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We compute the fluctuations of the number of bosons with a given momentum for the Tonks-
Girardeau gas at zero temperature. We show that correlations between opposite momentum states,
which is an important fingerprint of long range order in weakly interacting Bose systems, are sup-
pressed and that the full distribution of the number of bosons with non-zero momentum is exponen-
tial. The distribution of the quasi-condensate is however quasi Gaussian. Experimental relevance
of our findings for recent cold atoms experiments are discussed.

I. INTRODUCTION

Ultra-cold atom experiments represent now an estab-
lished playground to test theories of many-body physics
and mimic solid state strongly correlated systems [1, 2]
with an incredible accuracy. One-dimensional systems
can be routinely achieved by confining atoms along trans-
verse directions [3–5] with the possibility to monitor the
interaction strength and the temperature at will. In par-
ticular, it is possible to span the entire range of the one-
dimensional Bose gas from the weakly interacting to the
strongly interacting regime. While pair correlations have
a tendency to build albeit without forming a true con-
densate in the weak coupling limit, strong repulsion tends
to make the bosons behave more like fermions. This is
the celebrated Tonks-Girardeau gas [6]. Although physi-
cal quantities involving diagonal elements of the density
matrix such as spatial density correlations [3] or the real
space emptiness formation probability [7] are fermion-
like, the off-diagonal part behaves very differently. The
most common example is the momentum distribution,
namely the average occupation number of a state with a
given momentum p, 〈Np〉, which is the so-called Fermi-
Dirac distribution for fermions but is completely different
for bosons [8, 9].

This momentum distribution is a key observable in the
field of ultra cold atoms since it is easily obtained exper-
imentally with time of flight images and contains crucial
information on quantum correlations, interaction effects
and symmetries of the many-body wave function [10].
However, as we know from quantum optics, mesoscopic
transport or even the physics of phase transitions, the
fluctuations around the average are sometimes the most
interesting physical signal. This is why the community
is now studying higher moments of the momentum occu-
pation number, like its variance 〈N2

p 〉−〈Np〉2, covariance
〈NpNq〉 [11–16] or even the full distribution (full counting
statistics) [15]. This can be a great help for unraveling
different regimes [11, 13, 17, 18] or to identify exotic phe-
nomena like the dynamical Casimir effect [19] or Hawking
radiation for instance [20–24].

In this paper, we study the fluctuations of the momen-
tum occupation number Np in the Tonks-Girardeau limit
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FIG. 1: a) One dimensional identical interacting bosons at
zero temperature. b) Sketch of the momentum distribution of
the 1d Bose gas in the Tonks-Girardeau limit (pF = π~N/L).
The data represent a single shot measurement whereas the
full line is the average 〈Np〉. The inset is the full distribution
of Np for a given p.

at zero temperature for all momenta. This is an exten-
sion of the work of Lovas et al. [15] on the full counting
statistics of Np in the low momentum regime described
by bosonization [25, 26] and the one of Refs. [11, 13, 14]
on the weakly interacting Bose gas. In particular, we
show that the full counting statistics of Np is, for mo-
mentum p in almost all regimes, exponential and that
the different occupation numbers are uncorrelated. This
is in sharp contrast with the weakly interacting regime
where Bogoliubov theory predicts positive correlations
between opposite momentum states [11, 14, 27].

This article is organized as follows. In Sec. II we de-
scribe the model and explain the general formalism used
to compute the second moment 〈N2

p 〉 and the correla-
tions 〈NpNq〉 of the momentum occupation number in
terms of Toeplitz matrices. Section III concentrates on
intermediate and long wavelength properties. It explains
how results from standard bosonization [15] can be re-
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trieved. Section IV deals with the opposite limit of large
momentum. A small distance expansion of the two-body
density matrix enables us to make predictions about the
variance of the number of particles with a given momen-
tum. The full probability distribution is also obtained.
Section V and VI complement our analytical results with
numerical calculations of the variance and the correla-
tions for all values of the momentum and for the specific
case of the quasi-condensate mode. In the last section,
we discuss how our predictions could be tested in realistic
experiments and discuss perspectives for future research
on other systems along these lines. Technical details can
be found in appendices A, B, and C.

II. MODEL

We consider a gas of N identical bosons living on a
strictly one-dimensional segment of length L with peri-
odic boundary conditions. The average density ρ = N/L
is constant and we shall mainly be interested in the ther-
modynamic limit N → ∞ and L → ∞ with N/L fixed.
However, the formalism also allows to straightforwardly
calculate finite size corrections. We focus on the limit of
infinite and hardcore repulsion between bosons which is
known as the Tonks-Girardeau gas. The Hamiltonian is
a limiting case of the Lieb-Liniger model [28] which reads

H = − ~2

2m

N∑
i=1

∂2

∂x2
i

+ g
∑
i>j

δ(xi − xj), (1)

where xi is the position of the ith bosonic particle of
mass m, g is the repulsive interaction strength [29]. In
the Tonks limit, g is sent to infinity. In this regime,
the ground state is constructed by filling all the momen-
tum states up to the Fermi momentum pF = ~πN/L
while preserving the bosonic statistics as described be-
low. This is the so called regime of fermionization where
all physical observables that depend only on density or
density correlations are similar to the ones of a perfect
gas of fermions [6]. However, quantum statistics is cru-
cial whenever off-diagonal elements of the density matrix
are involved in an observable and this is in particular the
case of the momentum distribution [8, 9]. This quantity,
〈Np〉, is the Fourier transform of the one-body density
matrix

〈Np〉 =

∫∫
e−ip(x−x

′)/~ρ1(x, x′) dxdx′, (2)

ρ1(x, x′) =

∫
Ψ∗(X) Ψ(X ′) dx2 · · · dxN , (3)

where X = (x, x2, ..., xN ), X ′ = (x′, x2, ..., xN ) and
Ψ(x1, ..., xN ) is the many body wave function of the sys-
tem. It corresponds to the average number of bosons in
a state with momentum p and therefore is proportional
to the probability of finding a particle with momentum
p in an actual experiment. For the Tonks-Girardeau gas

considered in this paper, its shape is represented on Fig.
1 (thick blue line) which has obviously no relation with
the one of a perfect Fermi gas (Fermi-Dirac step function
at zero temperature). Therefore, many important infor-
mations are accessible from this observable such as the
quasi-condensate fraction or the symmetry of the wave
function. In the Tonks regime, it is known to display
several interesting properties. First, the average occupa-
tion of the ground state (p = 0 here) is proportional to√
N [8, 30] and not N like in a weakly interacting Bose

gas, signaling the absence of Bose-Einstein condensation
in one dimension in the presence of strong interactions.
At low momentum, namely for p � pF , the momentum
distribution decays as 1/

√
p while for p � pF it decays

as p−4. This latter behavior is universal as long as par-
ticles have contact interactions and does not depend on
quantum statistics nor on the interaction strength. The
coefficient in front of this power law, however, strongly
depends on these parameters and is called the Tan con-
tact [31, 32]. Some of these features are illustrated on
Fig. 2 (thin black line and dashed lines on the main
panel).

However, the momentum distribution is only an aver-
age quantity. In an experiment, shot to shot fluctuations
(blue circles on Fig. 1) may be an incredible source of in-
formation as it was pointed out by R. Landauer in his fa-
mous quote “the noise is the signal”. With the important
advances in the field of single atom detection [33], fluctua-
tions around the average will be an additional channel for
collecting precious information about the physical prop-
erties of quantum liquids but there seems to be very little
information about them in the literature. For example,
the variance, 〈N2

p 〉 − 〈Np〉2 is not known in general. Re-
cently, Lovas et al. [15] have calculated the probability
distribution of the momentum occupation, but only in
the long wavelength limit, using bosonization [3]. They
have found that Np is distributed exponentially in this
regime for p 6= 0 and that N0 follows a Gumbel distribu-
tion for weak interactions. In the opposite limit of large
momentum or for strong interaction, nothing is known
for the moment. It is the purpose of this paper to an-
swer these questions. We now explain how to compute
the variance, the covariance and the full distribution of
Np for a Tonks-Girardeau gas at zero temperature.

In order to calculate the fluctuations of Np, we shall
need the two-body density matrix, defined as

ρ2(x, u; y, w) =

∫ ∫
...

∫
Ψ∗(x, u, x3, ..., xN )

Ψ(y, w, x3, ..., xN ) dx3 ... dxN , (4)

with Ψ the ground state wave-function for periodic
boundary conditions [6]

Ψ({xi}) =
1√
N !LN

∏
1≤j<k≤N

|ei 2πL xj − ei 2πL xk |. (5)

Following the steps done in Ref. [30] for the one-body
density matrix, we apply their method to the two-body
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density matrix and cast ρ2(x, u; y, w) as a determinant
of a Toeplitz matrix. Technical details are given in Ap-
pendix A. This results in

ρ2(x, u; y, w) =
1

L2
|eiθu−eiθx | |eiθw −eiθy |det(Γi,j), (6)

with θx = 2πx/L (θy, θu and θw are defined in a similar
fashion) and where “det” denotes the determinant of the
matrix Γ of elements Γi,j . This matrix is of Toeplitz type
which means that Γi,j is a function of n = i− j only. In
addition, Γ is also hermitian. Explicitly

Γn =

∫ 2π

0

F (θ) einθ
dθ

2π
, (7)

where

F (θ) = 16

∣∣∣∣sin(θ − θx2

)
sin
(θ − θy

2

)
sin
(θ − θu

2

)
sin
(θ − θw

2

) ∣∣∣∣. (8)

Finally, the second moment 〈N2
p 〉 can be calculated by

taking a double Fourier transform of ρ2(x, u; y, w). The
covariance, namely the correlations between occupation
numbers at different momenta p and q is written as

〈NpNq〉 =

∫
[0,L]4
ei
p(y−x)

~ ei
q(w−u)

~ ρ2(x, u; y, w) dx dy du dw.

(9)
Following this recipe, we will now evalute these quan-

tities analytically at low momentum in Sec. III and large
momentum in Sec. IV and numerically in Sec. V for any
momentum. The reader not so interested in technical
details may want to go directly to Sec. V. Finally, the
quasi-condensate case (p = 0) is treated apart in Sec. VI.

III. FLUCTUATIONS IN THE
HYDRODYNAMIC REGIME

In this section, we explain how to retrieve the find-
ings of Ref. [15] on the full distribution of Np but also
compute the covariance in the low momentum regime.
Instead of standard bosonization, that is commonly used
to describe the physics at low energy, we develop an al-
ternative and more general approach based on asymp-
totic properties of Toeplitz matrices. At low momen-
tum, p � pF but p 6= 0, or large distances compared to
ξ = L/N , the mean interparticle distance, we show that

〈NpNq〉 = (1 + δp,q)〈Np〉〈Nq〉. (10)

To do so, we first compute the two-body density ma-
trix in the limit of low momentum as explained in Ap-
pendix A. Our calculation, based on the theory of Fisher-
Hartwig singularities [34, 35], not only reproduce the
standard bosonization approach [15] but also allows to

compute the numerical prefactor that is in general not
possible to obtain. The density matrix reads

ρ2(x, u; y, w) =
2N

L2
ρ2
∞|eiθw − eiθu |−

1
2 |eiθw − eiθx |− 1

2

× |eiθw − eiθy | 12 |eiθy − eiθu |− 1
2

× |eiθy − eiθx |− 1
2 |eiθu − eiθx | 12 , (11)

with ρ∞ = G(3/2)4/
√

2 and G is the Barnes function
[36]. In addition, if all distances are also much smaller
than L we obtain an expression that only depends on
terms like |u− w| which is given in Appendix A.

Having determined the two-body density matrix for
distances larger than ξ, we need to assess the behavior
of 〈N2

p 〉 and 〈NpNq〉. We start with the former case and
notice that due to the oscillatory behavior of the inte-
grand, the integral is dominated by contributions where
p(y−x)/~ and p(w−u)/~ (direct term) or p(y−u)/~ and
p(w − x)/~ (exchange term) are smaller or of order one.
We therefore consider configurations in real space where
pairs of coordinates are separated by a distance of order
~/p. By analogy with classical electrodynamics, or to use
a more sophisticated language, in the Coulomb gas for-
mulation of the Tonks-Girardeau gas [37], we call these
pairs dipoles. Moreover, in the thermodynamic limit, it
is very unlikely that two dipoles overlap since their size
is typically of order ~/p � L. It is then reasonable to
assume that the dipoles are well separated and to sim-
plify the expression of the two-body density matrix to
ρ2(x, u; y, w) ' 2N

L2 ρ
2
∞|eiθw − eiθu |− 1

2 |eiθy − eiθx |− 1
2 in

the direct term and a similar expression for the exchange
term. In the approximation of the dilute gas of dipoles,
the direct and the exchange terms give the same contri-
bution and Eq. (9) factorizes to

〈N2
p 〉 =

2N

L2
ρ2
∞

∫ L

0

ei
p
~ (y−x)√

| sin(π(y−x)
L )|

d(y − x)

×
∫ L

0

ei
p
~ (w−u)√

| sin(π(w−u)
L )|

d(w − u). (12)

Here, we recognize twice the square of the mo-
mentum distribution (see Eq. (34) of Ref. [30]
for instance) in the small momentum limit 〈Np〉 =√
N
L ρ∞

∫ L
0
| sin(πx/L)|− 1

2 dx. This completes the proof

of 〈N2
p 〉 = 2〈Np〉2. Note that corrections to this approx-

imation can be calculated by taking into account inter-
actions between dipoles. This can be done by expand-
ing (in Eq. (A7))

√
|u− x||w − y|/

√
|w − x||y − u| '

1 + (w − u)(y − x)/(u − x)2 in the direct term (the cal-
culation is similar for the exchange term) but this yields
positive corrections of the form 〈Np〉2/p which are sub-
dominant since ~/L � p � pF in the thermodynamic
limit.

We now compute the covariance 〈NpNq〉 using
the same procedure. The direct term gives ob-
viously 〈Np〉〈Nq〉 whereas the exchange term is a



4

bit more subtle to analyze and reads 〈NpNq〉ex =∫
ei
p
~ (y−u)ei

p
~ (w−x)ei

(p−q)
~ (u−w)ρ2(x, u; y, w) dx dy du dw.

Using the same arguments as before, the two-body den-
sity matrix factorizes and no longer depends on (u−w),
which due to the presence of the third exponential
factor, yields a factor δ(p − q) in the thermodynamic
limit. It is therefore equal to zero for p 6= q. Putting
pieces together we prove Eq. (10) which suggests that
Np is distributed exponentially. Indeed, pushing forward
the dilute gas of dipoles approach, we obtain, for all
integers n, 〈Nn

p 〉 = n!〈Np〉n, which is the signature of an
exponential distribution

P (Np) = exp(−Np/〈Np〉)/〈Np〉. (13)

This is precisely the result obtained in [15] using
bosonization. However, we will show in the next section
that this result is also valid beyond the hydrodynamic
regime.

IV. SHORT WAVELENGTH FLUCTUATIONS

We now turn to the regime of large momentum, p �
pF , and extend the previously known results Eqs. (10)
and (13). In other words, we demonstrate that Np is
also exponentially distributed with no correlations in the
high momentum regime. To prove this, we study the
behavior of ρ2(x, u; y, w) for small |y − x| and |w − u|
similar to the short distance expansion of one-body den-
sity matrix expansion ρ1(x) = ρ1(0) + ax2 + b|x|3 + ...
[8, 38, 39]. We recall that in the case of the average
momentum distribution 〈Np〉, the leading term giving
the so-called p−4 contribution comes from the Fourier
transform of |x|3. Indeed, the two first contributions
give zero for symmetry reasons and the remaining terms
are subdominant in the large p regime. This comes
from Watson’s lemma [40] which states that if a func-
tion f(z) behaves as |z − a|α in the vicinity of a, then,

for large p, to leading order in p,
∫ +∞
−∞ eipzf(z − a) dz =

2f(a)eipaΓ(α+ 1) cos[π2 (α+ 1)] p−(α+1). We will see that
the situation is similar for the second moment of the dis-
tribution.

Although it is technically possible to perform a cumu-
lant expansion of det(Γn), we shall not pursue this route.
We rather use the development by Lenard [8]. This for-
mal series is an expansion of the two-body bosonic den-

sity matrix in terms of the fermionic ones and reads

ρ2(x, u; y, w) = sgn(u− x) sgn(w − y)

[
〈x, u|ρF |y, w〉

+
(−2)

1!

∫
J

〈x, u, x3|ρF |y, w, x3〉 dx3 + · · ·

+
(−2)n

n!

∫
J

∫
J

· · ·
∫
J

dx3...dxn+2

×〈x, u, x3, ..., xn+2|ρF |y, w, x3, ..., xn+2〉+ · · ·
]
, (14)

where the interval J is defined as J ≡ [x , y] ∪ [u , w]
and ρF is the fermionic density matrix. The m-body
fermionic density matrix reads

〈x, u, x3, ..., xm|ρF |y, w, x3, ..., xm〉 = L−m×∣∣∣∣∣∣∣∣∣
f(y − x) f(w − x) f(x3 − x) ... f(xm − x)
f(y − u) f(w − u) f(x3 − u) ... f(xm − u)
f(y − x3) f(w − x3) f(x3 − x3) ... f(xm − x3)

... ... ... ...
f(y − xm) f(w − xm) f(x3 − xm) ... N

∣∣∣∣∣∣∣∣∣ ,
(15)

with f(z) ≡ sin(Nπz/L)
sin(πz/L) , for z 6= 0 and f(0) = N . Al-

though it is possible to compute all terms for finite N ,
we directly take the thermodynamic limit for the sake
of simplicity. Moreover, it is again sufficient to consider
dilute dipole configurations since clusters of more than
two points give subdominant contributions. This time,
it is simply related to the fact that the density matrix
vanishes as a power law when two spatial coordinates ap-
proach each other (in the Coulomb gas formulation of the
Tonks-Girardeau gas, these configurations are strongly
penalized by Coulomb repulsion). This can be easily un-
derstood by looking at the functional dependence of the
many-body wave function Eq. (5). In this limit, we have
computed this expansion explicitly up to seventh order
in |u − x| and |w − y| as it was necessary to obtain the
relevant contribution. All the terms are collected in Ap-
pendix B.

In order to compute the variance and the correlations,
we use a similar dipole decomposition of the Fourier
transform with a direct term corresponding to |x−y| � ξ
and |w − u| � ξ with |u− x| � ξ and an exchange term
with |x−w| � ξ and |y − u| � ξ, also with |u− x| � ξ.
It turns out that, as long as |u − x| � ξ, the expansion
is independent of (u−x), which makes the calculation of
the Fourier transform rather easy. The expansion for the
direct term is of the form

ρ2(x, u; y, w) =

∞∑
n=0

n∑
m=0

Am,n

∣∣∣∣y − xξ
∣∣∣∣m ∣∣∣∣w − uξ

∣∣∣∣n−m .
(16)

When looking carefully at the different terms, it turns out
that the relevant term is A3,6|(y−x)/ξ|3 |(w−u)/ξ|3. Per-
forming the same expansion for the exchange term and
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p/pF

∆
N

p

p−1/2

p−4

〈Np〉2/〈Np〉2

p [2π~/L]

〈Np〉
∆Np

FIG. 2: Standard deviation ∆Np =
√
〈N2

p 〉 − 〈Np〉2 (blue
thick solid line) and average number of bosons 〈Np〉 (black
thin solid line) as a function of p for N = 100 bosons (blue
thick solid line). Dashed lines are the limiting cases (see text).
The inset shows the same data in linear scale in a slightly
different form. The ratio 〈N2

p 〉/〈Np〉2 is plotted as a function
of the momentum p in units of 2π~/L. The horizontal black
lines correspond to the two limiting values 1.33 and 2 (see
Eqs. (19) and (10)). The continuous line is merely a guide to
the eyes.

lumping the two expansions together yield immediately
〈N2

p 〉 = 2〈Np〉2, with 〈Np〉 = Cp−4 and C = 4
3π2 p

4
F since

the direct and the exchange contributions are identical.
However, for the correlations, the exchange contribution
vanishes for the same reason as in Sec. III. Therefore,
we also find that no correlation exists between different
momenta in this limit. In particular, Np and N−p are
not correlated as opposed to what happens in the weakly
interacting regime [27].

The above analytical part of the calculation
can be generalized to the n-body density matrix
ρn(z1, z2, ..., zn; s1, s2, ..., sn). This gives access to the

nth moment of Np, 〈Nn
p 〉, resulting in 〈Nn

p 〉 = n!
(
C
p4

)n
,

in the limit p � pF . The knowledge of all the inte-
ger moments 〈Nn

p 〉 enables [41, 42] us to reconstruct
the probability distribution P (Np) which is therefore
exponential.

V. INTERMEDIATE REGIME

We have now proven that the occupation number of a
state with momentum p is exponentially distributed ac-
cording to Eq. (13) and that occupation numbers with
different momentum are uncorrelated for small but non
zero (~/L� p� pF ) and large momenta (p� pF ). It is
then natural to wonder if this statement is correct for in-
termediate momentum. In that case, we have computed
numerically the variance and covariance of Np using Eqs.
(6) and (9). Our results are presented on Fig. 2 and Fig.

-0.5

0

0.5

1.0
0

1

p [2π~/L]s

q
[2
π
~/
L
]

FIG. 3: (Color online) Normalized correlations between dif-
ferent momentum occupation numbers 〈NpNq〉/〈Np〉〈Nq〉− 1
for N = 100 bosons as a function of p and q. The dashed
line indicates the diagonal p = q. A cut along the diagonal is
visible in the inset of Fig. 2.

3 for the standard deviation ∆Np =
√
〈N2

p 〉 − 〈Np〉2 and

the normalized correlations 〈NpNq〉/〈Np〉〈Np〉−1 respec-
tively.

As can be seen on Fig. 2, the numerically obtained
curves ∆Np and 〈Np〉 are almost indistiguishable from
each other for all values of p/pF , not only in the large
and small momentum regimes. The inset in Fig. 2 shows
deviations to this law that will be discussed in the next
section. Although it is not a proof, it is a strong evi-
dence that the equation 〈N2

p 〉 = 2〈Np〉2 is valid for any
momentum p, as long as p is not too close to zero, as
discussed in Sec. VI below. It is therefore reasonable to
believe that Np is distributed exponentially for any value
of p 6= 0. This has the important consequence that for
a Tonks-Girardeau gas, the relative fluctuations of Np
never vanish in the thermodynamic limit. They are al-
ways equal to the signal itself. This is schematized in
Fig. 1.

Concerning the correlations, one can also observe on
Fig. 3 that they exist only for p = q in agreement with
Eq. (10). Indeed, only one straight line on the color map
〈NpNq〉/〈Np〉〈Nq〉 − 1 as a function of p and q is visible,
the rest of the color map being zero. This is in sharp
contrast with the physics of a weakly interacting Bose
gas discussed in Refs. [11, 13, 14], where, for instance,
correlations between p and −p are clearly visible. This
is not really a surprise since these pair correlations stem
from the existence of a condensate and are the hallmark
of long range coherence. They basically emerge from the
low energy excitations of this system that are phonons
which are quasi-particles with equal weight of opposite
momentum components whereas in the Tonks-Girardeau
gas, the low energy excitations are particle-hole like and
independent from each other.
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VI. QUASI-CONDENSATE MODE

So far, we have focused on the statistical distribution
and correlations of momentum states occupation num-
bers with non-zero momentum. As discussed in [15], the
quasi-condensate mode which has zero momentum must
be treated differently. Using arguments based on Bo-
goliubov theory in the weak coupling regime, Lovas et
al. have explained that the distribution of N0 was of

Gumbel type [43]. However, at larger coupling (when
the Luttinger parameter K approaches one in Fig. 3 of
[15]), important deviations from this prediction are visi-
ble. In the following, we briefly discuss how this problem
is related to other models that have been studied in the
literature and discuss some important results such as the
variance and the shape of the distribution of N0.

The nth moment of the number of bosons in the zero
momentum state 〈Nn

0 〉 is given by the following formula

〈Nn
0 〉

(ρ∞
√

2N)n
=

∫ 2π

0

· · ·
∫ 2π

0

∏
1≤i<j≤n

|4 sin
(θi − θj

2

)
sin
(θ′i − θ′j

2

)
|α
(

n∏
i=1

n∏
j=1

|2 sin
(θi − θ′j

2

)
|α
)−1

dθ1

2π
· · · dθn

2π

dθ′1
2π
· · · dθ

′
n

2π
,

(17)

with α = 1/2. This kind of expression shows up in other
physical problems and has been studied in different con-
texts. For instance, if divided by n!2, it can be inter-
preted as the canonical partition function of a neutral
two-component Coulomb gas with 2n (in total) logarith-
mically interacting charges [44]. Then, θi and θ′j are the
positions of the + and − charges on the unit circle re-
spectively. The inverse temperature of the Coulomb gas
is β = α. It is also related to the partition function
which describes tunneling through a barrier of an inter-
acting spinless Luttinger liquid with attractive interac-
tions [45] and interaction parameter g = 4 in the nota-
tions of Ref. [45]. The gas is in the disordered phase, at a
temperature T well above the Kosterlitz-Thouless transi-
tion TKT , which occurs at β = 1/TKT = 2 in their units.
Finally, this problem of finding the full distribution of
N0 is closely related to the full counting statistics of the
average interference patterns between two Bose conden-
sates [46, 47]. However, in the case of Refs. [46, 47], there
are two condensates, each one having a Luttinger param-
eter K. Consequently, Eq. (17), giving 〈Nn

0 〉 translates
to the same problem they studied but with α = 1

2K and
not 1/K. For the Tonks-Girardeau gas, α = 1/2 and
we can thus use the results derived in Ref. [46], with
K = 2, instead of K = 1, as one might naively think.
Therefore, most of the results about the distribution of
N0 are available in the references mentioned above. In
particular, using previous work by Bazhanov et al. [48],
the authors of Ref. [46] were able to obtain a distribution
related to P (N0) exactly.

We now discuss several simple results, namely the two
first moments of the distribution and its shape. The av-
erage value of N0 was calculated in [30] and reads

〈N0〉 =

√
2π

[Γ(3/4)]2
ρ∞
√
N, (18)

while the second moment can be evaluated numerically
from Eq. (17) and gives [49]

〈N2
0 〉 ' 1.33 〈N0〉2, (19)
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FIG. 4: Probability densities of N0/〈N0〉 (thick blue line)
and Np/〈Np〉 (thin black line) for p 6= 0 (but p� ~/L). The
inset shows the same data in semi-log scale. The red dotted-
dashed curve is the Gumbel distribution [43] and the black
dashed curve is a Gaussian fit for guidance.

which shows that N0 is no longer exponentially dis-
tributed: 〈N2

0 〉 6= 2〈N0〉2. Nevertheless the fluctuations
of N0 are proportional to its average and therefore do
not disappear either in the thermodynamic limit as it
has also been noticed in lattice systems [12]. The pref-
actor in Eq. (19) is smaller than two which means that
fluctuations are smaller in the quasi-condensate than in
other modes. We associate this to a reminiscent effect of
coherence that would reduce fluctuations in the conden-
sate. This result is depicted in the inset of Fig. 2. At
p = 0 it can be seen that the prediction of Eq. (19) is
verified (see the lower black horizontal line) and that for
p 6= 0 the statistics quickly converges to the exponential
one.

In addition to the average and the variance, we have
access to the full distribution. Following the method
employed in Ref. [46] (see Appendix C) for K = 2 in
their notation, we have calculated the distribution of N0.
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The result is shown on Fig. 4 and demonstrates that
in the Tonks-Girardeau regime, it is neither exponential
nor Gumbel but still contains large fluctuations. Some
insight on the full distribution of N0 can also be obtained
by looking at the asymptotic behavior of the moments.
Using the results of Ref. [37], we obtain for n� 1

〈Nn
0 〉 ' (ρ∞

√
2N)n exp

[1
2
n lnn+O(n)

]
, (20)

which can easily be checked to be the asymptotic expres-
sion of the moments of a positive Gaussian distributed
random variable. This is indeed what is apparent in the
inset of Fig. 4 where we show the probability density
in logarithmic scale. This result can also be retrieved
analytically by looking at the behavior of spectral deter-
minants, along the lines of Refs. [46, 47]; see Appendix
C. The advantage of this method is that it also permits
to obtain information on the behavior of P (Np) for very
small but non-zero momenta p but we leave this for future
investigations.

VII. CONCLUSION AND PERSPECTIVES

In this work, we have proposed a scheme to compute
the quantum fluctuations, at zero temperature, of the
number of particles Np with momentum p, for the Tonks-
Girardeau gas. We have shown analytically in the low
(~/L � p � pF ) and high momentum limits (p � pF )
and have given strong numerical evidences for intermedi-
ate values of momentum that Np is distributed according
to an exponential law. In particular, we have demon-
strated that the standard deviation of the momentum
distribution was equal to its mean value. In addition, we
have computed the covariance 〈NpNq〉 and shown that
correlations were only visible on the axis p = q and that
correlations between Np and N−p were suppressed con-
trary to the case of a weakly interacting Bose gas de-
scribed by Bogoliubov quasi-particles. Finally, the dis-
tribution of the quasi-condensate mode at p = 0 was
shown to behave differently as already observed for weak
and moderate interaction in [15]. In the Tonks regime,
we argued that the tails of its distribution is neither ex-
ponential nor Gumbel but rather of Gaussian type. The
case of correlations for very small but non-zero momen-
tum (p ' ~/L) is more difficult and is left for future
investigations.

Our findings can be relevant for ultra-cold atom ex-
periments where high-order correlation functions in mo-
mentum space can be measured, for instance, with time
of flight techniques [50]. In actual experiments, atoms
are generally released from a harmonic trap and the ef-
fect of the well potential on the momentum distribution
has to be taken into account [50, 51]. Inclusion of finite
temperature would also be a natural generalization of this
work [52–54] as well as finite interaction corrections in the
regime of large momentum [55]. Investigating the weak

coupling or intermediate coupling of the boson interac-
tion, i.e. using the Lieb-Liniger model [28] would also
provide more insight [56–58] on how the quasi-condensate
correlations build up [59]. Finally, another important
lead to follow would be the study of the fermionic coun-
terpart where generalization of random matrix theories
[60, 61], including off-diagonal contributions of the den-
sity matrix would have to be considered.
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Appendix A: Asymptotic behavior of the
two-particle density matrix from determinants with

Fisher-Hartwig singularities

In this appendix, we derive the expression of the two-
body density matrix of the Tonks-Girardeau gas in terms
of Toeplitz matrices and compute its long distance ap-
proximation using asymptotic properties of these matri-
ces [34, 35].

Starting from Eq. (4) of the main text, inserting the
ground state wave-function Eq. (5), and defining θxi =
2πxi/L, we obtain ρ2(x, u; y, w)

ρ2 =
1

N !LN

∫ 2π

0

· · ·
∫ 2π

0

|eiθx − eiθu ||eiθw − eiθy |

×
( N∏
l=3

|eiθx − eiθl ||eiθy − eiθl ||eiθu − eiθl ||eiθw − eiθl |
)

×
∏

3≤m<n≤N

|eiθm − eiθn |2dx3...dxN . (A1)

Then using the formulation in terms of a determinant of
a Toeplitz matrix, see Ref. [8, 62], we use the lemma

1

N !

∫ 2π

0

· · ·
∫ 2π

0

N∏
l=1

f(θl)
∏

1≤n<m≤N

|eiθm − eiθn |2 dθ1

2π
. . .

dθN
2π

= det(M),
(A2)

where M is the square matrix with elements Mm,n =∫ 2π

0
eiθ(m−n)f(θ) dθ2π . This lemma follows directly from

expressing
∏

3≤m<n≤N |eiθm − eiθn |2 as the square of a
Vandermonde determinant, namely

∏
1≤n<m≤N

|eiθm − eiθn |2 =
∑
P,Q

ε(P)ε(Q)

N∏
l=1

eiθl[P(l)−Q(l)],

(A3)
where P and Q are permutations of the N integers from
1 to N . ε(P) is the signature of the permutation P.
The sum on P runs over all the N ! permutations, so
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as the one on Q. In our case, we take out the term
1
LN
|eiθx − eiθu ||eiθw − eiθy | and apply the lemma with

N − 2 instead of N and

f(θ) = |eiθx − eiθ||eiθy − eiθ||eiθu − eiθ||eiθw − eiθ|. (A4)

Since |eiθx − eiθ| = 2
∣∣sin( θ−θx2

)∣∣, we obtain Eqs. (6), (7),
and (8) of the main text.

We now evaluate the large N behavior of the two-body
density matrix. In the spirit of Refs. [63, 64], we adapt
the method used there for the one-body density matrix
to the large distance behavior of the two-body density
matrix which is governed by the Fisher-Hartwig singu-
larities of the matrix Γi,j , in Eqs. (6) and (7). We sup-
pose that x, y, u, and w are all separated by a distance
larger than L/N . Starting from Eq. (6), we need to eval-
uate the asymptotic behavior of det(Γi,j) for large N ,
with θx, θy, θu and θw larger than N−1. The symbol
F (θ) of the Toeplitz matrix Γi,j is given by Eq. (8) of

the main text and satisfies
∫ 2π

0
ln F (θ) dθ = 0. This im-

plies that the determinant does not increase nor decays
exponentially for large N . There are however four dis-
tinct Fisher-Hartwig singularities located at θ = θx, θy,
θu and θw. These singularities are all of the same type,
a discontinuity of the slope in F (θ); in other words there
are four α-type singularities in the notations of Ref. [64],
with α = 1/2. Applying theorems (2) and (3) from Ref.
[64], we obtain,

det(Γi,j) ' NG(3/2)8

× |eiθy − eiθx |− 1
2 |eiθy − eiθu |− 1

2 |eiθw − eiθx |− 1
2

× |eiθw − eiθu |− 1
2 |eiθw − eiθy |− 1

2 |eiθu − eiθx |− 1
2 , (A5)

with G the Barnes function [36]. Now, taking into ac-
count the prefactor in Eq. (6),

ρ2(x, u; y, w) ' (N/L2)G(3/2)8

× |eiθy − eiθx |− 1
2 |eiθy − eiθu |− 1

2 |eiθw − eiθx |− 1
2

× |eiθw − eiθu |− 1
2 |eiθw − eiθy |+ 1

2 |eiθu − eiθx |+ 1
2 , (A6)

which is Eq. (A7) in the main text. In order to retrieve
the familiar result of bosonization on the infinite line,
we suppose that all arguments x, y, u, w are small with
respect to L, but can be large with respect to L/N . This

allows to approximate |eiθy − eiθx |− 1
2 '

√
L/2π|y−x|− 1

2

and yields

ρ2(x, u; y, w) = N [G(3/2)8 /(2πL)]|w − u|− 1
2 |w − x|− 1

2

×|w − y| 12 |y − u|− 1
2 |y − x|− 1

2 |u− x| 12 . (A7)

Appendix B: Thermodynamic limit of ρ2(x, u; y, w) for
|u− x| � ξ, at short distances, |y − x| and |w − u| � ξ

We give here explicit expressions of the Lenard expan-
sion in the thermodynamic limit, in the regime of the di-
lute gas of dipoles, up to seventh order. These results are

simply obtained by computing the determinants in the
largeN limit. Here we consider the configuration where x
and y and u and w constitute the two dipoles (|y−x| � ξ
and (|w−u| � ξ)) that are far apart (|u−x| � ξ = L/N)
but it is straightforward to obtain all possible permuta-
tions since the bosonic density is symmetric with respect
to permutations. In that case, an important simplifica-

tion comes from the fact that sin(πN(u−x)/L)
sin(π(u−x)/L) is always of

order 1 and never of order N , giving lower powers of N .
A tedious calculation to the seventh order yields

ρ2(x, u; y, w) =
N2

L2
sgn(u− x) sgn(w − y)

7∑
n=0

Tn, (B1)

with

T0 = 1, T1 = 0, (B2)

T2 = −π
2

6
(Y 2 +W 2), T3 = −π

2

9
(|Y |3 + |W |3), (B3)

T4 =
( π4

120
+
π2

9

)
(Y 4 +W 4) +

π4

36
Y 2W 2, (B4)

T5 = − 11

1350
π4(|Y |5 + |Y |5)

−π
4

54
(|Y |3W 2 + Y 2|W |3), (B5)

T6 =
(π2

9

)2

|Y |3 |W |3 −
( π6

5040
+

11

450
π4
)

(Y 6 +W 6)

−
( π6

720
+
π4

54
)(Y 4W 2 + Y 2W 4), (B6)

T7 =
61

264600
π6 (|Y |7 + |W |7)

+
11

1800
π6 (|Y |5W 2 + Y 2|W |5)

+
π6

1080
(Y 4|W |3 + |Y |3W 4), (B7)

where Y = N(y−x)/L and W = N(w−u)/L. To obtain
Eq. (16) of the main text we have defined

Tn =

n∑
m=0

Am,n|Y |m|W |n−m. (B8)

Appendix C: Distribution of N0 from spectral
determinants

We briefly explain here how we have calculated the
distribution of N0 shown on Fig. 4 and how the Gaus-
sian behavior of the tail of the distribution P (N0) can be
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retrieved with the help of spectral determinants of Ref.
[48]. Using the formulation of Ref. [46] (for a different
problem of interferences between two interacting bosonic
gases but mathematically similar to the problem consid-
ered in this article), the statistical properties of N0 are
related to the spectrum {εn} of the radial sextic oscillator

−d
2ψ(r)

dr2
+
(
r6 +

`(`+ 1)

r2

)
ψ(r) = εn ψ(r), (C1)

with angular momentum ` = − 1
2 and r ∈ [0,+∞[. The

distribution of N0 is given by the following integral [46]

P (α) = 2

∫ ∞
0

∞∏
n=1

(
1− κx

2

εn

)
J0(2x

√
α)x dx, (C2)

with α = N0/〈N0〉, κ = 8
√

2 Γ(3/4)2/π2 and J0 the
Bessel function. This is the result shown on Fig. 4.

The moments of the distribution can be cast in the
form

〈Nn
0 〉 ≡ (ρ∞

√
2N)n Z2n

= (n!)2(ρ∞
√

2Nκ)n
∑

i1,i2,...,in, all different

∏
ε−1
i1
ε−1
i2
· · · ε−1

in
. (C3)

As explained in Ref. [48], for j larger than 2 basically,

εj increases as j3/2 and thus Z2n behaves as
√
n! for

large n. This in turn implies that P (N0) ' exp(−CN2
0 )

for large N0, where C is a real positive constant. The
behavior of 〈Nn

p 〉 for small but non-zero p = j 2π~
L is

obtained in the same way, except that now, the energy
levels εi are no longer the energy levels of the oscillator
in (C2) with l = − 1

2 but with l = 4j − 1
2 . For j much

smaller than n, the behavior of 〈Nn
p 〉 still has the same

behavior as 〈Nn
0 〉, so the tail of the distribution P (Np) is

also Gaussian. However, for n much smaller than j, 〈Nn
p 〉

behaves as n! 〈Np〉n, signaling the exponential behavior
of P (Np) for Np � j〈Np〉.
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