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ABSTRACT

Context. Existing cosmological simulation methods lack a high degree of parallelism due to the long-range nature of the gravitational
force, which limits the size of simulations that can be run at high resolution.
Aims. To solve this problem, we propose a new, perfectly parallel approach to simulate cosmic structure formation, which is based on
the spatial COmoving Lagrangian Acceleration (sCOLA) framework.
Methods. Building upon a hybrid analytical and numerical description of particles’ trajectories, our algorithm allows for an efficient
tiling of a cosmological volume, where the dynamics within each tile is computed independently. As a consequence, the degree of
parallelism is equal to the number of tiles. We optimised the accuracy of sCOLA through the use of a buffer region around tiles and
of appropriate Dirichlet boundary conditions around sCOLA boxes.
Results. As a result, we show that cosmological simulations at the degree of accuracy required for the analysis of the next generation
of surveys can be run in drastically reduced wall-clock times and with very low memory requirements.
Conclusions. The perfect scalability of our algorithm unlocks profoundly new possibilities for computing larger cosmological simu-
lations at high resolution, taking advantage of a variety of hardware architectures.

Key words. large-scale structure of Universe – methods: numerical

1. Introduction

We live in the age of large astronomical surveys. These surveys
detect and record tracers of cosmic structure across vast vol-
umes of the Universe, using electromagnetic and gravitational
waves. A non-exhaustive list includes optical and infrared imag-
ing and spectroscopic surveys such as LSST (LSST Science
Collaboration 2012), Euclid (Laureijs et al. 2011), DESI (DESI
Collaboration 2016), and SPHEREx (SPHEREx Science Team
2018); catalogues and intensity maps from large radio sur-
veys such as the square kilometer array (Square Kilometre
Array Cosmology Science Working Group 2018) and its pre-
cursors; cluster catalogues from high-resolution observations
of the microwave sky (Advanced ACTPol, Simon et al. 2018;
SPTPol, Austermann et al. 2012; Simons Observatory, Simons
Observatory Collaboration 2019, and CMB-S4); X-ray sur-
veys such as the eROSITA mission (Merloni et al. 2012); as
well as gravitational wave sirens across cosmological volumes
with successive updates of (Advanced) LIGO (LIGO Scientific
Collaboration 2015), Virgo (The Virgo Collaboration 2020) and
LISA (Barausse et al. 2020). Whilst these data sets will be prodi-
gious sources of scientific discovery across astrophysics, their
enormous volume and dense sampling of cosmic structure will

make them uniquely powerful when studying some of the deep-
est scientific mysteries of our time: the statistical properties of
the primordial perturbations, the nature of dark matter, and the
physical properties of dark energy. Indeed many of these surveys
were conceived to address these questions.

Accomplishing this promise requires the ability to model
these surveys in sufficient detail and with sufficient accuracy.
All but the most simplistic models require the production of
cosmological light-cone simulations. In particular, cosmological
inferences often rely on large numbers of mock catalogues,
which are used to construct unbiased estimators and study their
statistical properties, such as covariance matrices. As surveys are
getting deeper, these mock catalogues now need to represent a
sizeable portion of the observable Universe, up to a redshift of
∼2−3 (e.g. z = 2.3 for the Euclid Flagship simulation1). Unfor-
tunately, cosmological simulations put a heavy load on super-
computers. Even if only dark matter is included and resolution
is minimised, they can require millions of CPU hours and hun-
dreds of terabytes of disk space to solve the gravitational evo-
lution of billions of particles and store the corresponding data.
For instance, the DEUS-FUR simulation (Alimi et al. 2012),

1 https://www.euclid-ec.org/?page_id=4133
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containing 81923 particles in a box of 21 Gpc h−1 side length,
required 10 million hours of CPU time and 300 TB of storage.

While computational needs are soaring, the performance
of individual compute cores attained a plateau around 2015.
Traditional hardware architectures are reaching their physical
limit. Therefore, cosmological simulations cannot merely rely
on processors becoming faster to reduce the computational time.
Current hardware development focuses on increasing power effi-
ciency2 and solving problems of heat dissipation to allow pack-
ing a larger number of cores into each CPU. As a consequence,
the performance gains of the world’s top supercomputers are
the result of a massive increase in the number of parallel cores,
currently3 to O(105), and soon to O(106−7) in systems that are
currently being built4. Hybrid architectures, where CPUs work
alongside GPUs and/or reconfigurable chips such as FPGAs, add
to the massive parallelism. In the exa-scale world, raw com-
pute cycles are no longer the scarce resource. The challenge
is to access the available computational power when Amdahl’s
law demonstrates that communication latencies kill the potential
gains due to parallelisation (Amdahl 1967).

A way to embed high-resolution simulation of objects such
as galaxy clusters, or even galaxies, in a cosmological con-
text is through the use of varying particle mass resolution
and the adaptive mesh refinement technique (AMR, Berger &
Colella 1989). AMR is widely employed in grid-based simu-
lation codes such as RAMSES (Teyssier 2002), ENZO (Bryan
et al. 2014), FLASH (Fryxell et al. 2000), and AMIGA (Knebe
& Doumler 2010). It is also used in MUSIC (Hahn & Abel
2011) to generate zoom-in initial conditions for simulations. The
AMR technique, which uses multi-grid relaxation methods (e.g.
Guillet & Teyssier 2011), allows focusing the effort on a specific
region of the computational domain, but requires a two-way flow
of information between small and large scales. More recently,
leading computational cosmology groups have been developing
sophisticated schemes to leverage parallel and hybrid computing
architectures (Gonnet et al. 2013; Theuns et al. 2015; Aubert
et al. 2015; Ocvirk et al. 2016; Potter et al. 2017; Yu et al. 2018;
Garrison et al. 2019; Cheng et al. 2020).

Full simulations of large cosmological volumes, even lim-
ited to cold dark matter and at coarse resolution, involve mul-
tiple challenges. One of the main issues preventing their easy
parallelisation is the long-range nature of gravitational interac-
tions, which forestalls high-resolution, large-volume cosmolog-
ical simulations. As a a response, much of the classical work
in numerical cosmology focused on computational algorithms
(tree codes, fast multipole methods, particle-mesh methods,
and hybrids such as particle-particle–particle-mesh and tree–
particle-mesh) that reduced the need for O(N2) all-to-all com-
munications between N particles across the full computational
volume.

While these algorithms are and remain the backbone of com-
putational cosmology, they fail to fully exploit the physical scale
hierarchy of cosmological perturbations. This hierarchy has first
been used to push the results of N-body simulations to Uni-
verse scale for cosmic velocity fields (Strauss et al. 1995). At the
largest scales, the dynamics of the Universe is not complicated,
and in particular, is well-captured by Lagrangian Perturbation

2 For example, Oak-Ridge National Laboratories’ (ORNL) Summit
machine has a typical power consumption of about 13 MW.
3 https://www.olcf.ornl.gov/olcf-resources/
compute-systems/summit/
4 See for example ORNL’s next supercomputer, Frontier:
https://www.olcf.ornl.gov/wp-content/uploads/2019/
05/frontier_specsheet.pdf

Theory (LPT; see Bouchet et al. 1995). Building upon this view,
Tassev et al. (2015) introduced spatial COmoving Lagrangian
Acceleration (sCOLA). This algorithm, using a hybrid analyti-
cal and numerical treatment of particles’ trajectories, allows one
to perform simulations without the need to substantially extend
the simulated volume beyond the region of interest in order
to capture far-field effects, such as density fluctuations due to
super-box modes. The sCOLA proof-of-concept focused on one
sub-box embedded into a larger simulation box.

In this paper, we extend the sCOLA algorithm and use
it within a novel method for perfectly parallel cosmological
simulations. To do so, we rely on a tiling of the full cosmologi-
cal volume to be simulated, where each tile is evolved indepen-
dently using sCOLA. The principal challenge for the accuracy
of such simulations are the boundary conditions used through-
out the evolution of tiles, which can introduce artefacts. In this
respect, we introduce three crucial improvements with respect
to Tassev et al. (2015): the use of a buffer region around each
tile, the use of exact boundary conditions in the calculation
of LPT displacements (which has the side benefit of reducing
memory requirements), and the use of a Poisson solver with
Dirichlet boundary conditions meant to approximate the exact
gravitational potential around sCOLA boxes. The method pro-
posed in this work shares similar goals with zoom-in simula-
tion techniques, the main difference residing in the change of
frame of reference introduced in sCOLA, which accounts for
the dynamics of large scales without requiring flows of infor-
mation during the evolution. On the other hand, our method
is independent of the N-body integrator used to calculate the
numerical part of particles’ trajectories within each sCOLA box,
and therefore, it cannot be related to specific approaches to do
so, such as force-splitting. It is slightly approximate and more
CPU-expensive than the corresponding “monolithic” simulation
technique (chosen in this paper as tCOLA, Tassev et al. 2013),
but has the essential advantage of perfect scalability. This scal-
ability comes from the removal of any kind of communication
among tiles after the initialisation of the simulation. As a conse-
quence, for its major part, the degree of parallelism of the algo-
rithm equals the number of tiles, which means that the workload
is perfectly parallel (also called embarrassingly parallel). This
property can be exploited to produce cosmological simulations
in very short wall-clock times on a variety of hardware architec-
tures, as we discuss in this paper.

After reviewing Lagrangian Perturbation Theory and its use
within numerical simulations in Sect. 2, we describe our algo-
rithm for perfectly parallel cosmological simulations in Sect. 3.
In Sect. 4, we test the accuracy and speed of the algorithm
with respect to reference simulations that do not use the tiling.
We discuss the implications of our results for computational
strategies to model cosmic structure formation, and conclude, in
Sect. 5. Details regarding the implementation are provided in the
appendices.

2. Cosmological simulations using Lagrangian
perturbation theory

Throughout this section we denote by a the scale factor of the
Universe. For simplicity, some of the equations are abridged.
We reintroduce the omitted constants, temporal prefactors, and
Hubble expansion in Appendix A.

Particle simulators are algorithms that compute the final
position x and momentum p ≡ dx/da of a set of particles,
given some initial conditions. They can also be seen as algo-
rithms that compute a displacement field Ψ, which maps the
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initial (Lagrangian) position q of each particle to its final (Eule-
rian) position x, according to the classic equation (see e.g.
Bernardeau et al. 2002, for a review)

x(a) = q +Ψ(q, a). (1)

With this point of view, the outputs are x and p = ∂Ψ/∂a.

2.1. Lagrangian perturbation theory (LPT)

In Lagrangian perturbation theory (LPT), the displacement field
is given by an analytic equation which is used to move particles,
without the need for a numerical solver. At second order in LPT,
the displacement field is written

ΨLPT(q, a) = Ψ(1)(q, a) +Ψ(2)(q, a), (2)

where each of the terms is separable into a temporal and a spatial
contribution deriving from a Lagrangian potential:

Ψ(1)(q, a) = −D1(a)∇qφ
(1)(q), (3)

Ψ(2)(q, a) = D2(a)∇qφ
(2)(q). (4)

In Eqs. (3) and (4), D1 and D2 are the growth factor and
second-order growth factor, respectively. The Lagrangian poten-
tials obey Poisson-like equations (Buchert et al. 1994):

∆qφ
(1)(q) = δi(q), (5)

∆qφ
(2)(q) =

∑
i> j

[
φ(1)
,ii φ

(1)
j j −

(
φ(1)
,i j

)2
]
, (6)

where δi(q) is the density contrast in the initial conditions, in
Lagrangian coordinates, and the φ(1)

i j are spatial second deriva-

tives of φ(1), i.e. φ(1)
i j ≡ ∂

2φ(1)/∂qi∂q j.
If only the first-order term is included in Eq. (2), the solution

is known as the Zel’dovich approximation (Zel’dovich 1970).

2.2. Temporal comoving Lagrangian acceleration (tCOLA)

In contrast to the analytical equations of LPT, particle-mesh
(PM) codes (see e.g. Klypin & Holtzman 1997) provide a fully
numerical solution to the problem of large-scale structure for-
mation. The equation of motion to be solved in a PM code reads
schematically

∂2
aΨ(q, a) = −∇xΦ(x, a), (7)

where the gravitational potential Φ satisfies the Poisson equa-
tion,

∆xΦ(x, a) = δ(x, a). (8)

Here, δ(x, a) is the density contrast at a scale factor a, which
is obtained from the set of particles’ positions {x(a)} through a
density assignment operator that we denote B (typically a cloud-
in-cell (CiC) scheme, see Hockney & Eastwood 1981):

δ(x, a) ≡ B({x(a)}). (9)

We denote by B̄ the corresponding interpolation operator, which
is needed to obtain the accelerations of particles given the accel-
eration field on the grid:

∂2
aΨ({x(a)}) ≡ B̄(−∇xΦ). (10)

The temporal COmoving Lagrangian Acceleration (tCOLA)
algorithm seeks to decouple large and small scales by evolving

large scales using analytic LPT results, and small scales using
a numerical solver. This is achieved by splitting the Lagrangian
displacement field into two contributions (Tassev & Zaldarriaga
2012):

Ψ(q, a) ≡ ΨLPT(q, a) +Ψres(q, a), (11)

where ΨLPT(q, a) is the LPT displacement field discussed in
Sect. 2.1 and Ψres(q, a) is the residual displacement of each par-
ticle, as measured in a frame comoving with an “LPT observer”,
whose trajectory is given byΨLPT(q, a). Using Eq. (11), it is pos-
sible to rewrite Eq. (7) as

∂2
aΨres(q, a) = −∇xΦ(x, a) − ∂2

aΨLPT(q, a). (12)

The term ∂2
aΨLPT(q, a) can be thought of as a fictitious force act-

ing on particles, caused by our use of a non-inertial frame of
reference. Importantly, it can be computed analytically given the
equations of Lagrangian perturbation theory.

The equations of motions (7) and (12) are usually integrated
by the use of time-stepping techniques (see Appendix B). In the
limit of zero time-steps used to discretise the left-hand side of
Eq. (12),Ψres = 0 and tCOLA recovers the results of LPT; there-
fore, tCOLA always solves the large scales with an accuracy of
at least that of LPT. In contrast, PM codes require many time-
steps in Eq. (7) just to recover the value of the linear growth
factor D1. In the limit where the number of time-steps becomes
large, tCOLA reduces to a standard PM code. In the intermediate
regime (for O(10) time-steps), tCOLA provides a good approx-
imation to large-scale structure formation, at the expense of not
solving the details of particle trajectories in deeply non-linear
halos (see Tassev et al. 2013; Howlett et al. 2015; Leclercq et al.
2015; Koda et al. 2016; Izard et al. 2016, for further discussion).
Since by construction, tCOLA always gets the large scales cor-
rect, contrary to a PM code, the trade-off between speed and
accuracy only affects small scales.

2.3. Spatial comoving Lagrangian acceleration (sCOLA)

During large-scale structure formation, non-linearities appear
at late times and/or at small scales. tCOLA (Eq. (12)) decou-
ples LPT displacements and residual non-linear contributions “in
time”, so that, for a given accuracy, fewer time-steps are required
to solve large-scale structure evolution than with a PM code. Fol-
lowing a similar spirit, the spatial COmoving Lagrangian Accel-
eration (sCOLA) framework decouples LPT displacements and
residual non-linear contributions “in space”, so that numerically
evolved small scales can feel far-field effects captured analyti-
cally via LPT.

More specifically, for each particle in a volume of interest
(the “sCOLA box”) embedded in a larger cosmological volume
(the “full box”), the equation of motion of particles, which reads
for a traditional N-body problem

∂2
aΨ(q, a) = ∂2

aΨLPT(q, a) + ∂2
aΨres(q, a) = F(x, a) (13)

is replaced by

∂2
aΨres(q, a) = FsCOLA(x, a) − ∂2

aΨ
sCOLA
LPT (q, a). (14)

∂2
aΨres(q, a) is defined by Eq. (11) as the residual displacement

with respect to the LPT observer of the full box, whose trajectory
is given by ΨLPT(q, a). In Eq. (14), ΨsCOLA

LPT (q, a) is the trajec-
tory prescribed by solving LPT equations (see Sect. 2.1) in the
sCOLA box. Note that ΨsCOLA

LPT (q, a) may differ from ΨLPT(q, a),
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depending on the assumptions made for the boundary condi-
tions of the sCOLA box, discussed in Sect. 3.3. Denoting by
S ⊆ ~1,N� the set of particles in the sCOLA box, the gravita-
tional force, which in Eq. (13) reads

F(xi, a) ≡
N∑
j=1
j,i

x j(a) − xi(a)
|x j(a) − xi(a)|3

, (15)

is replaced by

FsCOLA(xi, a) ≡
∑

j∈S
j,i

x j(a) − xi(a)
|x j(a) − xi(a)|3

· (16)

It is possible to evaluate FsCOLA(x, a), and thus to solve
Eq. (14), like Eq. (13), using any numerical gravity solver, such
as particle-particle–particle-mesh, tree codes, or AMR. In this
paper, we choose to focus on evaluating forces via a PM scheme.
In this case, the equation of motion of particles in sCOLA reads
schematically (Tassev et al. 2015)

∂2
aΨres(q, a) = −∇sCOLA

x ΦsCOLA(x, a) − ∂2
aΨ

sCOLA
LPT (q, a). (17)

The gravitational potential in the sCOLA box, ΦsCOLA(x, a),
obeys the near-field version of the Poisson equation,

∆sCOLA
x ΦsCOLA(x, a) = δsCOLA(x, a). (18)

The superscript “sCOLA” over the gradient and Laplacian oper-
ators, ∇sCOLA

x and ∆sCOLA
x , mean that they are restricted to the

sCOLA box (contrary to that of Eqs. (8) and (12)). Over the den-
sity contrast δsCOLA(x, a), the superscript means that only parti-
cles in the sCOLA box {x(a)}sCOLA ≡ {xi(a)}i∈S (instead of the
full box) are used within the density assignment BsCOLA, i.e.

δsCOLA(x, a) ≡ BsCOLA (
{x(a)}sCOLA

)
. (19)

Contrary to tCOLA, which is an exact rewriting of the equa-
tions of motion of a PM code, sCOLA potentially involves
approximations for the calculation of each quantity and operator
with a superscript “sCOLA” instead of its full box equivalent.
As a proof of concept, Tassev et al. (2015) showed that under
certain circumstances, sCOLA provides a good approximation
for the evolution of one sCOLA box embedded into a larger full
box. As discussed in the introduction, we aim at generalising
this result by using sCOLA within multiple sub-volumes of a
full simulation box.

3. Algorithm for perfectly parallel simulations using
sCOLA

In this section, we describe an algorithm for cosmological sim-
ulations using sCOLA, for which the time evolution of indepen-
dent Lagrangian sub-volumes is perfectly parallel, without any
communication. A functional block diagram representing the
main steps and their dependencies is given in Fig. 1. An illustra-
tion of the different grids appearing in the algorithm is presented
in Fig. 2, and Table 1 provides the nomenclature of some of the
different variables appearing in this section.

We work in a cubic full box of side length L with periodic
boundary conditions, populated by N3

p particles initially at the
nodes {q} of a regular Lagrangian lattice. We seek to compute the
set of final positions {x(af)} and momenta {p(af)} at final scale
factor af . The model equations are reviewed in Appendix A. The

Computation of the
initial conditions δi (A.1.)

Computation of the Lagrangian
potentials φ(1) and φ(2) (A.2.)

Tiling of the
Lagrangian lattice (B.1.)

Reception of

φ̃(1) and φ̃(2) (C.1.)

Computation of the
Lagrangian displacement

�eld ΨsCOLA
LPT (C.2.)

Computation of the
Lagrangian displacement

�eld ΨLPT

Precomputation of the
Dirichlet boundary

conditions ΦBCs (C.3.)

Evolution with
sCOLA (D.)

Evolution with
tCOLA

Reception of {x}tile and {p}tile
from each tile (B.2.)

Fig. 1. Functional diagram of sCOLA (left) versus tCOLA (right). The
grey boxes are common steps. sCOLA specific steps are represented
in blue, and tCOLA specific steps in red. The yellow rectangle consti-
tutes the perfectly parallel section, within which no communication is
required with the master process or between processes. Arrows repre-
sent dependencies, and references to the main text are given between
parentheses.

time-stepping of these equations consists of a series of “kick”
and “drift” operations and is discussed in Appendix B.

We approximate the Laplacians ∆x, ∆q and gradient opera-
tors ∇x, ∇q by finite difference approximation (FDA) at order 2,
4, or 6. The coefficients of the finite difference stencils in config-
uration and in Fourier space are given for example in table 1 in
Hahn & Abel (2011). We note Nghost = 1, 2, 3 if FDA is taken at
order 2, 4, 6, respectively.

3.1. Initial conditions and Lagrangian potentials

Before the perfectly parallel section, two initialisation steps are
performed by the master process in the full box.

A.1. The first step is to generate the initial density contrast δi
in the full box, on a cubic grid of N3 cells (the “LPT grid”, repre-
sented in red in the left panel of Fig. 2). This step can be done via
the standard convolution approach (e.g. Hockney & Eastwood
1981), given the specified initial power spectrum.

A.2. The second step is to compute the Lagrangian poten-
tials φ(1)(q) and φ(2)(q) on the LPT grid in the full box, which is
achieved by solving Eqs. (5) and (6).

If initial phases are generated in Fourier space, the
Zel’dovich approximation (i.e. the calculation of φ(1)) requires
only one inverse fast Fourier transform (FFT) on the LPT grid.
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Lagrangian lattice
and LPT grid

Lagrangian lattice
and PM grid

Fig. 2. Illustration of the different grids used within sCOLA. The
Lagrangian lattice is represented by dashed lines. For each tile, central
particles (in black) are surrounded by buffer particles (in cyan), which
are ignored at the end of the evolution. The corresponding buffer region
in other grids is represented in cyan. The left panel represents the “LPT
grid” on which Lagrangian potentials φ̃(1) and φ̃(2) are defined. The cen-
tral region has N3

sCOLA grid points (in red) and is padded by 2Nghost cells
in each direction (pink region). The right panel shows the “PM grid”
on which the density contrast δsCOLA, the gravitational potential ΦsCOLA,
and the accelerations −∇sCOLA

x ΦsCOLA are defined. The density contrast
is defined only in the central region (which has N3

g grid points, in dark
green). The gravitational potential is padded by 2Nghost cells in each
direction (light green and yellow regions), and the gridded accelera-
tions only by Nghost cells in each direction (yellow region). Solving the
Poisson equation requires Dirichlet boundary conditions in six layers of
Nghost cells, denoted as hatched regions. For simplicity of representation,
we have used here Nghost = 1.

Table 1. Nomenclature of symbols used in the present article.

Symbol Meaning

N LPT grid size in the full box
Np Lagrangian lattice size in the full box

Ntiles Number of tiles in each direction
Np,tile Number of particles per direction in each tile
Ltile Physical size of each tile

Np,buffer Number of buffer particles per direction
Lbuffer Physical size of the buffer region

Np,sCOLA Number of particles per direction in each sCOLA box
LsCOLA Physical size of each sCOLA box

Ntile LPT grid portion covering each tile
NsCOLA LPT grid portion covering each sCOLA box
Nghost Number of ghost cells depending on FDA

Ng PM grid size in each sCOLA box
r Over-simulation factor
p Parallelisation potential factor

For the second-order potential, the source term on the right-hand
side of Eq. (6) has to be computed from φ(1); this can either be
done in Fourier space (for a cost of six inverse FFTs) or in con-
figuration space via finite differencing (for a cost of nine one-
dimensional gradient operations). In both cases, the calculation
of φ(2) from its source then requires one forward and one inverse
FFT.

These few FFTs in the full box are the most hardware-
demanding requirement of the algorithm (particularly in terms
of memory), and the only step which is not distributed and suit-
able for grid computing. These FFTs may however be performed
on a cluster of computers with fast interconnection suitable for

Message Passing Interface (Frigo & Johnson 2005; Johnson et al.
2008).

3.2. Tiling and buffer region

B.1. After having computed the Lagrangian potentials, the
master process splits the Lagrangian lattice (of size N3

p ) into N3
tiles

cubic tiles (we require that Np is a multiple of Ntiles). Tiles are
constructed to be evolved independently; therefore the main, per-
fectly parallel region of the algorithm starts here.

To minimise artefacts due to boundary effects (see Sect. 3.4),
each tile is surrounded by a “buffer region” in Lagrangian space.
This buffer region consists of Np,buffer particles in each direc-
tion, so that each sCOLA box contains a total of N3

p,sCOLA parti-
cles, where Np,sCOLA ≡ Np,tile + 2Np,buffer and Np,tile ≡ Np/Ntiles.
Corresponding physical sizes are Ltile ≡ L Np,tile/Np, Lbuffer ≡

L Np,buffer/Np, and LsCOLA ≡ L Np,sCOLA/Np. The fraction of the
full Lagrangian lattice assigned to one child sCOLA process is
represented by dotted lines in Fig. 2. Particles of the tile are rep-
resented in black, and particles of the buffer region are repre-
sented in cyan.

The sCOLA box is chosen to encompass the tile and its
buffer region. We define the over-simulation factor r as the ratio
between the total volume simulated in all sCOLA boxes and the
target simulation volume, i.e.

r ≡
N3

tilesN
3
p,sCOLA

N3
p

=
N3

tiles(Np,tile + 2Np,buffer)3

N3
p

=
N3

tilesL
3
sCOLA

L3 =
N3

tiles(Ltile + 2Lbuffer)3

L3 · (20)

Since all sCOLA boxes can be evolved independently, the degree
of parallelism of the algorithm is equal to the number of sCOLA
boxes, N3

tiles. We call the “parallelisation potential factor” the
quantity p ≡ N3

tiles/r, which balances the degree of parallelism
with the amount of over-simulation. It is also

p =
N3

p

N3
p,sCOLA

=
L3

L3
sCOLA

· (21)

For each sCOLA box, the corresponding child process computes
the set of final positions {x}sCOLA and momenta {p}sCOLA.

B.2. At the end of the evolution, each child process sends
the set of final positions {x}tile and momenta {p}tile of particles of
the tile back to the master process. Particles of the buffer region
are ignored. The master process then “untiles” the simulation by
gathering the results from all the tiles.

3.3. Initial operations in the sCOLA boxes

A few steps are required in each sCOLA box before starting the
evolution per se.

C.1. The sCOLA box receives the relevant portion of φ(1)(q)
and φ(2)(q) from the master process. This is the only communi-
cation required with the master process before sending back the
results at the end of the evolution.

The portion of the LPT grid received by each process from
the master process corresponds to the full spatial region covered
by the sCOLA box, plus an additional padding of 2Nghost cells
in each direction. We denote by φ̃(1)(q) and φ̃(2)(q) the parts of
φ(1)(q) and φ(2)(q) received from the master process (we avoid
the superscript “sCOLA” since no approximation is involved at
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this stage). They are defined on a grid of size (NsCOLA +4Nghost)3,
where

Ntile ≡

⌈
Np,tile

N
Np

⌉
, NsCOLA ≡ Ntile + 2

⌈
Np,buffer

N
Np

⌉
(22)

(d·e denotes the ceiling function). An illustration is provided in
Fig. 2, left panel. There, the portion of the LPT grid correspond-
ing to the sCOLA box, of size NsCOLA in each direction, is rep-
resented in red and the padding region, of size 2Nghost in each
direction, is represented in pink.

C.2. The sCOLA process locally computes the required time-
independent LPT vectorsΨsCOLA

1 andΨsCOLA
2 via finite differenc-

ing in configuration space and interpolation to particles’ positions.
The ghost cells included around φ̃(1)(q) and φ̃(2)(q) in the

sCOLA box ensure that the proper boundary conditions are used
when applying the gradient operator ∇sCOLA

q in configuration
space to get the LPT displacements on the grid. This step “con-
sumes” Nghost layers of ghost cells in each direction, so that the
grid of LPT displacements has a size of (NsCOLA + 2Nghost)3. To
use again the proper boundary conditions when going from the
LPT grid to particles’ positions, another Nghost layers of ghost
cells is consumed by the interpolation operator B̄sCOLA. The
use of the exact boundary conditions at each of these two steps
ensures that ∇sCOLA

q = ∇q and B̄sCOLA = B̄. Therefore, by con-
struction, ΨsCOLA

1 ≡ ∇sCOLA
q φ̃(1)(q) and ΨsCOLA

2 ≡ ∇sCOLA
q φ̃(2)(q)

in the sCOLA box are always the same as Ψ1 ≡ ∇qφ
(1)(q) and

Ψ2 ≡ ∇qφ
(2)(q) in the full box (as would be computed by the

master process). Consequently, we do not keep track of both
ΨsCOLA

1,2 and Ψ1,2, contrary to Tassev et al. (2015). In addition
to being simpler, this scheme has the practical advantage of sav-
ing six floating-point numbers per particle in memory (three in
the case of the Zel’dovich approximation).

C.3. The sCOLA process precomputes the Dirichlet bound-
ary conditions ΦBCs that will be used at each calculation of the
gravitational potential during the sCOLA evolution.

For each sCOLA box, we define a particle-mesh grid of size
N3

g (the “PM grid”, represented in dark green in the right panel
of Fig. 2). The PM grid defines the force resolution; it should
be equal to or finer than the LPT grid (Ng ≥ NsCOLA). Before
starting the evolution with sCOLA, each process precomputes
the Dirichlet boundary conditions that will be required by the
Poisson solver at each value of the scale factor aK. This cal-
culation takes as input the initial gravitational potential φ̃(1)(q)
and outputs ΦBCs(x, aK) for each aK, defined on the PM grid
with a padding of 2Nghost cells around the sCOLA box in each
direction (light green and yellow regions in Fig. 2, right panel).
The approximation involved in this step is further discussed in
Sect. 3.4.2.

3.4. Evolution of sCOLA boxes

Each sCOLA box is then evolved according to the scheme
reviewed in Sect. 2.3 and Appendices A and B. Two specific
approximations are needed to compute the operators and quan-
tities with a superscript “sCOLA”; we now discuss the choices
that we made.

3.4.1. Density assignment (BsCOLA)

As mentioned in Sect. 2.3, only particles of the sCOLA box
should contribute to δsCOLA(x, a). For particles that are fully
in the sCOLA box, density assignment can be chosen as the

same operation as would be used in a PM or tCOLA code (typ-
ically, a CiC scheme). A question is what to do with particles
that have (partially) left the sCOLA box during the evolution,
while keeping the requirement of no communication between
boxes: this constitutes the only difference between the operators
B and BsCOLA. Possible choices include artificially periodising
the sCOLA box (which is clearly erroneous) or stopping par-
ticles at its boundaries (which does not conserve momentum).
Both of these choices assign the entire mass carried by the set of
sCOLA particles S to the PM grid, but result in artefacts in the
final conditions, if the buffer region is not large enough.

An alternative choice is simply to limit the (Eulerian) PM
grid volume where we compute δsCOLA(x, a) to the (Lagrangian)
sCOLA box, including central and buffer regions. In practice,
this means ignoring the fractional particle masses that the CiC
assignment would have deposited to grid points outside the
sCOLA box. We have found in our tests that this choice gives the
smallest artefacts of the three choices considered5. We note that
(partially) erasing some particles’ mass is an approximation that
is only used in the BsCOLA operator to evaluate the source term
in the Poisson equation, and therefore only affects the force cal-
culation. The number of particles, both within each sCOLA pro-
cess (N3

p,sCOLA) and in the full simulation (N3
p ), is left unchanged

during the evolution. Therefore, mass is always conserved both
within each sCOLA process and within the full volume.

3.4.2. Gravitational potential (∆x
sCOLA, ∇x

sCOLA and B̄sCOLA)

Poisson solver (∆sCOLA
x ). To make sure that differences

between ΦsCOLA(x, a) and Φ(x, a) are as small as possible, we
make use of a Poisson solver with Dirichlet boundary condi-
tions, instead of assuming periodic boundary conditions. Such
a Poisson solver uses discrete sine transforms (DSTs) instead
of FFTs, and requires the boundary values of Φ in six planes
(west, east, south, north, bottom, top) surrounding the PM grid
(see Appendix C). These planes have a thickness of Nghost cells
(depending on the value of the FDA used to approximate the
Laplacian); they are represented by hatched regions in Fig. 2,
right panel. At each scale factor aK when the computation
of accelerations is needed, the Dirichlet boundary conditions
are extracted from the precomputed ΦBCs(x, aK) (step C.3., see
Sect. 3.3).

Ideally, ΦBCs(x, aK) should be the exact, non-linear gravi-
tational potential in the full volume at aK, Φ(x, aK). However,
knowing this quantity would require having previously run the
monolithic simulation in the full volume, which we seek to
avoid. In this paper, we rely instead on the linearly-evolving
potential (LEP) approximation (Brainerd et al. 1993; Bagla &
Padmanabhan 1994), namely

ΦBCs(x, aK) ≈ ΦLEP(x, aK) ≡ D1(aK) φ̃(1)(x). (23)

The idea behind this approximation is that the gravitational
potential is dominated by long-wavelength modes, and therefore
it ought to obey linear perturbation theory to a better approxima-
tion than the density field.

In Eq. (23), we have assumed that the linear growth factor
D1 is normalised to unity at the scale factor corresponding to
the initial conditions. The precomputation of ΦBCs in step C.3. is
therefore an interpolation from the LPT grid to the PM grid and
a simple scaling with D1(aK).
5 There is a certain symmetry to this choice, since particles that would
have moved into the buffer region from the outside are also neglected in
the force calculation, due to the lack of communication between differ-
ent sCOLA boxes.
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Table 2. Different setups used to test the accuracy and speed of our sCOLA algorithm.

L [Mpc h−1] Np N Ntiles Np,tile Ltile [Mpc h−1] Np,buffer Lbuffer [Mpc h−1] Ng r p

200 512 256 16 32 12.5 32 12.5 97 27 151.70
8 64 25 32 12.5 129 8 64
8 64 25 64 25 193 27 18.96
4 128 50 32 12.5 193 3.38 18.96
4 128 50 64 25 257 8 8
4 128 50 128 50 385 27 2.37
2 256 100 32 12.5 321 1.95 4.10
2 256 100 64 25 385 3.38 2.37

1000 1024 512 16 64 62.5 14 13.7 93 2.97 1378.91
16 64 62.5 26 25.4 117 5.95 687.90
16 64 62.5 40 39.1 145 11.39 359.59
16 64 62.5 64 62.5 193 27 151.70
8 128 125 10 9.8 149 1.55 331.22
8 128 125 20 19.5 169 2.26 226.45
8 128 125 30 29.3 189 3.17 161.59
8 128 125 50 48.8 229 5.65 90.59

The output of the Poisson solver is the gravitational potential
ΦsCOLA(x, aK) on the PM grid, in the interior of the sCOLA box
(dark green grid points in Fig. 2, right panel). Consistently with
the treatment above, ΦsCOLA(x, aK) is padded using the values of
ΦBCs(x, aK) in 2Nghost cells around the PM grid, in each direction
(light green and yellow regions in Fig. 2, right panel).

Therefore, the only difference between ∆sCOLA
x and ∆x

resides in using the LEP instead of the true, non-linear gravi-
tational potential at the boundaries of the sCOLA box.

Accelerations (∇x
sCOLA and B̄sCOLA). Given the gravitational

potential ΦsCOLA(x, aK), accelerations are computed by finite
differencing in configuration space and interpolation to parti-
cles’ positions, similarly to step C.2. (see Sect. 3.3). The appli-
cation of ∇sCOLA

x consumes Nghost cells, so that accelerations are
obtained on the PM grid with a padding of Nghost cells (yellow
region in Fig. 2, right panel). Interpolation from the grid to par-
ticles’ position (the B̄sCOLA operator) further consumes Nghost
cells.

As for the Laplacian, the only difference between ∇sCOLA
x

and ∇x, and B̄sCOLA and B̄, resides in using the LEP in
ΦsCOLA(x, aK) instead of the true, non-linear gravitational poten-
tial at the boundaries of the sCOLA box.

4. Accuracy and speed

We implemented the perfectly parallel sCOLA algorithm
described in Sect. 3 in the Simbelmynë code (Leclercq et al.
2015), publicly available6 (see also Leclercq 2015, appendix
B, for technical details on the implementation of the PM and
tCOLA models in Simbelmynë). This section describes some
tests of the accuracy and speed of the new sCOLA algorithm.
Since our implementation, relying on evaluating forces with a
PM scheme, introduces some additional approximations with
respect to tCOLA, we compare our results to that of correspond-
ing monolithic tCOLA simulations. The accuracy of tCOLA
with respect to more accurate gravity solvers has been charac-
terised in the earlier literature (Tassev et al. 2013; Howlett et al.
2015; Leclercq et al. 2015; Koda et al. 2016; Izard et al. 2016).
The question of comparing the accuracy of our sCOLA algo-

6 https://bitbucket.org/florent-leclercq/simbelmyne/

rithm to full N-body simulations would require building in a full
N-body integrator for the sCOLA boxes (see Eqs. (14) and (16));
this subject is left for future research.

Throughout the paper, we adopt the ΛCDM model with
Planck 2015 cosmological parameters: h = 0.6774, ΩΛ =
0.6911, Ωb = 0.0486, Ωm = 0.3089, nS = 0.9667, σ8 = 0.8159
(Planck Collaboration XIII 2016, page 31, Table 4, last column).
The initial power spectrum is computed using the Eisenstein &
Hu (1998, 1999) fitting function.

We base our first tests on a periodic box of comoving side
length L = 200 Mpc h−1 populated with N3

p = 5123 dark mat-
ter particles. For all operators, we use FDA at order 2. The
LPT grid has N3 = 2563 voxels. Particles are evolved to red-
shift z = 19 using 2LPT. For all runs, we use 10 time-steps
linearly-spaced in the scale factor to evolve particles from z =
19 (ai = 0.05) to z = 0 (af = 1) (see Appendix B)7. For
tCOLA, the PM grid, covering the full box, has 5123 voxels.
For sCOLA, we use eight different setups, with various param-
eters {Ntiles,Np,tile, Ltile,Np,buffer, Lbuffer,Ng, r, p} given in the first
part of Table 2.

To assess more extensively the impact of using sCOLA on
large scales, we used a second ensemble of simulations with the
following differences: a box with comoving side length of L =
1 Gpc h−1, Np = 10243 particles, a LPT grid with N3 = 5123

voxels, and a PM grid of 10243 voxels for tCOLA. For sCOLA,
we use eight different setups given in the second part of Table 2.

4.1. Qualitative assessments

The redshift-zero density field is estimated by assigning all par-
ticles to the LPT grid using the CiC scheme. Results for the
200 Mpc h−1 box are shown in Fig. 3. There, the bottom right
panel shows the reference tCOLA density field and other pan-
els show the differences between sCOLA and tCOLA results,
for the eight different setups. Some qualitative observations can
be made: when artefacts are visible in the sCOLA results, they
mainly affect over-dense regions of the cosmic web (filaments
and halos), whereas under-dense regions are generally better
recovered. Artefacts are of two types: the position of a structure

7 This means that in the case of our new sCOLA algorithm, we use
COLA both “in space and time” (see Tassev et al. 2015).
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Fig. 3. Qualitative assessment of the redshift-zero density field from sCOLA for different tilings and buffer sizes, with respect to tCOLA. The
bottom right panel shows the reference tCOLA density field in a 200 Mpc h−1 box with periodic boundary conditions (the quantity represented is
ln(2 + δtCOLA) where δtCOLA is the density contrast). Other panels show the difference between sCOLA and tCOLA density fields, ln(2 + δsCOLA) −
ln(2 + δtCOLA), for different sizes of tile and buffer region, as indicated above the panels. The tiling is represented by dashed lines, and the central
tile’s buffer region is represented by solid lines. In the third dimension, the slices represented intersect the central tile at its centre. As can be
observed in this figure, artefacts are predominantly located close to the boundaries of tiles; they are reduced with increasing tile size and buffer
region size.

(usually a filament) can be imprecise due to a misestimation of
bulk motions (this is visible as a “dipole” in Fig. 3); or the den-
sity (usually of halos) can be over- or under-estimated (this is
visible as a “monopole” in Fig. 3). In all setups, artefacts are pre-
dominantly located close to the boundaries of tiles (represented
as dashed lines) and are less visible in the centre of tiles. This can
be easily understood given that the approximations made all con-

cern the behaviour at the boundaries of sCOLA boxes. At fixed
size for the buffer region, the correspondence between sCOLA
and tCOLA density fields improves with increasing tile size.
A minimum tile size of about 50 Mpc h−1 seems necessary to
limit the misestimation of halo densities (“monopoles” in Fig. 3).
At low redshift, this scale is in the mildly non-linear regime,
where LPT starts to break down; therefore, the LPT frame is
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Fig. 4. Same as Fig. 3, but for one component of the velocity field, in km/s. Bulk flows are correctly captured if tiles and their buffer regions are
large enough. Residual differences inside halos can be observed, but they are expected due to the limited number of time-steps, rendering both
tCOLA and sCOLA velocities inaccurate in the deeply non-linear regime.

inaccurate for particles, and the requirement of no communica-
tion between tiles leads to mispredicted clustering. As expected,
at fixed tile size, the results are improved by increasing the buffer
region around tiles: in each sCOLA box, boundary approxima-
tions are pushed farther away from the central region of interest.
A good compromise between reducing artefacts and increasing
the size of buffer regions seems to be found for a buffer region
of 25 Mpc h−1, which corresponds roughly to the maximum dis-
tance travelled by a particle from its initial to its final position.
In particular, the setup Ltile = 50 Mpc h−1, Lbuffer = 25 Mpc h−1

leads to a satisfactory approximation of the tCOLA density with
a parallelisation potential factor p = 8.

In a similar fashion, the velocity field is estimated on the LPT
grid from particle information, using the simplex-in-cell estima-
tor (Hahn et al. 2015; Leclercq et al. 2017). Using phase-space
information, this estimator accurately captures the velocity field,
even in regions sparsely sampled by simulation particles. Results
for the 200 Mpc h−1 box are shown in Fig. 4, where one compo-
nent of the tCOLA velocity field vtCOLA (in km s−1) is shown in
the bottom right panel. Other panels show the velocity error in
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Fig. 5. Power spectrum relative to tCOLA (top panel) and cross-
correlation with respect to tCOLA (bottom panel) of redshift-zero
sCOLA density fields, in a 200 Mpc h−1 box containing 5123 dark mat-
ter particles. Different sizes for the tiles (represented by different line
styles) and buffer regions (represented by different colours) are used, as
indicated in the legend. The vertical lines show the respective funda-
mental mode of different tiles, the light grey bands correspond to 3%
accuracy, and the dark grey bands to 1% accuracy.

sCOLA, vsCOLA − vtCOLA in km s−1. Differences between tCOLA
and sCOLA velocity fields are of two kinds: misestimation of
bulk flows (visible as light, spatially extended regions in Fig. 4),
or misestimation of particle velocities inside halos (visible as
dark spots in Fig. 4). We do not interpret the second kind of
differences as errors made by our sCOLA algorithm: indeed,
motions within virialised regions are not captured accurately
by any simulation using only ten time-steps, even by tCOLA
in the full box. Therefore, only the first kind of differences,
that is, the misestimation of coherent bulk motions is physically
interpretable. In this respect, the same behaviour as for density
fields can be observed: artefacts are mostly located at the bound-
aries of tiles, and they are reduced with increasing tile size and
buffer region size, with safe minima of Ltile & 50 Mpc h−1 and
Lbuffer & 25 Mpc h−1, respectively.

4.2. Summary statistics

In this section, we turn to a more quantitative assessment of our
results, by checking the power spectrum of final density fields
and their cross-correlation to the tCOLA density field. Even if
final density fields are non-Gaussian, two-point statistics (auto-
and cross-spectra) are expected to be sensitive to the approxima-
tions made in our sCOLA algorithm, which involves both local
and non-local operations in configuration space.

According to Huterer & Takada (2005) or Audren et al.
(2013), in the best cases, observational errors for a Euclid-like
survey are typically of order 3% for k < 10−2 (Mpc h−1)−1. These
results do not account for any of the systematic uncertainties
linked to selection effects or contamination of the clustering sig-
nal by foregrounds. At smaller scales, theoretical uncertainties
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Fig. 6. Same as Fig. 5, but in a 1 Gpc h−1 box containing 10243 particles.

take over, reaching 1% and above for k > 10−1 (Mpc h−1)−1. In
addition, the impact of baryonic physics is still largely uncer-
tain, some models predicting an impact of at least 10% at k =
1 (Mpc h−1)−1 (e.g. van Daalen et al. 2011; Chisari et al. 2018;
Schneider et al. 2019). Any data model involving our sCOLA
algorithm will be subject to these uncertainties. For this reason,
we aim for no better than 3% to 1% accuracy at all scales up to
k = 1 (Mpc h−1)−1, for any two-point measurement of clustering.

More precisely, we work with P(k) and R(k), defined for two
density contrast fields δ and δ′ = δtCOLA, with our Fourier trans-
form convention, by

δD(k − k′)P(k) ≡ (2π)−3L6 〈
δ∗(k)δ(k′)

〉
, (24)

δD(k − k′)R(k) ≡

〈
δ∗(k)δ′(k′)

〉√〈
δ∗(k)δ(k′)

〉 〈
δ′∗(k)δ′(k′)

〉 , (25)

where δD is a Dirac delta distribution. For the estimation of P(k)
and R(k), we use 100 logarithmically-spaced k-bins from the fun-
damental mode of the box kmin ≡ 2π/L to k = 1 (Mpc h−1)−1.

In Figs. 5 and 6, we plot the power spectrum of sCOLA
density fields divided by the power spectrum of the reference
tCOLA density field, PsCOLA(k)/PtCOLA(k) (upper panels) and
the cross-correlation between sCOLA and tCOLA density fields,
R(k) (bottom panels), for our 200 Mpc h−1 (Fig. 5) and 1 Gpc h−1

box (Fig. 6). The grey horizontal bands represent the target accu-
racies of 3% and 1%, and the vertical lines mark the fundamental
modes of the tiles, ktile ≡ 2π/Ltile, for the different values of Ltile
used.

Figure 5 quantitatively confirms the considerations of
Sect. 4.1. Both the amplitudes (as probed by P(k)/PtCOLA(k))
and the phase accuracy (as probed by R(k)) of sCOLA simula-
tions are improved with increasing tile size, for a fixed buffer
region (different line styles, same colours). For a fixed tile size,
results are also improved by increasing the size of the buffer
region (same line styles, different colours). Remarkably, all
setups yield perfect phase accuracy at large scales (R(k) = 1
for k ≤ 0.2 (Mpc h−1)−1), even when the amplitude of corre-
sponding modes deviates from the tCOLA result. Defects at
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small scales (lack of power and inaccurate phases) are only
observed for the smallest tile sizes and are fixed by increas-
ing the size of buffer region. This effect can be interpreted in
Lagrangian coordinates: when the Lagrangian volume forming
a halo is divided among different tiles that do not exchange
particles, and if the buffer region is too small to contain the
rest of the halo, the resulting structure is then split and under-
clustered in Eulerian coordinates. In this respect, preferring a
sCOLA box size (LsCOLA ≡ Ltile+2Lbuffer) of at least 100 Mpc h−1

(and therefore Ltile & 50 Mpc h−1, Lbuffer & 25 Mpc h−1, in most
situations) seems to be sensible. A more difficult issue is the
amplitude of large-scale modes, for k < ktile. These are sen-
sitive to the tiling if buffer regions around tiles are too small.
A safe requirement also seems to be Lbuffer & 25 Mpc h−1.
Putting everything together, in our 200 Mpc h−1 box, three
setups reach 3% accuracy in amplitude and phases at all scales:
{Ltile = 50 Mpc h−1, Lbuffer = 25 Mpc h−1} (discussed already
in Sect. 4.1); {Ltile = 100 Mpc h−1, Lbuffer = 25 Mpc h−1}; and
{Ltile = 50 Mpc h−1, Lbuffer = 50 Mpc h−1}. The last-mentioned
performs even better, reaching 1% accuracy at all scales, but at
the price of over-simulating the volume by a larger factor.

Figure 6 shows the same diagnostics for a 1 Gpc h−1 box,
where the qualitative behaviour is the same as before. It con-
firms the requirement Lbuffer & 25 Mpc h−1 to get sufficient accu-
racy at high k. The question of the accuracy reached at the
largest scales is then jointly sensitive to Ltile and L. In our tests,
the setups {Ltile = 62.5 Mpc h−1, Lbuffer = 39.1 Mpc h−1} and
{Ltile = 125 Mpc h−1, Lbuffer = 29.3 Mpc h−1} yield 3% accurate
results at all scales, and the setups {Ltile = 62.5 Mpc h−1, Lbuffer =
62.5 Mpc h−1} and {Ltile = 125 Mpc h−1, Lbuffer = 48.8 Mpc h−1}

almost reach 1%-level precision at all scales. We note that the
two different boxes have different mass resolutions, which con-
firms that requirements for tile and buffer region sizes should be
expressed in physical size.

4.3. Tests of the approximations

As discussed in Sect. 3.4, two approximations are introduced
in our sCOLA algorithm with respect to a monolithic tCOLA
approach. These concern density assignment in the interior of
sCOLA boxes (approximation D.1.) and the gravitational poten-
tial at the boundaries of sCOLA boxes (approximation D.2.). In
this section, we test the impact of these approximations on final
results, using two-point statistics as diagnostic tools. For this test
we use our sCOLA run with L = 200 Mpc h−1, Np = 5123,
64 tiles (Ntiles = 4, Np,tile = 128) and Np,buffer = 32 (i.e.
Ltile = 50 Mpc h−1, Lbuffer = 12.5 Mpc h−1). We choose a small
buffer size on purpose, to be sensitive to the approximations
made.

Let us denote by δint the density contrast in the interior of
sCOLA boxes and by ΦBCs the gravitational potential at the
boundaries of sCOLA boxes. As discussed in Sect. 3.4, our algo-
rithm involves an approximation regarding particles leaving the
sCOLA box during the evolution, yielding δsCOLA, and relies on
the LEP approximation at the boundaries. It therefore uses

δint = δsCOLA and ΦBCs = ΦLEP. (26)

Everything else being fixed, we ran three investigative sCOLA
simulations using respectively,

δint = δ and ΦBCs = ΦLEP, (27)

δint = δsCOLA and ΦBCs = Φ, (28)
δint = δ and ΦBCs = Φ, (29)
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Fig. 7. Tests of the approximations made in sCOLA for the density field
and the gravitational potential. As in Fig. 5, the diagnostic tools are the
power spectrum relative to tCOLA (top panel) and the cross-correlation
with tCOLA (bottom panel). Our sCOLA algorithm uses the approx-
imate interior density field δsCOLA and the LEP approximation for the
boundary gravitational potential (dash-dotted blue line). In other simu-
lations, as indicated in the legend, we use the true density field δ and/or
the true gravitational potential Φ at the boundaries. The approximation
made for the density field dominates, especially at large scales.

where δ is the “true” density contrast and Φ is the “true” gravita-
tional potential, extracted at each time-step from the correspond-
ing tCOLA simulation.

Figure 7 shows the auto- and cross-spectra of resulting
sCOLA density fields, with respect to the reference tCOLA
result. The use of δint = δ yields by construction R(k) = 1 at
all scales, as can be checked from the bottom panel. The setup
given by Eq. (29) is rid of the two approximations; it is there-
fore a consistency check: one should retrieve the tCOLA result
if no bias is introduced by the tiling and different Poisson solver.
As expected, Fig. 7 shows that our implementation recovers the
tCOLA result at all scales, with only a small excess of power at
k > 0.4 (Mpc h−1)−1 explained by the slightly higher force res-
olution of the sCOLA run with respect to tCOLA (the PM grid
cell sizes are 0.3886 and 0.3906 Mpc h−1, respectively).

The setups given by Eqs. (27) and (28) allow disentangling
the impact of approximations D.1. and D.2. In the standard run
(Eq. (26)), averaging over tiles and timesteps, ∼0.43% of the
5123 particles, all of which belonging to the buffer region, do not
deposit all of their mass in the calculation of δsCOLA, but ∼76.5%
on average. This number only slightly increases with time (from
∼0.35% at a = 0.05 to ∼0.47% at a = 1); in other simula-
tions, we have found that it has a stronger dependence on the
mass resolution and on the surface of sCOLA boxes. Regarding
the accuracy of the LEP approximation, the ratio of the power
spectra of Φ − ΦLEP and of Φ goes to zero at early times and
large scales, and stays below 12% for all scales with wavenum-
ber k ≤ 2π/LsCOLA at a = 1. As can be observed in Fig. 7,
although using the non-linear gravitational potential instead of
the LEP improves both P(k) and R(k) for the final density field
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at all scales with wavenumber k > 7 × 10−2 (Mpc h−1)−1, it does
not remove the &5% bias in amplitude at the largest scales. On
the contrary, using the true density contrast solves this problem
and yields a 3% accurate result at all scales, which is remarkable
given the small buffer size used in this case (the over-simulation
factor is only r = 3.38).

We conclude from these tests that the approximation made
regarding the density field (D.1.) has more impact than the
one regarding the gravitational potential (D.2.), especially on
the largest modes. This result is consistent with the standard
paradigm for structure formation, where the density contrast
undergoes severe non-linearity at small scales and late times,
while the gravitational potential evolves very little. It also sug-
gests that future improvements of our algorithm should focus on
finding a better approximation for δsCOLA, rather than ΦBCs.

4.4. Computational cost

One of the main motivations for our perfectly parallel algorithm
based on sCOLA is to be able to run very large volume sim-
ulations at reasonably high resolution. A detailed analysis of
the speed and computational cost of our algorithm, as imple-
mented in Simbelmynë, is therefore beyond the intent of this
paper. However, in this section we discuss some performance
considerations based on a sCOLA run with L = 1 Gpc h−1,
Np = 10243, 512 tiles (Ntiles = 8, Np,tile = 128), Np,buffer = 30 (i.e.
Ltile = 125 Mpc h−1, Lbuffer = 29.3 Mpc h−1), Ng = 199; and the
corresponding monolithic tCOLA simulation. In this case, the
over-simulation factor is r ≈ 3.17 and the parallelisation poten-
tial factor is p ≈ 161.59. To compare the theoretical paralleli-
sation potential factor and the realised parallelisation efficiency,
we use one process for tCOLA and 512 processes for sCOLA.
Each process is run on a node with 32 cores using OpenMP par-
allelisation.

One of the main advantages of our sCOLA algorithm lies in
its reduced memory consumption. In Fig. 8 (first row), we show
the memory requirements for the calculation of LPT potentials
in the full box (common for tCOLA and sCOLA), for the evo-
lution of the full box with tCOLA, and for the evolution of each
sCOLA box, all in single-precision floating-point format. LPT
requires eight grids of size N3 (one for the initial conditions, one
for the Zel’dovich potential, and six for the second-order term),
occupying ∼4.3 GB. Evolution with tCOLA requires one integer
and 12 floating-point numbers per particle (their identifier, their
position x, their momentum p, and the vectors Ψ1 and Ψ2), plus
a PM grid of 10243 voxels, for a total of ∼60.1 GB. Within each
box, sCOLA requires the same memory per particle (but with
N3

p,sCOLA � N3
p ), a PM grid of size N3

g , and some overhead for
Dirichlet boundary conditions. The total is around 400 MB per
sCOLA box with the setup considered here.

In the second row of Fig. 8, we show the overall cost of
tCOLA versus sCOLA, both in terms of CPU time (middle left
panel) and wall-clock time (middle right panel). The key feature
of our algorithm is that, although the overall CPU time needed is
unavoidably higher than with tCOLA, the wall-clock time spent
can be drastically reduced. This owes to the degree of parallelism
of our algorithm, which is equal to the number of sCOLA boxes.
In particular, if as many processes as sCOLA boxes can be allo-
cated (512 in this case), the overall wall-clock time is deter-
mined by the initial full box operations (common with tCOLA,
see Sect. 3.1), plus the cost of evolving only one sCOLA box
(an average of 30.9 wall-clock seconds on 32 cores in this test).
This is what is shown in the middle right panel of Fig. 8. The
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Fig. 8. Memory requirements (first row) and timings for two corre-
sponding tCOLA and sCOLA simulations. Although the CPU time
required is higher for sCOLA, the memory consumption and wall-clock
time are significantly reduced with respect to tCOLA, due to the per-
fectly parallel nature of most computations (second row). In the middle
left panel, the height of the white bar shows the hypothetical cost of
running tCOLA for the same volume as simulated with sCOLA, when
taking buffer regions into account. The relative contributions of differ-
ent operations, as detailed in the legend, is shown in the third row. The
main difference in computational cost in sCOLA with respect to tCOLA
comes from the use of DSTs instead of FFTs, which makes the evalua-
tion of the potential significantly more expensive.

wall-clock time reduction factor is ≈93 for the evolution only
(≈11 when accounting for initialisation and writing outputs).
Compared to the parallelisation potential factor p ≈ 162, this
number means that sCOLA-specific operations and the larger
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fractional parallelisation overhead in sCOLA boxes do not sig-
nificantly hamper the perfectly parallel nature of the code.

The increased CPU time needed with sCOLA (see Fig. 8,
middle left panel) is partly due to the necessity of over-
simulating the volume of interest by a factor r > 1 for accu-
racy. For comparison with the sCOLA CPU time, the height of
the white bar shows the tCOLA CPU time multiplied by r. The
rest of the difference in CPU time principally comes form the
fact that simulations with our variant of sCOLA are intrinsically
more expensive than with tCOLA for a periodic volume of the
same size. This point is further discussed below.

In the third row of Fig. 8, we show the various relative
contributions to CPU time and wall-clock time, both for full
tCOLA/sCOLA runs and per tCOLA/sCOLA box. The gener-
ations of the initial conditions (brown, step A.1.) and writing
of outputs to disk (grey) are common to tCOLA and sCOLA
and have an overall fixed cost. LPT calculations in the full box
(pink) consist of computing the Lagrangian potentials and the
particle-based LPT displacements in tCOLA, but are limited
to computing the Lagrangian potentials in the full box in the
case of sCOLA (step A.2.). These full-box operations are only
showed in the bars labelled “tCOLA” and “sCOLA”. Within each
box, the different operations are evaluating the density field (yel-
low), solving the Poisson equation to get the gravitational poten-
tial (green), differentiating the gravitational potential to get the
accelerations (blue), “kicking” particles (red), and “drifting” par-
ticles (purple). sCOLA further requires some specific operations
within each box: communicating with the master process (steps
B.1., B.2., and C.1.), calculating the particle-based LPT dis-
placements (step C.2.), grouped in Fig. 8 and shown in orange;
and pre-computing the Dirichlet boundary conditions with the
LEP approximation (step C.3., cyan). sCOLA-specific opera-
tions do not contribute more than 10% of the CPU and wall-
clock times per box.

A notable difference between evolving a given box with
sCOLA or with tCOLA resides in the higher cost of evaluating
the potential (green): in this case, 9% of CPU time and 13% of
wall-clock time with sCOLA versus 6% of CPU time and 3% of
wall-clock time with tCOLA. This effect is due to the use of DSTs,
required by the Poisson solver with Dirichlet boundary conditions
(see Sect. 3.4 and Appendix C), instead of FFTs. Indeed, depend-
ing on the size of the PM grid, the evaluation of DSTs can be the
computational bottleneck of our algorithm (up to 60% of overall
CPU time is some of our runs), as opposed to the evaluation of
the density field (e.g. via CiC) in traditional tCOLA or PM codes
(37% of overall CPU time). For this reason, within each setup, we
recommend performing experiments to find a PM grid size giving
a good compromise between force accuracy and computational
efficiency. In particular, it is strongly preferable that Ng+1 not con-
tain large prime factors (this number appears in the basis functions
of sine transforms, see Appendix C.2). Throughout this paper, we
ensured that Ng+1 is always even, while keeping roughly the same
force resolution as the corresponding tCOLA simulation. We note
that our choice of Ng + 1 = 200 in the present test, combined with
the use of a power of two for the PM grid in the monolithic tCOLA
run, favours tCOLA in the comparison of CPU times. The sCOLA
CPU time shown in the middle left panel of Fig. 8 could be further
optimised by making Ng + 1 a power of two in sCOLA boxes.

5. Discussion and conclusion
5.1. Discussion

The principal computational challenge of the gravitational N-
body problem is the long-range nature of the gravitational force.

Our sCOLA approach enables perfectly parallel computations
and therefore opens up profoundly new possibilities for how to
compute large-scale cosmological simulations. We discuss these,
some consequences and possible future directions in the follow-
ing.

Gravity and physics models. It is important to note that the
sCOLA algorithm introduced in this work is general, and not
limited to the gravity model used here: while we focused on
a tCOLA particle-mesh implementation to evolve the sCOLA
tiles, this choice was designed to facilitate the assessment of
tiling artefacts against monolithic tCOLA runs. Nonetheless,
any N-body method, such as particle-particle–particle-mesh, tree
methods or AMR, could be used to evolve each tile. In particular,
since the sCOLA approach separates quasi-linear and non-linear
scales, there is no need to cut off the computation on small scales.
In concert with the approaches discussed below, this fact can be
exploited to perform very high-resolution, fully non-linear simu-
lations in cosmological volumes. In this case, the spatial decou-
pling due to sCOLA would render computations possible that
would otherwise be prohibitive.

Similar comments apply to including non-gravitational
physics: since hydrodynamical or other non-gravitational forces
are typically much more local than gravitational interactions,
there are no algorithmic barriers to including them in each
sCOLA tile8.

Construction of light-cones and mock catalogues. The
decoupling of computational volumes achieved by our approach
means that each sCOLA box can be run completely indepen-
dently. Therefore, it is not necessary to define a common final
redshift for all tiles. This means that to compute a cosmological
light-cone, only a single tile (the one containing the observer)
needs to be run to redshift zero. Since the volume on the light-
cone increases rapidly with redshift, the vast majority of tiles
would only have to be run until they intersect the light-cone
at high redshift. In monolithic N-body simulations, most of the
computational time is spent at low redshift, since the local time-
step of simulations decreases with the local dynamical time. Our
approach would therefore greatly accelerate the time needed to
complete light-cone simulations, by scheduling tiles in order of
the redshift to which they should run (and therefore in reverse
order of expected computational time), aiding load-balancing.

The construction of light-cones for surveys with large aspect
ratios, such as pencil-beam surveys, can further benefit from
sCOLA. Indeed, tiles that do not intersect the three-dimensional
survey window do not need to be run at all for the construction of
mock catalogues. In such a case, the algorithm will still capture
the effects of large-scale transverse modes, even if the simulated
volume is not substantially increased with respect to the survey
volume.

Low memory requirements. sCOLA divides the compu-
tational volume into much smaller tiles and vastly reduces
the memory footprint of each independent sCOLA tile com-
putation, as shown in Sect. 4.4. As an example, simulating a
(16 Gpc h−1)3 volume containing 81923 particles to achieve a
mass resolution of 1012.5 M� requires ∼19.8 TB of RAM with
a PM code and ∼33.0 TB of RAM with tCOLA. The setup
{Ltile = 62.5 Mpc h−1, Lbuffer = 62.5 Mpc h−1} would break down
the problem into 2563 tiles, each with (3 × 32)3 particles and a

8 A potential exception is long-range radiative transport of energetic
(X-ray or gamma ray) photons, requiring a non-trivial extension of the
approach.
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memory footprint of ∼53 MB. This has important consequences,
which we explore in the following.

The very modest memory requirement of our algorithm
opens up multiple possibilities to accelerate the computation:
even on traditional systems, the entire computation of each
sCOLA tile would fit entirely into the L3 cache of a multi-core
processor. This would cut out the slowest parts of the memory
hierarchy, leading to a large potential performance boost and
reducing code complexity. Even more promising, many such
tiles could be evolved entirely independently on GPU accelera-
tors, or even dedicated FPGAs, taking advantage of hybrid archi-
tectures of modern computational platforms while reducing the
need to develop sophisticated code to manage task parallelism.
At this scale, each tile computation would even fit comfortably
on ubiquitous small computational platforms such as mobile
phones.

Grid computing. The perfect scalability achieved by our
approach means that large N-body simulations can even be
run on very inexpensive, strongly asynchronous networks
designed for large throughput computing. An extreme exam-
ple would be participatory computing platforms such as Cos-
mology@Home9, where tens of thousands of users donate
computational resources. The use of such platforms would
be particularly suited to light-cone computations, as described
above. Even if running the low-redshift part necessitates ded-
icated hardware, other workers could efficiently work inde-
pendently to compute most of the volume, which lives at
high-redshift. Only two communication steps are required for
each tile: the LPT potentials are received at the beginning, and
at the end of the computation each tile returns its final state at
the redshift where it intersects the light-cone.

Node Failures. Robustness to node failure is an important
consideration on all very large computational platforms. Even
with extremely low failure probability for each node, since the
number of nodes is high, the probability that some node fails
during the course of a computation becomes high. After its ini-
tialisation steps (see Sect. 3.1), our approach is entirely robust
to such failure, since any individual tile can be recomputed after
the fact on a modest system, for very little cost.

5.2. Conclusion

In this paper, we introduced a perfectly parallel and easily appli-
cable algorithm for cosmological simulations using sCOLA. Our
approach is based on a tiling of the full simulation box, where
each tile is run independently. By the use of buffer regions
and appropriate Dirichlet boundary conditions, we improved
the accuracy of the algorithm with respect to Tassev et al.
(2015). In particular, we showed that suitable setups can reach
3% to 1% accuracy at all the scales simulated, as required
for data analysis of the next generation of large-scale struc-
ture surveys. In case studies, we tested the relative impact of
the two approximations involved in our approach, for density
assignment and the boundary gravitational potential. We con-
sidered the computational cost of our algorithm and demon-
strated that even if the CPU time needed is unavoidably higher,
the wall-clock time and memory footprint can be drastically
reduced.

This study opens up a wide range of possible exten-
sions, discussed in Sect. 5.1. Benefiting from its perfect scal-
ability, the approach could also allow for novel analyses of

9 https://www.cosmologyathome.org/

cosmological data from fully non-linear models previously
too expensive to be tractable. It could straightforwardly be
used for the construction of mock catalogues, but also within
recently introduced likelihood-free inference techniques such as
delfi (Alsing et al. 2018), bolfi (Leclercq 2018) and selfi
(Leclercq et al. 2019), which have a need for cheap simulator-
based data models. We therefore anticipate that sCOLA will
become an important tool in computational cosmology for the
coming era.

Our perfectly parallel sCOLA algorithm has been imple-
mented in the publicly available Simbelmynë code10, where it
is included in version 0.4.0 and later.
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Appendix A: Model equations

A.1. Model equations in the standard PM code

Denoting by a the scale factor of the Universe and τ the con-
formal time, a PM code solves the equations of motion for the
position x and momentum p of dark matter particles in comoving
coordinates (the mass of particles m is absorbed in the definition
of the momentum p):

p = a
dx
dτ
, (A.1)

dp
dτ

= −a∇xΦ(x, τ), (A.2)

coupled to the Poisson equation for the gravitational potential,
sourced by density fluctuations (Eq. (8)),

∆xΦ(x, τ) = 4πGa2ρ̄(τ)δ(x, τ), (A.3)

where G is the gravitational constant and ρ̄(τ) is the mean matter
density at conformal time τ. The density contrast is defined from
the local matter density ρ(x, τ) by

δ(x, τ) ≡
ρ(x, τ)
ρ̄(τ)

− 1. (A.4)

For simplicity, from now on we note ∇x = ∇, ∆x = ∆ and
δ(x, τ) = δ.

It is convenient to choose the scale factor as time variable.
Using ∂τ = a′ ∂a and the background evolution ρ̄(τ) = ρ(0)a−3 (a
prime denotes a differentiation with respect to τ and the super-
script (0) denotes quantities at the present time), the equations to
solve are rewritten:

dx
da

=
p

a′a
, (A.5)

dp
da

= −
a
a′
∇Φ, (A.6)

∆Φ = 4πGρ(0)a−1δ ≡
3
2

Ω
(0)
m a−1δ. (A.7)

We will use the equivalent formulation

dx
da

= D(a)p with D(a) ≡
1

a2H(a)
, (A.8)

dp
da

= K(a)∇
(
∆−1δ

)
with K(a) ≡ −

3
2

Ω
(0)
m

aH(a)
, (A.9)

where we have combined Eqs. (A.6) and (A.7), introduced the
conformal Hubble factor H(a) ≡ a′/a, and defined the ‘drift
prefactor’D(a) and the “kick prefactor” K(a).

A.2. Model equations with COLA

We now introduce the COLA scheme, following Tassev et al.
(2013, 2015). For each particle, we work in the frame comov-
ing with its LPT observer, whose position is given by (see
Sect. 2.1)

xLPT(a) = q − D1(a)Ψ1 + D2(a)Ψ2, (A.10)

where we have introduced the time-independent vectors Ψ1 ≡

∇qφ
(1) and Ψ2 ≡ ∇qφ

(2). Noting x(a) = xLPT(a) + xres(a) the
final position of the same particle, we have

dx
da

=
dxLPT

da
+

dxres

da

with

dxLPT

da
= −

dD1

da
Ψ1 +

dD2

da
Ψ2 ≡ D(a)pLPT. (A.11)

We also define pres such that dxres/da ≡ D(a)pres. Then p =
pLPT + pMC (see Eq. (A.8)). Furthermore,

dpLPT

da
=

d
da

(
1
D(a)

dxLPT

da

)
≡ −K(a)V[xLPT](a), (A.12)

where the differential operatorV[·](a) is defined by

V[·](a) ≡ −
1
K(a)

d
da

(
1
D(a)

d ·
da

)
. (A.13)

With these notations, Eq. (A.9) reads

dp
da

=
dpLPT

da
+

dpres

da

= −K(a)V[xLPT](a) +
dpres

da
= K(a)∇

(
∆−1δ

)
. (A.14)

In COLA, the natural variables are therefore x and pres.
As mentioned in Sect. 2.1, the key point in COLA is that

the fictitious LPT force acting on particles, V[xLPT](a), can be
computed analytically. From Eq. (A.10), it is straightforward to
check that V[xLPT](a) = −V[D1](a)Ψ1 + V[D2](a)Ψ2. The
computation of V[D1](a) and V[D2](a) uses the differential
equations followed by the linear and second-order growth fac-
tor, as well as the second Friedmann equation. The result is (see
e.g. Leclercq 2015, Eqs. (1.7), (1.96), (1.118) and Appendix B)

V[D1](a) = D1(a), (A.15)
V[D2](a) = D2(a) − D2

1(a). (A.16)

The equations of motion to solve are therefore, in tCOLA,

dx
da

= D(a)pres −
dD1

da
Ψ1 +

dD2

da
Ψ2, (A.17)

dpres

da
= K(a)

[
∇

(
∆−1δ

)
− D1(a)Ψ1

+
(
D2(a) − D2

1(a)
)
Ψ2

]
. (A.18)

These are mathematically equivalent to the equations of motion
of a PM code (Eqs. (A.8) and (A.9)). In sCOLA, the “kick equa-
tion” (Eq. (A.18)) is replaced for each particle of the sCOLA box
by the approximation (Tassev et al. 2015)

dpres

da
= K(a)

[
∇

sCOLA
(
(∆sCOLA)−1δsCOLA

)
− D1(a)ΨsCOLA

1

+
(
D2(a) − D2

1(a)
)
ΨsCOLA

2

]
. (A.19)

with the notations introduced in Sect. 2.3, as well as ΨsCOLA
1 ≡

∇sCOLA
q φ(1) and ΨsCOLA

2 ≡ ∇sCOLA
q φ(2). Importantly, the “drift

equation” (Eq. (A.17)) is not modified, since we are always,
by definition, computing a residual displacement with respect
to the LPT observer of the full box, whose position is given by
Eq. (A.10).

Appendix B: Standard and modified time-stepping

B.1. Time-stepping in the standard PM algorithm

In this paper, we adopt the second-order symplectic “kick-
drift-kick” algorithm, also known as the leapfrog scheme (e.g.
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Birdsall & Langdon 1985) to integrate the equations of motion.
This algorithm relies on integrating the equations on a small
time-step and approximating the momenta (p in the “drift equa-
tion” (A.8)) and accelerations (∇(∆−1δ) in the “kick equation”
(A.9)) that appear in the integrands by their value at some time
within the interval. This defines the Drift (D) and Kick (K) oper-
ators, which read using the standard discretisation (Quinn et al.
1997):

D(tD
i , t

D
f , t

K) :

x(tD
i ) 7→ x(tD

f ) = x(tD
i ) + αp(tD

i , t
D
f , t

K)p
(
tK

)
, (B.1)

K(tK
i , t

K
f , t

D) :

p(tD
i ) 7→ p(tD

f ) = p(tD
i ) + βδ(tK

i , t
K
f , t

D)
[
∇

(
∆−1δ

)]
(tD), (B.2)

where

αp(tD
i , t

D
f , t

K) ≡

∫ tD
f

tD
i

D(t̃) dt̃ =

∫ tD
f

tD
i

dt̃
t̃2H(t̃)

,

βδ(tK
i , t

K
f , t

D) ≡

∫ tK
f

tK
i

K(t̃) dt̃ = −
3
2

Ω
(0)
m

∫ tK
f

tK
i

dt̃
t̃H(t̃)

, (B.3)

and t is a function of the scale factor a (typically t(a) = a or
t(a) = exp(a) for time-steps linearly spaced or logarithmically
spaced in the scale factor, respectively).

The time evolution between t0 = t(ai) and tn+1 = t(af) is then
achieved by applying the following operator, E(tn+1, t0), to the
initial state (x(t0), p(t0)):

K(tn+1/2, tn+1, tn+1)D(tn, tn+1, tn+1/2)

×

 n∏
i=0

K(ti+1/2, ti+3/2, ti+1)D(ti, ti+1, ti+1/2)

 K(t0, t1/2, t0). (B.4)

B.2. Time-stepping with COLA, standard discretisation

Using the standard discretisation (Quinn et al. 1997) of
Eqs. (A.17) and (A.18), the Kick and Drift operators for tCOLA
are defined by

D̃(tD
i , t

D
f , t

K) :

x(tD
i ) 7→ x(tD

f ) = x(tD
i ) + αp(tD

i , t
D
f , t

K)pres

(
tK

)
− [D1]

tD
f

tD
i
Ψ1 + [D2]

tD
f

tD
i
Ψ2, (B.5)

K̃(tK
i , t

K
f , t

D) :

pres(t
D
i ) 7→ pres(t

D
f ) = pres(t

D
i ) + βδ(tK

i , t
K
f , t

D)

×
([
∇

(
∆−1δ

)]
(tD) − D1(tD)Ψ1 +

(
D2(tD) − D2

1(tD)
)
Ψ2

)
,

(B.6)

where the time factors αp(tD
i , t

D
f , t

K) and βδ(tK
i , t

K
f , t

D) are the

same as in the PM case (see Eq. (B.3)). For sCOLA, K̃ is given
by the same expression (Eq. (B.6)) but operates on quantities and
differential operators superscripted “sCOLA” consistently with
Eq. (A.19).

In the initial conditions, generated with LPT, we have p =
pLPT; therefore the momentum residual in the rest frame of LPT
observers, pres, should be initialised to zero. At the end, the
LPT momentum pLPT has to be added to pres to recover the full
momentum of particles, p. This corresponds respectively to the

L− and L+ operators (Tassev et al. 2013, Appendix A), given by

L±(t) : p(t) 7→p(t) ± pLPT(t)

= p(t) ±
1
D(t)

(
−

dD1

dt
Ψ1 +

dD2

dt
Ψ2

)
. (B.7)

In COLA, the time evolution between t0 = t(ai) and tn+1 =
t(af) is therefore achieved by applying the following operator to
the initial state (x(t0), p(t0)):

L+(tn+1)Ẽ(tn+1, t0)L−(t0), (B.8)

where Ẽ(tn+1, t0) is the operator given by Eq. (B.4), replacing D
by D̃ and K by K̃.

B.3. Time-stepping with COLA, modified discretisation

Another approach for the discretisation of Eqs. (A.17)
and (A.18) is proposed by Tassev et al. (2013). For any arbitrary
positive function u of t, we can rewrite

dx
dt

= D(t)u(t)
{

1
u(t)
× pres

}
−

dD1

dt
Ψ1 +

dD2

dt
Ψ2, (B.9)

dpres

dt
=

du(t)
dt

{
K(t)

du(t)/dt
×

[
∇

(
∆−1δ

)
−D1(t)Ψ1 +

(
D2(t) − D2

1(t)
)
Ψ2

] }
. (B.10)

This form is particularly relevant if pres has a time dependence
which is entirely captured by a particular u(t), which is univer-
sal for all particles. For each equation, considering that the part
between curly brackets is constant during the time-step (instead
of the momentum and accelerations, respectively), the modi-
fied D̃ and K̃ operators are given by Eqs. (B.5) and (B.6) with
the following modified time factors instead of αp(tD

i , t
D
f , t

K) and
βδ(tK

i , t
K
f , t

D):

α̃p(tD
i , t

D
f , t

K) ≡
1

u(tK)

∫ tD
f

tD
i

D(t̃)u(t̃) dt̃,

β̃δ(tK
i , t

K
f , t

D) ≡
(
u(tK

f ) − u(tK
i )

)
×

K(tD)
(du(t)/dt)(tD)

, (B.11)

where in β̃δ(tK
i , t

K
f , t

D), we have used the trivial integration∫ tK
f

tK
i

du(t̃)
dt̃

dt̃ = u(tK
f ) − u(tK

i ).

Using the Ansatz suggested by Tassev et al. (2013), u(a) =
anLPT when t(a) = a, we get the explicit expressions

α̃p(aD
i , a

D
f , a

K) =
1

(aK)nLPT

∫ aD
f

aD
i

ãnLPT−2

H(ã)
dã,

β̃δ(aK
i , a

K
f , a

D) = −
3
2

Ω
(0)
m

(aK
f )nLPT − (aK

i )nLPT

nLPT(aD)nLPTH(aD)
. (B.12)

We adopt this form and nLPT = −2.5 for both tCOLA and
sCOLA operators, throughout this paper.

Appendix C: Poisson solver with Dirichlet
boundary conditions

In this appendix, we describe how to compute the interior grav-
itational potential Φ with Dirichlet boundary conditions. The
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method is standard in computational physics and has been used
at least since James (1977). Formally, we seek to solve the dis-
crete Poisson equation,

∆Φ = δ, (C.1)

subject to a known boundary potential ΦBCs, where ∆ is the FDA
to the exact Laplacian operator, i.e. ∆ ≡ ∂2

x + ∂2
y + ∂2

z where ∂2
x,

∂2
y , and ∂2

z are discrete one-dimensional second-order derivatives
(see Table 1 in Hahn & Abel 2011, for their expressions in FDA
at order 2, 4 and 6).

C.1. Modified density distribution

We define ΦBCs as having non-zero values only in a layer of
Nghost cells immediately outside the active domain of the PM
grid. We can then write the desired potential as Φ ≡ Φ̃ + ΦBCs

where the required boundary condition for Φ̃ is Φ̃ = 0. From
the definition of ΦBCs, ∆ΦBCs will be non-zero only in a layer
of Nghost active cells just inside the domain boundaries. We can
thus define a modified density distribution,

δ′ ≡ δ − ∆ΦBCs, (C.2)

which is the same as δ everywhere except in the layer of Nghost
cells adjoining the domain boundaries. We can then employ a
zero-boundary condition Poisson solver to obtain a solution of
∆Φ̃ = δ′ (see Sect. C.2). Within the interior, where ΦBCs = 0,
this solution is the desired final solution of ∆Φ = δ with the
Dirichlet boundary condition Φ = ΦBCs.

C.2. Zero-boundary condition Poisson solver

In cosmological simulations, it is conventional to use FFTs to
solve the Poisson equation, since the discrete Laplacian operator
is diagonal in Fourier space. FFTs assume that the input source
has periodic boundary conditions. Similarly, for zero boundary
conditions, we can work with three-dimensional type-I discrete
sine transforms (DST-I), defined by

δ`,m,n ≡

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

δi, j,kX
`
iY

m
j Z

n
k , (C.3)

where δi, j,k is the value of the source field in the voxel indexed
by 1 ≤ i ≤ Nx, 1 ≤ y ≤ Ny, 1 ≤ k ≤ Nz (Nx = Ny = Nz = Ng in
this paper). The basis functions are defined by

X`i ≡ sin
(
π`i

Nx + 1

)
, Ym

j ≡ sin
(
πm j

Ny + 1

)
, Zn

k ≡ sin
(
πnk

Nz + 1

)
.

(C.4)

They ensure that the signal has zero boundary values (for i ∈
{0,Nx + 1} or j ∈ {0,Ny + 1} or k ∈ {0,Nz + 1}). They satisfy
discrete orthogonality relations, for example,

2
Nx + 1

Nx∑
i=1

X`iX
`′

i = δ``
′

K and
2

Ny + 1

Ny∑
m=1

Ym
j Y

m
j′ = δ

j j′

K , (C.5)

where δK is the Kronecker symbol. The inverse transforma-
tion is simply DST-I multiplied by 8/

[
(Nx + 1)(Ny + 1)(Nz + 1)

]
,

i.e.

δi, j,k =
8

(Nx + 1)(Ny + 1)(Nz + 1)

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

δ`,m,nX`iY
m
j Z

n
k ,

(C.6)

and similarly for the gravitational potential,

Φi, j,k =
8

(Nx + 1)(Ny + 1)(Nz + 1)

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

Φ`,m,nX`iY
m
j Z

n
k .

(C.7)

It is straightforward to show that X`i , Y
m
j ,Zn

k are eigenfunc-
tions of the discrete one-dimensional second-order derivatives
∂2

x, ∂2
y , and ∂2

z , respectively. The corresponding eigenvalues λ`x,
λm

y and λn
z are given by

λ`x = −
4
d2

x
sin2

(
k` dx

4
Nx

Nx + 1

)
, (C.8)

λ`x =
1

3d2
x

[
sin2

(
k` dx

2
Nx

Nx + 1

)
− 16 sin2

(
k` dx

4
Nx

Nx + 1

)]
, (C.9)

λ`x = −
1

45d2
x

[
2 sin2

(
3k` dx

4
Nx

Nx + 1

)
− 27 sin2

(
k` dx

2
Nx

Nx + 1

)
+270 sin2

(
k` dx

4
Nx

Nx + 1

)]
, (C.10)

for FDA at order 2, 4, and 6 respectively, where k` ≡ 2π`/Lx,
dx ≡ Lx/Nx and Lx is the size of the box along the x-direction
(Lx = LsCOLA ≡ L/Ntiles in this paper). Similar expressions exist
for λm

y and λn
z .

Plugging Eqs. (C.6) and (C.7) into (C.1) and using the
orthogonality relations, we obtain a simple form for the discre-
tised Poisson equation in sine space,

Φ`,m,n =
δ`,m,n

λ`x + λm
y + λn

z
. (C.11)

Therefore, the Poisson equation ∆Φ = δ with zero boundary
conditions can be solved by the following three steps:
1. performing a forward DST of the source (δi, j,k → δ`,m,n),

according to Eq. (C.3) (costing O(NxNyNz log
[
NxNyNz

]
)

operations),
2. solving the Poisson equation in sine space (δ`,m,n → Φ`,m,n),

according to Eq. (C.11) (costing O(NxNyNz) operations),
3. performing an inverse DST of the gravitational poten-

tial (Φ`,m,n → Φi, j,k), according to Eq. (C.7) (costing
O(NxNyNz log

[
NxNyNz

]
) operations).

In practice, forward and inverse DSTs are performed using the
FFTW library (Frigo & Johnson 2005), publicly available11,
where the DST-I is known as FFTW_RODFT00.

11 http://www.fftw.org
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