ′ p -A ′ }, we will conclude from (2.23) that the tails terms can be controlled by

2 -α ′ p B D *
p , hence on some fixed trivialization disc, as for Theorem 1.2. From (2.42), for z ∈ D * 4r , set (3.33)

β Σ p (z) = β Σ p (z, z), β D * p (z) = β D * p (z, z)
. By (2.42) and (3.33), we have

B p (z) B D * p (z) = β Σ p (z) β D * p (z) = 1 + β Σ p -β D * p (z)(β D * p (z)) -1 . (3.34)
With the notations of Lemma 3.1 we compute explicitly on D * 4r . By (1.4), (2.7), (2.22), (2.42) and (3.33), we have

β Σ p (z) = ∞ q,s=1 dp ℓ=1 a (p) qℓ a (p) sℓ z q zs , β D * p (z) = ∞ q=1 (c (p) q ) 2 |z| 2q . (3.35) For q, s ∈ N * , set ǫ qs = dp ℓ=1 a (p) qℓ c (p) q a (p) sℓ c (p) s -δ qs . (3.36)
From (3.35) and (3.36), we get

d dz β Σ p -β D * p (z) • β D * p (z) = ∞ q,s=1 q dp ℓ=1 a (p) qℓ a (p) sℓ z q-1 zs -δ qs (c (p) q ) 2 z q-1 zs • ∞ m=1 (c (p) m ) 2 |z| 2m = ∞ q,s,m=1 q(c (p) m ) 2 c (p) q c (p) s ǫ qs z q+m-1 zs+m , (3.37) 
and similarly,

β Σ p -β D * p (z) • d dz β D * p (z) = ∞ q,s,m=1 m(c (p) m ) 2 c (p) q c (p) s ǫ qs z q+m-1 zs+m . (3.38)
From (3.34), (3.37) and (3.38), we get

(3.39) d dz B p B D * p (z) = (β D * p (z)) -2 ∞ q,s,m=1 (q -m)(c (p) m ) 2 c (p) q c (p) s ǫ qs z q+m-1 zs+m .
Observe that the coefficient inside [. . .] in the above sum vanishes if q = m. This allows to separate the above sum into q=1,s≥1,m≥2 and q≥2,s≥1,m≥1

.

We first tackle the sum over q = 1, s ≥ 1 and m ≥ 2, focusing on the cases s, m ≤ δ ′ p ; then we deal with the sum over q ≥ 2, s ≥ 1 and m ≥ 1, focusing on q, s, m ≤ δ ′ p , before we also address the cases of "large indices" (max{q, s, m} ≥ δ ′ p + 1).

Head terms. -We look at first

(3.40) I p,δ ′ p (z) = δ ′ p s=1 δ ′ p m=2 (1 -m)(c (p) m ) 2 c (p) 1 c (p) 
s ǫ 1s z m zs+m .

By (

, uniformly for q, s ∈ {1, . . . , δ ′ p },

(3.41) ǫ qs = min{q,s} ℓ=1 a (p) qℓ c (p) q a (p) sℓ c (p) s 
-δ qs = O(δ ′ p p e -κp ).

For all t ∈ {2, . . . , δ ′ p }, j ∈ {1, . . . , δ ′ p }, by (

(t -j)c (p) t ≤ δ ′ p t t -1 (p-1)/2 c (p) t-1 ≤ δ ′ p 2 (p-1)/2 c (p) t-1 . 2.6), (3.42) 
From (3.40), (3.41) and (3.42), we get

I p,δ ′ p (z) ≤ δ ′ p s=1 δ ′ p m=2 (m -1)(c (p) m ) 2 c (p) 1 c (p) s |ǫ 1s ||z| s+2m ≤ O (δ ′ p ) 2 2 p/2 p e -κp • δ ′ p s=1 δ ′ p m=2 c (p) m c (p) m-1 c (p) 1 c (p) s |z| s+2m . (3.43) But (3.44) δ ′ p s=1 δ ′ p m=2 c (p) m c (p) m-1 c (p) 1 c (p) s |z| s+2m = δ ′ p s=1 c (p) 1 c (p) s |z| 1+s δ ′ p m=2 c (p) m c (p) m-1 |z| 2m-1 ≤ 1 2 δ ′ p (c (p) 1 ) 2 |z| 2 + δ ′ p s=1 (c (p) s ) 2 |z| 2s δ ′ p m=2 (c (p) m ) 2 |z| 2m 1 2 δ ′ p m=2 (c (p) m-1 ) 2 |z| 2(m-1) 1 2 ≤ (δ ′ p + 1) ∞ j=1 (c (p) j ) 2 |z| 2j 2 = (δ ′ p + 1)(β D * p (z)) 2 .
We proceed similarly with the sum

II p,δ ′ p (z) = δ ′ p q=2 δ ′ p s=1 δ ′ p m=1 (q -m)(c (p) m ) 2 c (p) q c (p) s ǫ qs z q+m-1 zs+m . (3.45)
We have analogously to (3.44), 

δ ′ p q=2 δ ′ p s=1 δ ′ p m=1 (c (p) m ) 2 c (p) q-1 c (p) s |z| q+s+2m-1 = δ ′ p q=2 c (p) q-1 |z| q-1 δ ′ p s=1 c (p) s |z| s δ ′ p m=1 (c (p) m ) 2 |z| 2m ≤ δ ′ p δ ′ p q=2 (c (p) q-1 ) 2 |z| 2q-2 1 2 δ ′ p s=1 (c (p) s ) 2 |z| 2s 1 2 δ ′ p m=1 (c (p) m ) 2 |z| 2m ≤ δ ′ p (β D * p (z)) 2 . ( 3 
II p,δ ′ p (z) ≤ δ ′ p q=2 δ ′ p s=1 δ ′ p m=1 (c (p) m ) 2 (q -m)c (p) q c (p) s |ǫ qs ||z| q+s+2m-1 ≤ O (δ ′ p ) 2 2 p/2 p e -κp • δ ′ p q=2 δ ′ p s=1 δ ′ p m=1 (c (p) m ) 2 c (p) q-1 c (p) s |z| q+s+2m-1 ≤ O (δ ′ p ) 3 2 p/2 p e -κp • (β D * p (z)) 2 .
(3.47)

Tail terms. -Set A 1 p ={(q, s, m) ∈ (N * ) 3 : q ≥ δ ′ p + 1; s, m ≤ δ ′ p }, A 2 p ={(q, s, m) ∈ (N * ) 3 : s ≥ δ ′ p + 1; m ≤ δ ′ p }, A 3 p ={(q, s, m) ∈ (N * ) 3 : m ≥ δ ′ p + 1}}. (3.48) 
For j = 1, 2,

I(A j p )(z) = (q,s,m)∈A j p (q -m)(c (p) m ) 2 c (p) q c (p) s ǫ qs z q+m-1 zs+m . 3, set (3.49) 
By (3.39), (3.40), (3.45) and (3.49), we have

d dz B p B D * p (z) = (β D * p (z)) -2 I p,δ ′ p (z) + II p,δ ′ p (z) + I(A 1 p )(z) + I(A 2 p )(z) + I(A 3 p )(z) . (3.50)
We now look at the remaining terms of the sum in (3.50), i.e., I(A j p )(j = 1, 2, 3). First, for all triple (q, s, m) of A 1 p , as q ≥ δ ′ p + 1 > δ ′ p ≥ s, by (3.28), (3.36), one has:

c (p) q c (p) s ǫ qs = dp ℓ=1 a (p) qℓ a (p) sℓ = δ ′ p ℓ=1 a (p) qℓ a (p) 
sℓ . (3.51) From (3.49) and (3.51), we have 

(3.52) |I(A 1 p )(z)| ≤ Cd p (q,s,m)∈A 1 p q sup 1≤ℓ≤dp |a (p) qℓ | sup 1≤ℓ≤dp |a (p) sℓ | (c (p) m ) 2 |z| q+s+2m-1 = Cd p ∞ q=δ ′ p +1 q sup 1≤ℓ≤dp |a (p) qℓ | |z| q-1 × δ ′
|z| s ≤ C δ ′ p s=1 c (p) s |z| s ≤ C(δ ′ p ) 1/2 δ ′ p s=1 (c (p) s ) 2 |z| 2s 1/2 ≤ C(δ ′ p ) 1/2 (β D * p (z)) 1/2 .
Now we give an estimate via β D * p (z) for the sum q≥δ ′ p +1 in (3.52). Recall that for ξ ∈ [0, 1) and N ≥ 0 we have that

(3.55) ∞ q=N +1 qξ q-1 = ∞ q=N +1 ξ q ′ = (N + 1)ξ N -N ξ N +1 (1 -ξ) 2 ≤ (N + 1)ξ N (1 -ξ) 2 , thus, if |z| ≤ r, (3.56) ∞ q=δ ′ p +1 q |z| 2r q-1 ≤ (δ ′ p + 1) |z| 2r δ ′ p 1 - |z| 2r -2 ≤ 4(δ ′ p + 1) |z| 2r δ ′ p .
Taking now (3.57) 

A ′ = 1 2α ′ , α ′ = c(κ) 4| log r| and c ′ = re 1/2α ′ log |2r| 2 1/2α
′ p -τ +1 = 1 2r |z| 2r 2(δ ′ p -τ )/p 1 | log(|2r| 2 )| p/2 2π(p -2)! 1/2 c (p) 1 |z| ≤ Cp -1/2 2 -α ′ p β D * p (z)
qℓ | |z| q-1 ≤ Cp 1/2 2r log(|2r| 2 ) -p/2 ∞ q=δ ′ p +1 q |z| 2r q-1 ≤ Cδ ′ p 2 -α ′ p β D * p (z)
I(A 2 p )(z) = (q,s,m)∈A 2 p (q -m)(c (p) m ) 2 dp ℓ=1 a (p) qℓ a (p) sℓ z q+m-1 zs+m - ∞ s=δ ′ p +1 δ ′ p m=1 (s -m)(c (p) m ) 2 (c (p) s ) 2 z s+m-1 zs+m . = : S 1 -S 2 .
(3.63)

Now, since |q -m| ≤ qm for all (q, s, m) ∈ A 2 p , we obtain, 

(3.64) |S 1 | ≤ d p ∞ q=1 q sup 1≤ℓ≤dp |a (p) qℓ | |z| q • ∞ s=δ ′ p +1 sup 1≤ℓ≤dp |a (p) sℓ | |z| s-1 • δ ′ p m=1 m(c (p) m ) 2
qℓ | |z| q ≤ Cδ ′ p δ ′ p q=1 c (p) q |z| q + C|z|δ ′ p 2 -α ′ p β D * p (z) 1/2 = O (δ ′ p ) 3/2 + δ ′ p 2 -α ′ p (β D * p (z)) 1/2 .
From (2.23) and (3.60) for τ = 1 we infer that we have for

|z| ≤ c ′ p -A ′ , ∞ s=δ ′ p +1 sup 1≤ℓ≤dp |a (p) sℓ | |z| s-1 ≤ Cp 1/2 log |2r| 2 -p/2 ∞ s=δ ′ p +1 1 2r s |z| s-1 = C 2r Cp 1/2 log |2r| 2 -p/2 |z| 2r δ ′ p 1 1 -|z|/2r ≤ C2 -α ′ p (β D * p (z)) 1/2 .
(3.66)

Obviously,

δ ′ p m=1 m(c (p) m ) 2 |z| 2m ≤ δ ′ p δ ′ p m=1 (c (p) m ) 2 |z| 2m ≤ δ ′ p β D * p (z). ( 3 
.67) Thus, using these three estimates (3.65)-(3.67) together with (2.3), (3.2), we see that (3.64) yields: 

(3.68) |S 1 | = O(p • p 3/2 • p)2 -α ′ p β D * p (z) 2 for |z| ≤ c ′ p -A ′ . From (3.63), |S 2 | ≤ ∞ s=δ ′ p +1 δ ′ p m=1 |s -m|(c (p) m ) 2 (c (p) s ) 2 |z| 2s+2m-1 ≤ ∞ s=δ ′ p +1 s(c (p) s ) 2 |z| 2s-1 δ ′ p m=1 (c (p) m ) 2 |z| 2m .
≤ c ′ p -A ′ , (3.71) ∞ s=δ ′ p +1 s(c (p) s ) 2 |z| 2s-1 ≤ C log |2r| 2 -p |z| 4r 2 p ∞ s=δ ′ p +1 s |z| 2r 2s-2 ≤ Cp log |2r| 2 -p |z| (δ ′ p + 1) (1 -(|z|/2r) 2 ) 2 |z| 2r 2δ ′ p ≤ Cp2 -2α ′ p β D * p (z).
By (3.63), (3.68), (3.69) and (3.71) we obtain

(3.72) |I(A 2 p )(z)| = O(p 7/2 2 -α ′ p )β D * p (z) 2 on |z| ≤ c ′ p -A ′ .
We finally deal with the sum over A 3 p , using the same principles1 . Write:

I(A 3 p )(z) = (q,s,m)∈A 3 p (q -m)(c (p) m ) 2 dp ℓ=1 a (p) qℓ a (p) sℓ z q+m-1 zs+m - ∞ s=1 ∞ m=δ ′ p +1 (s -m)(c (p) m ) 2 (c (p) s ) 2 z s+m-1 zs+m = : S ′ 1 -S ′ 2 .
(3.73)

On the one hand, rather similarly as for (3.64) (observe the precise exponents though),

(3.74) |S ′ 1 | ≤ d p ∞ q=1 q sup 1≤ℓ≤dp |a (p) qℓ | |z| q ∞ s=1 sup 1≤ℓ≤dp |a (p) sℓ | |z| s ∞ m=δ ′ p +1 m(c (p) m ) 2 |z| 2m-1 .
Again, we deal separately with 

≤ c ′ p -A ′ , (3.75) |S ′ 1 | ≤ O(p 4 2 -2α ′ p )β D * p (z) 2 .
On the other hand, we have by (3.71) 

on the set |z| ≤ c ′ p -A ′ , |S ′ 2 | ≤ ∞ q=1 ∞ m=δ ′ p +1 |q -m|(c (p) m ) 2 (c (p) q ) 2 |z| 2q+2m-1 ≤ ∞ q=1 q(c (p) q ) 2 |z| 2q ∞ m=δ ′ p +1 m(c (p) m ) 2 |z| 2m-1 ≤ C δ ′ p δ ′ p q=1 (c (p) q ) 2 |z| 2q + p2 -2α ′ p β D * p (z) p2 -2α ′ p β D * p (z) ≤ C2 -2α ′ p p 2 β D * p (z) 2 . ( 3 
′ p -A ′ d dz B p B D * p (z) = O(e -γp ).
Applying Theorem 1.1 for k = 1, δ = 0, we get

(3.79) sup c ′ p -A ′ ≤|z|≤r |z| log(|z| 2 ) d dz (B p -B D * p )(z) = O(p -∞ ),
which can be rephrased as follows:

(3.80) sup

c ′ p -A ′ ≤|z|≤r d dz (B p -B D * p )(z) = O(p -∞ ).
Estimates (2.8), (3.78), (3.80) yield (1.10) for k = 1.

Higher k-order estimates are established along the same lines: (1) the sum over the set of indices in A j p where one of indices satisfies ≥ δ ′ p + 1, will be controlled by a polynomial in p times 2 -α ′ p β D * p (z) k ; (2) to handle the sum over the set of indices ≤ δ ′ p , we observe first that the contribution from the terms with sum of indices < 2k + 2 is zero, so we will increase κ to absorb the exponential factor in the estimates. Thus the analogue of (3.78) holds for k > 1. We exemplify this for the second derivative d 2 dz 2 to show how the above argument works. From (3.39), we get

(3.81) d 2 dz 2 B p B D * p (z) = (β D * p (z)) -3 × ∞ q,s,t,m=1 (q -m)(q + m -1 -2t)(c (p) m ) 2 (c (p) t ) 2 c (p) q c (p) s ǫ qs z q+m-2+t zs+m+t .
It is clear that the contribution of the indices with q + m + t < 5 is zero, so the trick (3.42) works even in the presence of a z -2 -term in (3.81).

Theorem 1.3 can be interpreted in terms of Kodaira embeddings. Following the seminal papers [START_REF] Bouche | Convergence de la métrique de Fubini-Study d'un fibré linéaire positif[END_REF][START_REF] Catlin | The Bergman kernel and a theorem of Tian[END_REF][START_REF] Dai | On the asymptotic expansion of Bergman kernel[END_REF][START_REF] Donaldson | Scalar curvature and projective embeddings. I[END_REF][START_REF] Ma | Generalized Bergman kernels on symplectic manifolds[END_REF][START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF][START_REF] Zelditch | Szegő kernels and a theorem of Tian[END_REF] 

P(H 0 (2) (Σ, L p ) * ) ∼ = CP dp-1 , x -→ σ ∈ H 0 (2) (Σ, L p ) : σ(x) = 0 .
Recall that by [START_REF] Auvray | Bergman kernels on punctured Riemann surfaces[END_REF]Remark 3.2] the sections of H 0 (2) (Σ, L p ) extend to holomorphic sections of L p over Σ that vanish at the punctures and this gives an identification

(4.2) H 0 (2) (Σ, L p ) ∼ = {σ ∈ H 0 (Σ, L p ) : σ| D = 0}.
Let σ D be the canonical section of the bundle O Σ (D). The map

(4.3) H 0 (Σ, L p ⊗ O Σ (-D)) → {σ ∈ H 0 (Σ, L p ) : σ| D = 0}, s → s ⊗ σ D ,
is an isomorphism and we have an identification

H 0 (Σ, L p ⊗O Σ (-D))⊗σ D ∼ = H 0 (2) (Σ, L p ) ⊂ H 0 (Σ, L p ). Since the zero divisor of σ D is D we have for x ∈ Σ, (4.4) σ ∈ H 0 (2) (Σ, L p ) : σ(x) = 0 = s ∈ H 0 (Σ, L p ⊗ O Σ (-D)) : s(x) = 0 ⊗ σ D .
Let  p the Kodaira map defined by H 0 (Σ, L p ⊗ O Σ (-D)). We have by (4.4) the commutative diagram

(4.5) Σ  p, (2) 
/ / _ P(H 0 (2) (Σ, L p ) * ) Id Σ p / / P(H 0 (Σ, L p ⊗ O Σ (-D)) * )
It is well known that  p is a holomorphic embedding for p large enough, namely for all p satisfying p deg(L) -N > 2g (see [19, p. 215]). Thus  p,(2) is also an embedding for p large enough, as the restriction of an embedding of Σ. 

uniformly on V 1 ∪ V 2 ∪ . . . ∪ V N .
Proof. We have indeed by [START_REF] Ma | Holomorphic Morse inequalities and Bergman kernels[END_REF]Theorem 5.1.6 We compare next the induced Fubini-Study metrics by  p,(2) on Σ and on D * , and show that they differ from each other (modulo the usual identification on D * 4r in (1.6) with the neighbourhood of a singularity of Σ) by a sequence of (1, 1)-forms which is O(p -∞ ) (at every order) with respect to any smooth reference metric on D r : the situation is just as good as in the smooth setting.

The infinite dimensional projective space CP ∞ is a Hilbert manifold modeled on the space ℓ 2 of square-summable sequences of complex numbers (a j ) j∈N endowed with the norm (a j ) = j≥0 |a j | 2 1/2 . Then CP ∞ = ℓ 2 \ {0}/C * and for a ∈ ℓ 2 we denote by [a] its class in CP ∞ . The affine charts are defined as usual by U j = {[a] : a j = 0}. The Fubini-Study metric ω FS,∞ is defined by ω FS,∞ = i 2π ∂∂ log a 2 to the effect that for a holomorphic map F : M → CP ∞ from a complex manifold M to CP ∞ we have F * ω FS,∞ = We finish with an application to random Kähler geometry, more precisely to the distribution of zeros of random holomorphic sections [START_REF] Coman | Equidistribution results for singular metrics on line bundles[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF].

Let us endow the space H 0 (2) (Σ, L p ) with a Gaussian probability measure µ p induced by the unitary map H 0 (2) (Σ, L p ) ∼ = C dp given by the choice of an orthonormal basis (S p j ) dp j=1 . Given a section s ∈ H 0

(2) (Σ, L p ) ⊂ H 0 (Σ, L p ) we denote by [s = 0] the zero distribution on Σ defined by the zero divisor of s on Σ. If the zero divisor of s is given by m j P j , where m j ∈ N and P j ∈ Σ, then [s = 0] = m j δ P j , where δ P is the delta distribution at P ∈ Σ. We denote by • , • the duality between distributions and test functions. For a test function Φ ∈ C ∞ (Σ) and s as above we have [s = 0], Φ = m j Φ(P j ).

The expectation distribution E[s p = 0] of the distribution-valued random variable H 0

(2) (Σ, L p ) ∋ s p → [s p = 0] is defined by 

(1. 4 )

 4 B p (x, y) := dp ℓ=1 S p ℓ (x) ⊗ (S p ℓ (y)) * and B p (x) := dp ℓ=1 |S p ℓ (x)| 2 h p .

2 .

 2 function on D 4r for each p ≥ Theorem 1.3. For all k ≥ 1 and D 1 , . . . , D k ∈ ∂ ∂z , ∂ ∂z we have

  ) with b 0 = -b 1 = 1 2π on each V j . Consider now for p ≥ 2 the space H p (2) (D * ) of holomorphic L 2 -functions on D * with respect to the weight 1 2 (z) = log(|z| 2 ) p (corresponding to a metric on the trivial line bundle C) and volume form ω D * on D * . An orthonormal basis of H p (2) (D * ) is given by (cf. [5, Theorem 3.1]), (2.6) c (p) ℓ z ℓ with ℓ ∈ N, ℓ ≥ 1 and c (p)

By [ 5 ,

 5 Remark 3.2] and (1.3) we know that σ(p) ℓ is a holomorphic section of L p over Σ vanishing at D. We use the trivialization (1.6) to set σ jℓ z j e p L =: s (p) ℓ e p L on D * 4r . (2.22)

  p) ℓ I (p) 1,ℓ (x) + I (p) 2,ℓ (x) + I (p) 3,ℓ (x) . Now [5, Theorem 1.1 or (6.23)] and (2.6) yield for fixed ν > 0 and m > 0 and for any x ∈ D * 4r , p ≥ 2,

ℓ

  ) 1≤j≤dp is in echelon form up to rank δ ′ p , in the sense that if ℓ = 1, . . . , δ ′ p , then σ qℓ z q e p L on D * 4r , and if ℓ = δ ′ p + 1, . . . , d p , then σ

ℓ

  , ℓ = 1, . . . , δ ′ p , following Steps 1. to 4. of the proof of Theorem 1.2 can be led alternatively by the following principle: 1'. with the cut-off function χ in (2.10), for ℓ = 1, . . . , δ ′ p , set φ into holomorphic L 2 -section φ (p) ℓ of L p , by orthogonal L 2 p (Σ)-projection. we use the spectral gap property [5, Cor.5.2] (as a direct consequence of [22, Theorem 6.1.1]) together with the step 2' to get (3.3).

) 2

 2 |z| 2m . By (3.28) and (3.29) we get uniformly in j ∈ {1, • • • , δ ′ p }, 35) and (3.53), observe that for z ∈ D * r ,

  |z| 2m . By (3.53), (3.54) and (3.61) we get on |z| ≤ c ′ p -A ′ ,

( 3 .

 3 69)Note that by the argument in (2.23) for D * (or directly from (2.7), (2.8)), there exists C > 0 such that for any s ∈ N * , p ≥ 2, we have|c (p) s | ≤ Cp 1/2 2r -s |log(|2r| 2 )| -p/2 . (3.70) By (3.2), (3.55), (3.60) for τ = 1, and (3.70), we get as in (3.56) for all p ≫ 1 and |z|

p

  +1 from (3.54), (3.66). In conclusion, by (2.3), (3.54), (3.65), (3.66), (3.71) and (3.74), we have on |z|

iTheorem 4 . 2 .z 2 ]

 422 2π ∂∂ log F 2 . We define the Kodaira map of level p associated with (D * , ω D * , C, h D * ) by using the orthonormal basis (2.6) of H p(2) (D * ), (4.9)ı p : D * → CP ∞ , ı p (z) = [c (p) 1 z, c (p) 2 z 2 , . . . , c (p) ℓ z ℓ , . . .] ∈ CP ∞ , z ∈ D * . Suppose that D * 4r and V ⊂ Σ are identified as in (1.6). On D * 4r we set (4.10) ı * p ω FS,∞ - * p,(2) ω FS,p = η p idz ∧ dz.Then η p extends smoothly to D r and one has, for all k ≥ 0, ℓ ≥ 0,(4.11) η p C k (Dr) ≤ C k,ℓ p -ℓ , as p → ∞,where• C k (Dr) is the usual C k -norm on D r .Proof. We first observe that ı p is an embedding, since already z → [c ∈ CP 1 is an embedding. We have (4.12) p 2π ω D * = ı * p ω FS,∞ -i 2π ∂∂ log B D * p , and consequently on D * r , (4.13) ı * p ω FS,∞ - * p,(2) ω FS,p = i 2π ∂∂ log B D * p /B p , so the assertion follows from Theorem 1.3.

Theorem 4 . 3 .

 43 (Σ,L p ) [s p = 0], Φ dµ p (s p ),where Φ is a test function on Σ. We consider the product probability space(H, µ) (i) The smooth (1, 1)-form  * p,(2) ω FS,p extends to a closed positive (1, 1)current on Σ denoted γ p (called Fubini-Study current) and we have E[s p = 0] = γ p . (ii) We have 1 p γ p → i 2π R L as p → ∞, weakly in the sense of currents on Σ, where R L is the curvature current of the singular holomorphic bundle (L, h) on Σ. (iii) For almost all sequences (s p ) ∈ (H, µ) we have 1 p [s p = 0] → i 2π R L as p → ∞, weakly in the sense of currents on Σ. Proof. The convergence of the Fubini-Study currents γ p follows from (4.7). The rest of the assertions follow from the general arguments of [12, Theorems 1.1, 4.3]. The conditions (A)-(C) in [12, Theorems 1.1, 4.3] are implied by our hypotheses (α), (β) and the required local uniform convergence 1 p log B p → 0 as p → ∞ on Σ is a consequence of [22, Theorem 6.1.1].

  , δ p }, ℓ ∈ {δ p + 1, • • • , d p }. (2.32) By (2.3), (2.29) and (2.32), we get (2.20). Fixing ℓ ∈ {1, . . . , δ p }, we have on D * r by (2.10), (2.12), (2.22),

	From (2.30) and (2.31) we get
	a (p) jℓ = 0 for j ∈ {1, • • • (2.33)
	31)

  By the construction of φ (p) ℓ , (2.10), and the reproducing property of B p ( • , • ) we

	have for x ∈ D * 4r ,
	(2.44)

  [START_REF] Catlin | The Bergman kernel and a theorem of Tian[END_REF], (2.53), (2.54) and (2.55) yield(2.15). This completes the proof of Lemma 2.1.

  ℓ. Lemma 3.2. We have uniformly for j, ℓ ∈ {1, . . . , δ ′

				p },	
	(3.29)	a (p) jℓ =	0 c (p) j	δ jℓ + O(pe -κp )	for j < ℓ; for j ≥ ℓ.
	Proof. First note that by (3.7) we have	
	(3.30) σ	(p)			
	Now (2.30) and (3.27) entail			
	(3.28)	a (p) jℓ = 0	if j < ℓ, j ∈ {1, . . . , δ ′ p }, ℓ ∈ {1, . . . , d p }.

From

(2.22

) and (3.28) we get (3.4) and

(3.5)

. The proof of Lemma 3.1 is completed.

The following consequence of Lemma 3.1 that refines (2.34) is very useful in our computations.

  1/2 . for all p ≫ 1 and |z| ≤ c ′ p -A ′ , Thus by (2.23), (3.56) and (3.60) for τ = 1, we have for all p ≫ 1 and |z| ≤ c ′ p -A ′ ,

	(3.61)	∞	q sup	|a (p)
		q=δ ′ p +1	1≤ℓ≤dp	

  1/2 . We continue to work on the estimates of the tail terms. We first deal with the sum over A 2 p . By (3.36) and (3.49), one has:

	By (2.3), (3.52), (3.54) and (3.61) we have for all p ≫ 1 and |z| ≤ c ′ p -A ′ ,
	(3.62)	|I(A 1 p )(z)| ≤ C(δ ′ p ) 3/2 d p 2 -α ′ p (β D * p (z)) 2 ≤ Cp 5/2 2 -α ′ p (β D * p (z)) 2 .
	Sums over A 2 p and A 3 p . -

  one of the main applications of the expansion of the Bergman kernel is the convergence of the induced Fubini-Study metrics by Kodaira maps. Let us consider the Kodaira map at level p ≥ 2 induced by H 0(2) (Σ, L p ), which is a meromorphic map defined by

	(4.1)	 p,(2) : Σ

  FS,p be the Hermitian metric induced by h FS,p via the isomorphism (4.6) on L p Σ .Theorem 4.1. Let (Σ, ω Σ , L, h) fulfill conditions (α) and (β). Then as p → ∞,

	induce canonical isomorphisms					p,(2)
	(4.6)	 * p O(1) ≃ L p ⊗ O(-D) ,  * p,(2) O(1) ≃ L p	Σ .
	Let  * p,(2) h  * p,(2) h FS,p = 1 + O(p -∞ ) (B D * p ) -1 h p ,
	1 p	 * p,(2) ω FS,p =	1 2π	ω Σ +	i 2πp	∂∂ log B D *

The L 2 -metric (2.1) on H 0 (2) (Σ, L p ) induces a Fubini-Study Kähler metric ω FS,p on the projective space P(H 0 (2) (Σ, L p ) * ) and a Fubini-Study Hermitian metric h FS,p on the hyperplane line bundle O(1) → P(H 0 (2) (Σ, L p ) * ). By [22, Theorem 5.1.6]  p and  p + O(p -∞ ) , (4.7)

  ], (4.8)  * p,(2) h FS,p = (B p ) -1 h p , so (4.7) follows from Theorems 1.2 and 1.3.

	1 p	 * p,(2) ω FS,p =	i 2π	R L +	i 2πp	∂∂ log(B p ) ,

Fine uniform control for small indices, rough control via Cauchy formula for large indices, sacrifice of a few powers of |z| and restriction to |z| ≤ cp -A for resulting sums.
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2 C 0 -estimate for the quotient of Bergman kernels