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ABSTRACT
We present anisotropic ‘separate universe’ simulations that modify the N-body code GADGET4 in order to represent a large-
scale tidal field through an anisotropic expansion factor. These simulations are used to measure the linear, quasi-linear, and
non-linear response of the matter power spectrum to a spatially uniform trace-free tidal field up to wavenumber k = 7 h Mpc−1.
Together with the response to a large-scale overdensity measured in previous work, this completely describes the non-linear
matter bispectrum in the squeezed limit. We find that the response amplitude does not approach zero on small scales in physical
coordinates, but rather a constant value at z = 0, RK ≈ 0.5 for k ≥ 3 h Mpc−1 up to the scale where we consider our simulations
reliable, k ≤ 7 h Mpc−1. This shows that even the inner regions of haloes are affected by the large-scale tidal field. We also
measure directly the alignment of halo shapes with the tidal field, finding a clear signal that increases with halo mass.

Key words: methods: numerical – large-scale structure of Universe.

1 IN T RO D U C T I O N

Large-scale tidal fields influence the growth of structure in a
characteristic, anisotropic way. This applies to both quasi-linear and
fully non-linear scales. On quasi-linear to non-linear scales, this
effect can be observed as an anisotropy in the matter power spectrum
that aligns with the large-scale tidal field, an effect described via
the so-called power spectrum response (Creminelli et al. 2013;
Kehagias & Riotto 2013; Kehagias, Perrier & Riotto 2014; Valageas
2014; Wagner et al. 2015a; Barreira & Schmidt 2017a). This
coupling of the small-scale matter power spectrum to large-scale
perturbations leads to an important contribution to the covariance
of weak gravitational lensing statistics, which probe the projected
matter distribution (Takada & Hu 2013; Li, Hu & Takada 2014;
Barreira & Schmidt 2017b; Barreira, Krause & Schmidt 2018), as
well as to galaxy clustering statistics (Akitsu, Takada & Li 2017a;
Chiang & Slosar 2018; Li, Schmittfull & Seljak 2018). On even
smaller scales, the shapes of galaxies and galaxy clusters, as well as
of the haloes that host them, align with large-scale tides (Heavens,
Refregier & Heymans 2000; Catelan, Kamionkowski & Blandford
2001; Hirata & Seljak 2004; Hahn et al. 2007; Schäfer & Merkel
2017, see Kiessling et al. 2015 for a review). This effect is commonly
known as intrinsic alignment, and is an important contaminant when
attempting to measure weak gravitational lensing through galaxy
shape correlations. Thus, quantifying the alignment strength of
haloes is an important ingredient in modelling galaxy shape statistics.

� E-mail: jstuecker@dipc.org
†These authors contributed equally.

Beyond being important ingredients to be modelled when inter-
preting weak lensing observables, the impact of tidal fields can also
be used as a cosmological probe: the small-scale power spectrum
can be used to reconstruct large-scale perturbations (Pen et al.
2012; Zhu et al. 2016; Li, Dodelson & Croft 2020). Similarly,
intrinsic alignments themselves contain a wealth of cosmological
information (Chisari & Dvorkin 2013; Chisari, Dvorkin & Schmidt
2014; Schmidt, Chisari & Dvorkin 2015). These techniques require
knowledge of how the small-scale matter power spectrum and halo
shapes, respectively, respond to large-scale tidal fields.

In this paper, we introduce a tool to simulate precisely the impact of
a large-scale tidal field on the growth of structure. Following Schmidt
et al. (2018), we incorporate the tidal field in an N-body simulation
via an anisotropic expansion factor. We extend the results of Schmidt
et al. (2018), who showed results from a fixed-grid particle-mesh
(PM) code, to solve for the full TreePM force. This allows us to
follow the effect of the tidal field down to much smaller scales
and to probe the interior of haloes. The main advantage of this
simulation technique is that it allows us to impose a controlled,
spatially uniform tidal field on the full N-body dynamics. By taking
a numerical derivative with respect to this uniform tidal field, the
tidal effects can be isolated very precisely, and cosmic variance is
cancelled to a large extent. This mirrors the very similar advantages of
the separate-universe technique when simulating the effects of large-
scale overdensities (Frenk et al. 1988; McDonald 2003; Sirko 2005;
Martino & Sheth 2009; Gnedin, Kravtsov & Rudd 2011; Li et al.
2014; Wagner et al. 2015a; Baldauf et al. 2016; Barreira et al. 2019).
On the other hand, tidal effects in conventional N-body simulations
are difficult to extract robustly, because tidal fields fluctuate and are
present on all spatial scales.
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1474 J. Stücker et al.

Figure 1. The same halo in three simulations using the same realization of the initial conditions but different tidal fields. The haloes are shown in the physical
frame. The coordinate grid (dashed lines) is in physical coordinates and is intended to facilitate comparison between different panels. In the case with a ’stretch’
along the z-axis λz = −0.1 (left), the halo aligns more strongly with the z-axis (vertical axis in the plot) than in the case with opposite tidal field (right). The same
effect can be seen in the results that are presented in Section 5. The images have been created using trigonometric sheet resampling (Stücker, Busch & White 2018).

As an example, it is very difficult to determine to what extent the
shape of a given halo in a standard N-body simulation is influenced by
tidal fields on a given scale. The technique presented here however
allows for a measurement of the tidal effect on a single halo, by
performing N-body simulations using the same initial seeds both with
and without an external tidal field. This is illustrated in Fig. 1, which
shows slices through TreePM N-body simulations without a tidal field
and with tidal fields of opposite sign. The tidal field here has a dimen-
sionless amplitude (parametrized by λ) of 0.1, corresponding to a uni-
verse with fractional differences in scale factor of roughly 10 per cent
between the z and x, y axes. The effect on the shape of the halo in the
centre of the figure is clearly visible, especially in its outer regions.

We note that the separate universe approach has similarities with
the approach taken in the sCOLA scheme (Tassev et al. 2015;
Leclercq et al. 2020) that also separates the treatment of quasi-linear
large scales and non-linear smaller scales. However, in the sCOLA
scheme, the goal is to make faster and bigger simulations whereas
in our case the goal is to single out and understand the effect of the
large-scale tidal field.

Following the two physics goals presented above, we show
two applications in this paper: first, we measure the anisotropic
response of the matter power spectrum to large-scale tidal fields,
extending previous results up to. This result can be immediately
applied to the calculation of the covariance of weak lensing power
spectra. Secondly, we show simple measurements of the alignment
of halo shapes. Our very high signal-to-noise detection of this effect
illustrates the power of our simulation technique for detailed halo
alignment studies, as alluded to above and illustrated in Fig. 1: by
measuring the alignment of haloes with respect to a fixed, external
tidal field, the noise in the measurement is substantially reduced.

Sections 2 and 3 present a short introduction to the large-scale
tidal field equations, as well as the modifications we have made
in the initial conditions generator and the N-body code GADGET4
(Springel et al. 2020). In Section 4, we show how to measure the

response in simulations, and we demonstrate convergence of these
measurements. The main results are presented in Section 5 – these
include the response measurement in the fully non-linear case, and a
brief study of halo alignment with the tidal field. Several appendices
give technical details of our procedures.

2 LAG R A N G I A N PE RT U R BAT I O N T H E O RY IN
THE ANI SOTROPI C FRAME – THE
G E N E R AT I O N O F IN I T I A L C O N D I T I O N S

To measure the response reliably at all times, we have to make
sure that both the initial conditions and the simulation code account
properly for evolution in the anisotropic frame. In this section,
we will discuss how Lagrangian perturbation theory (LPT) can be
applied in the anisotropic frame and what modifications are needed to
existing 2LPT codes to generate initial conditions in the anisotropic
frame. We discuss the main steps in the next subsection, but relegate
the full derivation to Appendix A. These modifications have been
implemented into the IC code MONOFONIC-MUSIC2 (Hahn et al.
2020; Michaux et al. 2020), which is publicly available.1

2.1 Expansion of an anisotropic universe

Schmidt et al. (2018) describe how the evolution of a universe with
a homogeneous large-scale tidal field can be modelled by an N-
body simulation with periodic boundary conditions. A general tidal
field is described by a symmetric 3 × 3 tensor, but we can rotate
into principal axis coordinates where the tidal tensor is diagonal. In
this frame, we can describe the anisotropic expansion by three scale

1Available from https://bitbucket.org/ohahn/monofonic.
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Tidal response 1475

factors ax, ay, and az, which replace the single a(t) of the standard
isotropic model.2

For our purpose, it is useful to think of this anisotropic simulation
as a small region of a larger isotropically expanding universe that
grows according to a background scale factor a (with today’s epoch
corresponding to a = 1). It is convenient to describe the scale
evolution of the anisotropic region with respect to the isotropic
background universe by considering expansion factor ratios αi =
ai/a. The region simulated evolves differently from the isotropic
background in such a way as to mimic the dynamical effects of a
large-scale tidal field. The scale factor ratios are defined to approach
unity in the limit of early times αi(a → 0) → 1, but they then deviate
significantly from unity at later times. These ratios follow modified
versions of the Friedman equations. As explained in Schmidt et al.
(2018) and Stücker et al. (2018), these are given by

α̇i = a−2ηi, (1)

η̇i = −3

2
�m,0H

2
0 a−1(t)αi(t)�i(t), (2)

where the ηi are convenient momentum variables and the �i are
non-linear versions of the eigenvalues of the deformation tensor that
parametrize the external tidal field while also accounting for the fact
that the non-linear density of the simulation box is known exactly
from the ratios αi. For our current work, we adopt a linear external
tidal field, giving

�i(t) = 1

3

(
1

α1(t)α2(t)α3(t)
− 1

)
− D1(t)

⎛
⎝λi − 1

3

∑
j

λj

⎞
⎠ , (3)

where D1 is the linear growth factor and λi are the eigenvalues of
the deformation tensor dij of the large-scale perturbation (compare
appendix of Stücker et al. 2018), and

dij = ∂i∂j∑
k ∂2

k

δlin. (4)

In our case, we leave λi as free parameters that determine the ampli-
tude of the external perturbation. The deformation of the anisotropic
universe is then given at early times by the Zeldovich approximation,

αi ≈ 1 − D1(t)λi, (5)

which also defines the initial conditions for the numerical integration
of the evolution equations. For the simulations in later sections, we
numerically integrate the anisotropic background evolution using
(1)–(3) to give an accurate treatment even in the non-linear regime.
However, for the purpose of this section, approximation (5) is
accurate enough to obtain LPT initial conditions up to second order.

2.2 The anisotropic comoving coordinate frame

We define anisotropic comoving coordinates x. Simulation par-
ticles that are not subject to any perturbations around the local
anisotropically expanding region stay at constant x. Therefore,
these coordinates are the natural choice of ‘comoving’ coordinates
in this context. However, to avoid confusion with the comoving
coordinate frame normally defined in the literature (which is relative

2Note that this assumes the orientation of the external tidal field to be constant
in time. Only its eigenvalues can change. In a perturbative expansion of
the large-scale tidal field, this is the case up to including second order.
Equivalently, this holds as long as the external large-scale mass distribution
that generates the tidal field can be described as evolving according to 2LPT.

to the isotropic expansion of the larger scale background universe)
we refer to the two different frames as ‘anisotropic comoving’
and ‘isotropic comoving’ frames in the following. The anisotropic
comoving coordinates relate to physical coordinates rphys and to
isotropic comoving coordinates r as

ri,phys = ari, (6)

ri = αixi . (7)

Throughout the paper, we distinguish between anisotropic comoving
coordinates x and isotropic comoving coordinates r . All spatial
derivatives are by default taken in anisotropic comoving coordinates:

∂i := ∂

∂xi
. (8)

2.3 Equations of motion

The equations of motion in the anisotropic comoving frame are
obtained by generalizing the well-known equations for a non-
relativistic particle from an isotropic to an anisotropic background:

ẋi = vi

a2α2
i

, (9)

v̇i = −∂iφ

a
, (10)

and
3∑

i=1

α−2
i ∂2

i φ = 4πGρ0δ

α1α2α3
, (11)

where v are the canonical momenta associated with x, ρ0 is the
mean matter density at a = 1 in the isotropic frame, and δ(x) =
ρ(x)/ρ0 − 1 is the relative density contrast at a location x where
ρ(x) is the comoving density (Schmidt et al. 2018).

This is a suitable form for solving the equations of motion
numerically, as we will discuss in Section 3. However, to apply
perturbation theory it is more convenient to combine the two first-
order equations of motion and the Poisson equation into a single
second-order differential equation with one vector variable. This can
be done by combining the time derivative of equation (9) with (10),
taking the divergence, and using the Poisson equation (11):

∇ (
ẍ + 2H ∗(a)ẋ

) = − 4πGρ0

a3α1α2α3
δ(x)

= −3H 2(a)�m(a)

2α1α2α3
δ(x), (12)

where we have used the Friedman equation of the isotropic back-
ground universe, together with �m(a) = ρm(a)/ρcrit(a), and defined
an anisotropic Hubble tensor that is diagonal in our case and has the
components,

H ∗
ij (a) = δij

(
ȧ

a
+ α̇i

αi

)
, (13)

where no summation over identical indices is implied, and δij denotes
the Kronecker delta.

2.4 Lagrangian perturbation theory

The LPT solutions can be found by making the ansatz

x(q, t) = q + �(q, t), (14)

�(q, t) ≈ D1(t)� (1)(q) + D2(t)� (2)(q) + D2λ(t)� (2λ)(q) + O(3).

(15)

MNRAS 503, 1473–1489 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/1/1473/6144592 by IN
IST-C

N
R

S IN
EE IN

SB user on 05 M
ay 2023



1476 J. Stücker et al.

where the solutions to D1, �1, D2, and � (2) are the ones given by
standard 2LPT,3 (i.e. without an external tidal field). In an Einstein–
de Sitter universe, D2 = −(3/7)D2

1 , a relation that is quite accurate
even in lambda cold dark matter (�CDM). D2λ and � (2λ) denote
second-order corrections that account for the anisotropic evolution
and have a different time dependence than D2. Notice that there is
no � (1λ) term, since we work in anisotropic comoving coordinates
where the linear-order effect of the tidal field is already incorporated.
We find that the solutions for the anisotropic corrections at second
order are,

D2λ = D2
1 + D2, (16)

∇·� (2λ) =
∑

i

λi∂i

(1)
i , (17)

as derived in Appendix A. These solutions are correct for any �CDM
universe and are consistent with previous predictions of the effects
of a large-scale tidal field, as shown in Appendix A3.

2.5 Generation of initial conditions

To make minimal changes to existing initial condition generators, we
additionally make the approximation

D2λ ≈ −4

3
D2 (18)

which is exact in an Einstein–de Sitter universe, and still has only an
order 1 per cent error at a = 1 for a universe similar to ours �m(a =
1) ∼ 0.3 as we show in Appendix A2. At early times, where initial
conditions are typically generated, this error is completely negligible.
By using this approximation, the only change with respect to standard
2LPT is a modification to the Poisson equation of the second-order
displacement potential to

∑
i

∂2
i �(2) →

∑
i

∂2
i �(2) +

∑
i

∂2
i �(1)

⎛
⎝∑

j

λj

⎞
⎠

+ 4

3

∑
i

λi∂
2
i �(1), (19)

where the potentials generate the displacement fields via 

(1)
i =

−∂i�
(1) and 


(2)
i = ∂i�

(2). In this modification, we have also
included an isotropic correction to �(2) for cases with large-scale
overdensities

∑
λi 	= 0 so that this equation remains valid for arbitrary

combinations of λi (compare Appendix A). We implemented this
change and the correct transformation of the velocity variables

vi = a2α2
i ẋi . (20)

into MONOFONIC-MUSIC2 . We use this for generating initial condi-
tions for all simulations presented in this paper.

3 MODIF IED GADGET4

Here, we describe the changes that are necessary to a TreePM N-body
code to perform simulations in the anisotropic frame. The simulation
volume is chosen to be a cube with fixed size in the anisotropic
comoving frame, equivalent to a rectangular box with evolving (and
unequal) side-lengths in the physical frame.

3Together with a correction accounting for the large-scale overdensity if
∑

λi

	= 0.

Our simulations have three additional parameters in comparison
to a standard cosmological N-body simulation. These are the three
eigenvalues of the tidal field λi which define the time evolution of the
three axes αi of the anisotropic universe as described in Section 2.1.
We have implemented the necessary changes into GADGET4 (Springel
et al. 2020), an updated version of GADGET2 (Springel 2005).

The major required modifications are (1) the numerical integration
of the anisotropic background scale factors; (2) changes to the
equations of motion; (3) changes to the long- and short-range force-
calculations. The equations relevant for (1) and (2) are summarized
in Sections 2.1–2.3; their implementation is described in our previous
paper (Schmidt et al. 2018). Therefore, we will focus here on point
(3) – a description of the necessary changes to the force calculation
in a TreePM scheme.

3.1 The TreePM force split

In GADGET4, the gravitational potential is split into a short-range part
φs which is calculated by tree-summation techniques and a long-
range part φl that is calculated on a periodic particle mesh through
Fourier-techniques (Bagla 2002; Springel 2005). Our calculation of
forces in the anisotropic frame requires modifications to both of
these.

The force split is defined by a kernel function f where the long-
range potential is defined as a smoothed version of the potential
and the short-range potential is defined as the remaining part of the
potential so that φ = φs + φl:

φl = φ ∗ f , (21)

φs = φ − φl, (22)

where the star denotes a convolution.
In GADGET4, a Gaussian kernel is used for the smoothing function

f,

f = 1

8π3r3
s

exp

(
−|x|2

4r2
s

)
, (23)

whose Fourier representation (denoted by a tilde) is

f̃ = exp
(−k2r2

s

)
, (24)

where rs is a parameter that defines the scale of the split and is
typically chosen to be a bit larger than a mesh cell. We adopt
this choice here for the anisotropic comoving frame; that is, k
and x are given in anisotropic comoving coordinates so that the
force-cut is spherical in the simulation frame. This gives a simple
representation of the long-range force and a force-cut that does
not deform in the simulation frame over time. However, the kernel
shape is ellipsoidal in the isotropic comoving frame that comes at
the cost of a complicated form for the real-space representation of
the short-range potential. The Green’s function of the short-range
potential requires the calculation of the potential of an ellipsoid with
a Gaussian kernel. We will describe how to handle this in Section 3.3.

3.2 Evaluation of the long-range force

The Poisson equation for the long-range potential reads∑
α−2

i ∂2
i φl = 4πGρ0δ

α1α2α3
∗ f (25)

and can be solved in Fourier space as

φ̃l = −4πGρ0δ̃

α1α2α3

f̃∑
α−2

i k2
i

. (26)

MNRAS 503, 1473–1489 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/1/1473/6144592 by IN
IST-C

N
R

S IN
EE IN

SB user on 05 M
ay 2023



Tidal response 1477

Thus, evaluating the long-range potential only requires a modified
background density ρ0/(α1α2α3) and a modified Greens’s function
in Fourier space,

G̃l = f̃∑
α−2

i k2
i

. (27)

The rest of the calculation can be kept the same as in the isotropic
case. We have already presented this in Schmidt et al. (2018) for the
case f̃ = 1, since we used the code in a PM-only setting.

3.3 Evaluation of the short-range force

To estimate the Green’s function of the short-range potential, we
have to find a real-space representation of the long-range potential:

Gs = G − Gl, (28)

Gl = G ∗ f . (29)

We find it easier to solve this convolution in the isotropic comoving
frame ri = αixi where the Green’s function and the kernel are given
by

G = 1

|r| , (30)

f (u) = N exp
(−u2/

(
4r2

s

))
, (31)

u2(r) =
∑

i

r2
i

α2
i

, (32)

with N = 1/(8π3r3
s ). We can then rephrase the convolution in

(29) as the convolution of an ellipsoidal mass distribution with
Gaussian kernel (31) with the gravitational potential kernel 1/|r|.
The potential of an ellipsoid has already been solved in the literature
(e.g. Chandrasekhar 1969; Binney & Tremaine 2008). We show in
Appendix B1 that this is given for the Gaussian case by

Gl(r) = 2πα1α2α3Nσ 2

×
∫ ∞

0

exp
[
− 1

2σ 2

((
r2
1

α2
1+v

)
+
(

r2
2

α2
2+v

)
+
(

r2
3

α2
3+v

))]
((

α2
1 + v

) (
α2

2 + v
) (

α2
3 + v

))1/2 dv,

(33)

with σ = √
2rs . We have not been able to find a closed-form

expression for this integral.
However, since we only expect moderate axial ratios 0.5 � αi/αj

� 2, we can expand the solution as a perturbation to the spherical
symmetric case αi = α which can be solved analytically. We derive
this in detail in Appendices B1 and B2. This expansion can be
parametrized in the form

Gl(x) ≈ 4πα1α2α3ρ0r
2
s

×

⎛
⎜⎝I3(r) +

∑
i

(
I5(r)ᾱ + I7(r)r2

i

ᾱ

2r2
s

) ≡�αi︷ ︸︸ ︷
(αi − ᾱ) +...

⎞
⎟⎠ .

(34)

where the different Im are defined in (B15) and are only a function
of the radius |r|. We give the full expansion of the potential up to
second order in �αi in Appendix B4.

We show in Appendix B5 that the error of this expansion leads to
extremely small force errors for axes that all deviate slightly from

unity, and the errors become large when the relative differences
between the axes reach order unity. For typical cases that we consider
in this paper, we have λ ∼ �α ∼ 0.1 and the largest relative force
errors are of the order of 10−3. We estimate that the relative force
errors still stay below 1 per cent for cases up to �α ≈ 0.4. The errors
can be seen as a function of the axes in Fig. B2.

The short range force is then estimated in the simulations by doing
a tree-summation over the short-range force of a point mass given by
∇Gs instead of the spherically symmetric short-range force. The rest
of the Tree-PM algorithm can be kept the same as in Springel (2005).
However, we note that the tree is grouping particles in cubes in the
anisotropic frame, leading to cuboids in physical space. In general
there is nothing which speaks against such a different grouping.
However, in our simulations we use smaller opening angles and
more accurate force-accuracy parameters to make sure that the force
accuracy does not suffer from this different grouping strategy.

In addition to the tests in Appendix B5, we have also tested our
anisotropic force calculation for an evolved particle distribution
against a cuboid mesh implementation in the unmodified GAD-
GET4 – resembling an anisotropic box with non-evolving axes. We
found force errors that are consistent with our measurements in
Appendix B5.

We conclude that the force calculation presented here is suitable
for performing high-accuracy cosmological simulations with a large-
scale tidal field.

4 R ESPONSE MEASUREMENT AND
N U M E R I C A L C O N V E R G E N C E

We have discussed in the last sections how to perform simulations
in an anisotropic universe. We will describe here how to measure
the effects of the tidal field. These can be quantified at the first
relevant order by the response, which describes the development
of an anisotropic component in the power spectrum. Here, we
briefly summarize the definition of the response, we explain how
to measure it in a simulation, and we discuss its convergence within
our simulations.

4.1 Response definition

Our response definition follows that of Barreira & Schmidt (2017a).
In this paper, we will focus on the first-order response functions as set
out in their section 3.2. Under the influence of an external trace-free
tidal field K and a large scale overdensity δL, the three-dimensional
power spectrum4 can be written in the anisotropic comoving frame
as

P (k) = P (k)

⎛
⎝1 + G1(k)δL + GK (k)

∑
i,j

k̂i k̂jKij

⎞
⎠ , (35)

where k̂ is a normalized k-vector k̂ = k/k and K the traceless tidal
tensor of the large-scale perturbation. In the linear regime, K is given
in its eigenframe by

K(t) = D(t)

⎛
⎜⎜⎝

λ1 − δL/3 0 0

0 λ2 − δL/3 0

0 0 λ3 − δL/3

⎞
⎟⎟⎠, (36)

4By this, we mean P (k) = 〈|δ̃2(k)|〉 where the average is over realizations of
the linear initial conditions.
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1478 J. Stücker et al.

where δL = ∑
λi. Equation (35) remains valid for small δL and Kij

and as long as the wavelength of the large-scale density and tidal
perturbations is much larger than 1/k. In our case, the wavelength is
infinite, so that this condition is satisfied for all k.

Akitsu, Takada & Li (2017b) and Barreira & Schmidt (2017a)
found to leading order in perturbation theory that

GK = 8/7, (37)

which is valid on large scales as k → 0 for an Einstein–de Sitter
universe. We show in Appendix A3 that in a �CDM universe a more
accurate approximation is given by

GK ≈ 8

7
�1/185

m (a), (38)

which, however, deviates by less than a percent from equation (37) at
a = 1. As we will describe in the next section, it is straightforward to
measure GK from our simulations in the anisotropic frame. However,
in addition to GK, it is of interest to measure the response in the
isotropic frame, RK. This follows an equivalent definition to (35)
but in the isotropic comoving Fourier space, and can be inferred by
applying a coordinate transformation to GK,

RK = GK − k
P ′(k)

P (k)
, (39)

where P
′
(k) = dP(k)/dk is the derivative of the background (isotropic)

power spectrum.

4.2 Response measurement

With our set-up we can simulate universes with arbitrary large-
scale overdensities and/or tidal fields. Therefore, we can measure
the response by performing simulations in universes with small
differences in the large-scale tidal field – parametrized by λ. Using
(36) and assuming a trace-free perturbation

∑
λi = 0, we can write

for universes with small values of the tidal field

P (k,λ) ≈ P (k, λ = 0)
(

1 + GK

∑
λi k̂

2
i

)
. (40)

This motivates us to infer the response by performing triplets of
simulations that start from the same initial condition realization, but
different tidal fields: two with opposite signs ±λ of the tidal field and
one without a tidal field λ = 0. Then, the response can be measured
by a finite-difference scheme of the form

GK = P (k, λ) − P (k, −λ)

P (k, λ = 0)
∑

2λi k̂
2
i

+ O(|λ|2). (41)

At linear order in the tidal field, we can specialize to the case
without an overdensity

∑
iλi = 0 and with a tidal field which is

axisymmetric, λx = λy = −λz/2. This way we can reduce the λi to a
single parameter λz. In this case, we have∑

k̂2
i λi = λz

2

(
3k̂2

z − 1
)

= λzY2(μ), (42)

with Y2 the second-order Legendre polynomial, and μ = k̂z, the
cosine of the angle between the k vector and the z-axis in Fourier
space. In principle, equation (41) should be valid for each mode k,
since it is already defined over expectation values. However, with a
single initial condition realization simulated three times, we cannot
determine these expectation values reliably for individual modes,
but rather must perform some sort of averaging over an ensemble
of Fourier modes. We found it elegant to spherically average the

following expression:

GK =
〈(|δ2

+| − |δ2
−|) Y2(μ)

〉〈|δ2
0 |Y 2

2 (μ)D(t)λz

〉 + O
(
λ2

z

)
, (43)

where δ± := δ(k, ±λz). The weighting by Y2 extracts the response
information optimally, and we note that, due to the spherical
symmetry of the run without tidal field, the denominator should
factorize approximately into〈|δ2

0 |Y 2
2 (μ)D(t)λz

〉 = 〈|δ2
0 |
〉 〈

Y 2
2 (μ)

〉
D(t)λz (44)

= P0D(t)λz, (45)

where we used the normalization condition for a Legendre polyno-
mial.

This strategy allows us to measure the response as a function
of wavenumber k on a grid in Fourier space. We employ folding
techniques to measure the power spectrum and the response on very
small scales. We describe the numerical details of this in Appendix C
where we also investigate the effects of other numerical parameters.

We note that the error in the response measurement (43) scales as
λ2

z . We typically employ simulations with λz ∼ 0.1 leading to errors
which are of order a per cent in the response measurement.

4.3 Time evolution and discreteness effects

We begin by analysing a set of test runs to check the reliability of
our response measurement and simulation techniques. These were
carried out using box sizes of d = 100 and 20 h−1 Mpc, and with
different resolutions, initial grid discretizations, and starting redshifts
(zic = 99 except for one run with zic = 33). Results are presented
in Fig. 2 with different panels showing the response measured at
different times.

In our initial conditions, our response estimate is exactly that
predicted, but at subsequent early times (0.01 < a < 0.3) it
is artificially enhanced in a way that depends on the particular
discretization pattern chosen for the initial particle load. At later times
(a > 0.3), this artefact disappears and there is good agreement for
all tested choices of numerical parameters (up to differences which
can be explained by cosmic variance). A more detailed explanation
follows.

The blue lines in Fig. 2 correspond to our default set-up, a total of
N = 1283 particles initially displaced from a cubic grid. The initial
conditions (a = 0.01) show exactly the response expected according
to linear theory, confirming the validity of our initial conditions
generator. However, as evolution starts, the response increases at
wavenumbers above a threshold that scales inversely with the mean
interparticle separation (compare the 20 and 100 h−1 Mpc runs). This
growth seems to be a numerical artefact, and depends strongly on the
discretization pattern used to arrange particles in the initial conditions
prior to imposing LPT in what is also sometimes called ‘pre-initial
conditions’.

The effect of the discrete particle distribution on the growth of
modes at the smallest scales can be understood by comparing our
set-up to one where initially a body-centred cubic (bcc) lattice is
used as the unperturbed particle distribution. This is known to have
less anisotropic growing modes induced by discreteness effects (cf.
Joyce & Marcos 2007; Marcos 2008). For details on the set-up and
effect of pre-initial conditions, we kindly refer the reader to Michaux
et al. (2020), in particular their section 2.4. We find that the artificial
early growth is very significantly suppressed in this case. There is
still some apparently unphysical early enhancement of the response,
but this does not disappear or move to significantly smaller scales if
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Tidal response 1479

Figure 2. Time evolution and convergence tests of our response measurements. Different panels correspond to different times as labelled. Dashed lines refer to
simulations with boxsize d = 20 h−1 Mpc, while solid lines are for d = 100 h−1 Mpc. Blue lines correspond to simulations where the initial particle load was
a cubic grid. The other runs use a bcc grid, as described in the text. Orange and green lines differ by a factor of 8 in the number of particles used. The purple
line refers to a later start, zic = 33 rather than 99, as in all the other simulations. All but the red simulations start from the same initial condition realization,
and at later times agreement between them is often so good that only the last one plotted is visible, even though all simulations are, in fact, shown at all times.
The simulations shown as red and orange lines (note that the orange line is mostly covered by the green line) are identical except for using different seeds in the
random number generator; differences between them thus indicate the effect of cosmic variance. At a = 0.3 and later, differences between runs can be explained
solely by cosmic variance.

MNRAS 503, 1473–1489 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/1/1473/6144592 by IN
IST-C

N
R

S IN
EE IN

SB user on 05 M
ay 2023



1480 J. Stücker et al.

the mesh spacing of the initial load is halved (the green lines) or if a
later starting redshift (z = 33) is used (the purple lines). We have run
numerous other numerical tests, but we were unable to find a simple
consistent explanation of this early growth. At least the large effect
seen in the blue curves is clearly a consequence of the details of
the particle pattern in the initial load, and so must be a discreteness
artefact.

A reliable estimate of the response at high redshift z � 2, will
require a full identification and proper resolution of the sources of
these problems – this may be possible using a phase-sheet-based
approach as described in Hahn & Angulo (2016) and Stücker et al.
(2019) – but Fig. 2 demonstrates that although our runs show a variety
of anomalies at early times, a � 0.3, they agree with each other
remarkably well for a � 0.3. Indeed, by a = 1 differences are very
small and many of the curves of Fig. 2 overlie each other. (Note that
they were plotted in the order they are listed in the legend, with later
curves overlying earlier ones.) Apparently, the early artificial growth
of the response (which differs between runs) has little impact on its
value at later times. This is probably because the late-time behaviour
is dominated by physical processes like halo formation which are
insensitive to details of the linear evolution. Remaining differences at
a � 0.3 can be attributed to cosmic variance between the simulations.
To demonstrate this, we ran simulations with a different seed in the
random number generator for the initial conditions generator; these
are plotted as the red lines (to be compared to the orange lines) in
Fig. 2. At late times the scatter between red and orange is roughly
comparable to the difference between the smaller and larger boxes
(d = 100 and 20 h−1 Mpc). There might of course still be systematic
differences due to finite-size effects in the simple tests in this section,
but we will use simulations with much larger boxsize and multiple
different seeds in the following analysis.

We conclude that our set-up is able to measure the response reliably
at late times a � 0.3, where it seems to be robust against discretization
details. However, a precise measurement at earlier times would
require more sophisticated techniques. We therefore focus in the
rest of this paper on a precise measurement of the response for 0 ≤
z ≤ 2.

4.4 Production simulation set-up

To measure the response on both large and small scales, we perform
a set of cosmological gravity-only simulations with side length LB =
500 h−1 Mpc with 5123 particles each. This corresponds to a particle
mass of 8.0 × 1010 h−1 M�. These simulations use initial conditions
as described in Section 2, and are evolved with the modified GADGET4
version described in Section 3. The gravitational force is calculated
using the modified TreePM algorithm using the elliptical potential
approximation and 10243 PM cells.

We consider eight realizations of the initial density and velocity
field at our starting redshift zini = 127, but for each we perform three
runs with different tidal fields defined by λz = −0.1, λz = 0, and λz

= 0.1 as explained in Section 4.2. We use these eight realizations
to measure the average amplitude of the response and the statistical
uncertainty of the average.

The initial power spectrum is computed with CAMB (Lewis,
Challinor & Lasenby 2000) using a fiducial flat �CDM cosmology
with cosmological parameters taken from Planck (Planck Collab-
oration XIII 2016). The main parameters are �m = 0.308, ��

= 0.692, �b = 0.04694, σ 8 = 0.829, ns = 0.965, and h =
0.678. The fiducial runs use a softening length of 40 h−1 kpc which
translates to 0.04lmean with the mean particle separation, lmean =
500 h−1 Mpc/512 ≈ 0.98 h−1 Mpc. For convergence tests we also

ran simulations both with half that softening and with one eighth the
particle number and the same softening.

We have carried out additional tests of the convergence of our sim-
ulations on small scales, and of the way numerical details affect our
response measurements. We present these tests in Appendix C with a
detailed explanation, and we show in Fig. C1 how power spectra, and
the responses GK and RK depend on numerical details. As discussed
in Appendix C, we estimate that the response measurements in our
simulations are reliable up to k = 7 h Mpc−1.

5 R ESULTS

In this section, we describe the main results of this paper. These are
a measurement of the power spectrum response on small scales, up
to k = 7 h−1 Mpc, and a first look at the effect of the tidal field on
the alignment of haloes.

5.1 Response function

Based on the results shown in Fig. 2, the deviations in response
measurements after a = 0.3 appear to be due primarily to cosmic
variance, with numerical uncertainties being relatively small. In
Fig. 3, we therefore present the mean response functions GK and
RK, together with the error on the mean obtained from the scatter
among our eight realizations, at redshifts z = 0, 1, and 2 for which
we believe discreteness artefacts to be small.

We find the linear predictions for the response functions to be
well reproduced on large scales, but the response is suppressed on
quasi-linear and non-linear scales. As the characteristic (comoving)
scale of non-linearity grows with time, so does the scale on which the
response is suppressed below the linear value; i.e. the suppression
sets in at lower wavenumbers at later times.

Interestingly, the response RK in the isotropic comoving frame
(‘total response’) approaches a constant value RK ≈ 0.5 on small,
highly non-linear scales, which appears to be redshift-independent.
As discussed in detail in section 5 of Schmidt et al. (2018), in the
context of a halo model description of the non-linear power spectrum,
this implies that the tidal field has an impact even on the innermost
structure of haloes and down to low halo masses. If the inner structure
of haloes were insensitive to the tidal field, one would expect RK =
0 at large wavenumbers. We investigate the effect on haloes more
directly in the next section, although the precise connection between
halo alignments and the tidal matter power spectrum response on
small scales is left for future study.

5.2 Effect of the tidal field on halo alignments

As just discussed, our response measurements suggest that tidal fields
influence even the innermost structure of haloes. In this section, we
investigate this effect more quantitatively. A proper treatment of
such tidal alignment is important for analyses of weak gravitational
lensing, where it can lead to significant contamination of shear
estimates.

We adapt the SUBFIND algorithm (Springel et al. 2001) to identify
haloes in our simulation in isotropic comoving coordinates (as
usually done, although in these coordinates our simulation boxes
are not cubic). We compute the reduced inertial tensor,

Iij = 1

N

∑
n

rn,irn,j

r2
n

, (46)

where rn denotes the displacement vector between the particle with
index n and the potential minimum of the halo. Thus, Iij measures
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Tidal response 1481

Figure 3. Response functions for three different redshifts. The response in the anisotropic comoving frame (‘growth-only response’) GK (top) approaches the
linear limit GK ≈ 8/7 on large scales and shows mostly a suppression on smaller scales. The length-scale of the suppression grows with time. However, at z

= 2 one can also see a slight enhancement over the linear prediction at scales around k ∼ 1 h Mpc−1 that are just above the suppression scale. The response
in the isotropic comoving frame (‘total response’) RK (bottom) shows an oscillatory behaviour at large scale that is caused by the shift in the baryon acoustic
oscillation feature. Note that this feature is smoothed out through the binning procedure, in addition to the smoothing due to non-linear evolution. At smaller
scales k � 0.1 h Mpc−1, the response shows a redshift-dependent suppression with respect to the linear prediction. At very small scales k � 2 h Mpc−1, it
approaches a value of �0.5.

shapes as viewed in the isotropic background universe. The sum
extends over all particles within the radius R200c of a given halo,
where R200c is defined such that the mean matter density inside
R200c is 200 times the critical density of the universe. Therefore,

Iij is an indicator for the shape and orientation of a halo in the
physical frame. We have tested different radius and mass definitions,
in addition to the regular, un-reduced inertia tensor, and found that
all cases give similar results on the alignments. We note that more
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1482 J. Stücker et al.

sophisticated algorithms to estimate the shapes of haloes exist (see
Kiessling et al. 2015 for a review), but this one suffices for our
purposes.

Perhaps the simplest way to measure halo alignments is to average
the inertial tensor over many haloes in a fixed coordinate frame (in our
case the isotropic comoving frame). In the absence of any preferred
directions, the average inertial tensor is proportional to the identity
matrix δij. The external tidal field Kij however provides a preferred
direction along which haloes can align, so that to linear order in Kij

(or equivalently λ) we can write

〈Iij 〉haloes

∣∣∣
λ

= 1

3
I
[
δij + c

g
1Kij

]
, (47)

where I = tr[Iij] and we have introduced a dimensionless fractional
alignment coefficient c

g
1 following the notation of Vlah, Chisari &

Schmidt (2020). Equation (47) is in fact the leading contribution in
the general perturbative expansion of intrinsic alignments (Catelan
et al. 2001; Blazek, Vlah & Seljak 2015; Schmidt et al. 2015; Vlah
et al. 2020). It is the analogue for shapes of the linear galaxy b1, and so
describes the statistics of three-dimensional shapes in the large-scale
limit. The coefficient C1 of the relation between projected shapes and
the tidal field in the linear-alignment model (e.g. Blazek, McQuinn
& Seljak 2011) is related to c

g
1 via C1 = −c

g
1D(a)/(a2ρm(a)), so that

c
g
1 < 0 corresponds to C1 > 0.

The trace I of the inertial tensor is not affected by the tidal tensor
at linear order, and can be straightforwardly measured by averaging
over haloes in the λz = 0 simulations. Since in our simulations Kij

= diag(λz/2, λz/2, −λz), one can directly solve for the alignment
coefficient in terms of components of the average inertial tensor in
the simulations with tidal fields:

c
g
1 = TF[Iij ]+λz

− TF[Iij ]−λz

Iλz

, (48)

where

TF[Iij ]λz
=
(

1

2
〈Ixx〉haloes + 1

2
〈Iyy〉haloes − 〈Izz〉haloes

) ∣∣∣
λz

. (49)

The results of the measurement are shown in Fig. 4. As expected,
c

g
1 is negative, since the inertia tensor is increased in the direction of

negative λ (a stretching tidal field). We find that more massive haloes
are aligned more strongly, in agreement with previous findings (Jing
2002).

As another measure of alignments, we determine the eigenvalues
and eigenvectors of the reduced inertia tensor and compute the angle
θ between the direction in which the tidal field is strongest (the z-
axis) and the eigenvector associated with the largest eigenvalue of the
reduced inertia tensor. We plot the mean value of |cos (θ )| in Fig. 5
for our three cases with differing tidal fields. For random alignments,
the expectation is 〈|cos (θ )|〉 = 1/2. Note that this measure does not
depend on the axial ratios of the haloes, but only on the orientation
of their major axes. Quantitatively, we find that the mean of cos θ

depends linearly on the tidal field,

〈| cos(θ )|〉λ − 1

2
� −(0.2 − 0.4)λ, (50)

again with stronger alignment seen at higher halo mass. The case
with negative λz corresponds to a tidal field that ‘stretches’ the
matter distribution along the z-axis, while positive λz corresponds
to a compressive field along this same axis. Fig. 5 thus shows that
the longest axis of a halo tends to align with the direction of tidal
field stretch, which is essentially the same effect as quantified by the
parameter c

g
1. This effect can also be seen in Fig. 1 that shows images

of the same halo in the three different cases.

Figure 4. Alignment coefficient for the reduced moments of inertia tensor of
haloes at z = 0, as measured using equation (48) in logarithmic bins in halo
mass with width �log10M200c = 0.1. The shaded band indicates the error on
the mean as determined from the eight simulation realizations. The alignment
with the tidal field is stronger for haloes with larger masses. Note that the
alignment coefficient c1,g is negative, since the inertia tensor is increased in
the direction of negative λ (a stretching tidal field).

Figure 5. Mean alignment 〈|cos �|〉 of haloes at z = 0, in the same mass
bins as Fig. 4, with the major axis of the tidal field in different mass bins. The
shaded contours highlight the uncertainty in the mean as determined from
the different simulation realizations. The results for the isotropic run without
tidal field are consistent with a mean of 0.5 at all masses, which corresponds
to the expected uniform distribution of angles. For non-zero λ, haloes tend
to align with the ‘stretching’ direction of the tidal field. We again find that
haloes with higher masses align more strongly.

Our results for this simple measure of halo alignment are in
qualitative agreement with previous findings (Hopkins, Bahcall &
Bode 2005; Chen et al. 2016), whereas a quantitative comparison is
difficult, because of the different techniques to define the statistics.
However, we note that our approach makes it possible to draw clear
causal relations. For example a simple explanation for the alignment
of haloes suggests that haloes align because they are part of the same
cosmic web-structures like filaments or pancakes (Hahn et al. 2007;
Kiessling et al. 2015). However, in our simulations we clearly see
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Tidal response 1483

that haloes can even be aligned if they are part of completely separate
structures – as long as they share a common large scale tidal field.

Further our measurements have a high signal-to-noise, given our
relatively small simulation volume. This suggests that anisotropic
N-body simulations of the kind presented here are well suited
for precision studies of halo alignment using more sophisticated
halo shape and alignment estimators than employed in this first
exploration.

6 C O N C L U S I O N S

In this paper, we have described how to perform simulations in
an anisotropically expanding universe. This technique simulates
structure formation in the presence of a tidal field of very long
wavelength that is effectively uniform across the simulation volume.
We have shown how to set up initial conditions for such simulations
by correctly taking into account second-order LPT in the anisotropic
comoving frame. Further, we have shown how to adapt the TreePM
algorithm of standard cosmological simulation codes to carry out
calculations in this anisotropic frame. We have then carried out the
first high-resolution simulations that consistently include the large-
scale tidal field from very early until late times, and from large to
small scales.

We have found that discretization effects play a role in such
simulations on small scales and at early times, but they vanish at
late times, a � 0.3 for our simulations. As a result, we were able
to predict power spectrum response functions for redshifts z ≤ 2.
The response we find agrees with perturbation theory on large scales
at all redshifts, but is generally suppressed on smaller scales where
non-linear effects become important. Around z ∼ 2, however, we can
see a slight rise above the linear prediction at intermediate scales,
which we believe to be physical. It would be interesting to compare
this with a higher-order perturbative calculation.

The suppression of the response on small scales can be interpreted
as arising because haloes are ‘more spherical’ than linear predictions
would suggest. However, both indirect and direct evidence show that
they are still affected by the tidal field. We find that the response
RK converges to a non-zero value (RK � 0.5) on small scales. In the
context of the halo model, this implies that halo shapes respond to
the tidal field.

In addition, by measuring both the linear alignment coefficient c
g
1

as well as the mean alignment between the major axis of haloes and
the preferred axis of the external tidal field, we find that haloes are
preferentially oriented along the direction of maximum tidal stretch.
These results, as well as the trend with halo mass, confirm previous
measurements in the literature, but differ in that they isolate the effect
of large-scale tidal fields, and provide a very high signal-to-noise
measurement.

We have used very simple estimators of halo shape and alignment
here, so the very high signal-to-noise of our detection indicates
the considerable potential of the anisotropic N-body simulation
technique for studying such effects. Further interesting applications
include the response of the halo (as opposed to matter) power
spectrum, and measurements of halo tidal bias.
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APPENDIX A : D ERIVATION O F THE
ANISOTROPIC 2LPT SOLUTION

We show here the full derivation of the 2LPT solutions that are
presented in Section 2 and we present a more detailed discussion of
the approximations involved.

We start from the equations of motion as already stated in equation
(12):

∇ (
ẍ + 2H ∗(a)ẋ

) = −3H 2(a)�m(a)

2α1α2α3
δ(x). (A1)

We then follow the standard 2LPT procedure as given in Jeong (2010)
and we refer the reader to this reference for a complete understanding
of the individual steps.

A1 Lagrangian perturbation theory

By defining the Lagrangian displacement field � through

x(q, t) = q + �(q, t), (A2)

and noting that the density contrast can be written6 as

δ = 1

det
(

∂x
∂q

) − 1, (A3)

we can derive the master equation of LPT

J
(
δij + 
i,j

)−1 (

̈i,j + 2H ∗

ik
̇k,j

) = 3

2

H 2�m

α1α2α3
(J − 1), (A4)

6In the single-stream regime, i.e. before any shell crossing has happened.

where 
 i,j = ∂ i
 j is the partial derivative of the displacement field �,
and we imply summation over identical indices. J is the determinant
of the Jacobian,

J = det
(
δij + 
i,j

)
. (A5)

To solve equation (A4) we make the Ansatz,


i,j = D1

(1)
i,j + D2


(2)
i,j + D2λ


(2λ)
i,j + ..., (A6)

where D1 and 
 (1) are given by

� (1) = −∇�(1), (A7)

∇2�(1) = δ(1) = δlin, (A8)

and D̈1 + 2HḊ1 − 3
2 H 2�mD1 = 0, (A9)

where ∇2 ≡ ∑
i ∂2

i , which are the same 1LPT solutions as in the
standard isotropic frame. D2 and 
 (2) are given by

� (2) = ∇�(2), (A10)

∇2�(2) =
∑
i>j

(
�

(1)
,ii �

(1)
,jj −

[
�

(1)
,ij

]2
)

+
(∑

�
(1)
,ii

)(∑
λj

)
,

(A11)

and D̈2 +2HḊ2 − 3
2 H 2�mD2 = − 3

2 H 2�mD2
1, (A12)

which are identical to the standard 2LPT solutions except that the
2LPT potential (A11) contains an additional term that is sourced by
the large-scale overdensity

∑
λi. D2λ, and 


(2λ)
i,j are also of second

order and represent corrections to these solutions that have another
time-dependence D2λ. We expand (A4) up to second order with the
Ansatz in (A6). We use the approximations to αi and the anisotropic
Hubble tensor from (5) and (13) which assume that the large-scale
tidal field is caused by large scale, linear density perturbations and
find

D̈2

(2)
i,i + 2HḊ2


(2)
i,i − 3

2
H 2�m


(2)
i,i D2

+ D̈2λ

(2λ)
i,i + 2HḊ2λ


(2λ)
i,i − 3

2
H 2�mD2λ


(2λ)
i,i

= −3

2
H 2�mD2

1

(
1

2

(



(1)
k,k

)2
− 1

2



(1)
i,j 


(1)
j,i

)

+ 2Ḋ2
1

∑
i

λi

(1)
i,i + 3

2
H 2�mD2

1

(∑
i



(1)
i,i

)∑
j

λj , (A13)

which we can simplify with the solutions for 
 (1) and 
 (2) to get

D̈2λ

(2λ)
i,i + 2HḊ2λ


(2λ)
i,i − 3

2
H 2�mD2λ


(2λ)
i,i

= 2Ḋ2
1

∑
i

λi

(1)
i,i , (A14)

where the spatial and time dependent parts can be separated to obtain
the differential equations,

� (2λ) = ∇�(2λ), (A15)

∇2�(2λ) = −
∑

i

λi∂
2
i �(1),

and D̈2λ + 2HḊ2λ − 3

2
H 2�mD2λ = 2Ḋ2

1 . (A16)
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Figure A1. Ratio between the growth factor of the anisotropic response
and the Einstein–de Sitter approximation D2λ ≈ − 4

3 D2 for a flat universe,
�� = 1 − �m, with different values for �m. The difference in response is of
order 1.5 per cent at a = 1 for a sensible cosmology with �m ∼ 0.3. We find
as a fit D2λ ≈ 4

7 D2
1�

1/185
m ≈ − 4

3 D2�
1/80
m .

We note that equation (A16) has very similar shape to the differential
equation for D2. We find that

D2λ = D2
1 + D2 (A17)

exactly solves equation (A16). This solution can also be found by do-
ing perturbation theory in the isotropic frame with an additional fixed
tidal field source term. This itself gives growth proportional to D2.
The coordinate transformation into the anisotropic frame introduces
an additional time dependence ∝ D2

1 that leads to D2λ = D2 + D2
1 .

A2 Useful approximations

We note that D2 ≈ −3/7D2
1 so that

D2λ ≈ −4

3
D2 ≈ 4

7
D2

1 . (A18)

Since D2λ ≈ − 4
3 D2 for an Einstein–de Sitter universe, it is also

possible to absorb �2λ into the potential term that is proportional to
D2 if the universe is close to Einstein–de Sitter:

∇2�(2∗) =
∑
i>j

(
�

(1)
,ii �

(1)
,jj −

[
�

(1)
,ij

]2
)

+
(∑

�
(1)
,ii

)(∑
λj

)
+ 4

3

∑
λi∂

2
i �(1), (A19)

which requires only minor modifications to a standard 2LPT code
for generating initial conditions of an anisotropic universe.

As illustrated in Fig. A1, the error of this approximation is
extremely small and scales roughly as D2λ/(− 4/3D2) ≈ �m(a)1/80

[note that we find that D2λ/(4/7D2
1) ≈ �m(a)1/185 describes very

well the response in terms of D1]. At z = 0, this is of order a per
cent, and at early times, z ∼ 100, it will be completely negligible. We
therefore conclude that (A19) provides a simple and very accurate
modification for the 2LPT initial conditions in the anisotropic frame.

A3 Response

To validate the 2LPT solution, we estimate the growth-only response
for early times. The response can be estimated by looking at the
change of the density field for small differences in λi:

∂δ

∂λi

= ∂J−1

∂λi

(A20)

= −D2

⎛
⎝∑

j

φ
(1)
,jj

⎞
⎠ + D2λφ

(1)
,ii (A21)

∂δk

∂λi

≈ δk

D1

(
−D2 + D2λ

k2
i

k2

)
(A22)

δ2
k (λ) ≈

(
δk +

∑
λi

∂δk

∂λi

)2

(A23)

≈ δ2
k + 2δk

∑
λi

∂δk

∂λi

≈ δ2
k

(
1 + 2

∑
i

D1λi

(
−D2

D2
1

+ D2
1 + D2

D2
1

k2
i

k2

))
. (A24)

If we split the λi into an overdensity and a trace-free component:

δ∗ =
∑

λi, (A25)

λ∗
i = λi −

∑
λi

3
, (A26)

we find

δ2
k (λ) = δ2

k

(
1 − 2

D2

D2
1

D1δ
∗ + 2

(
1 + D2

D2
1

)

×
(

D1δ
∗

3
+
∑

D1λ
∗
i

k2
i

k2

))

= δ2
k

(
1 +

(
2

3
− 4

3

D2

D2
1

)
D1δ

∗ +
(

2 + 2
D2

D2
1

)∑
D1λ

∗
i

k2
i

k2

)
(A27)

≈ δ2
k

(
1 + 26

21
D1δ

∗ + 8

7

∑
D1λ

∗
i

k2
i

k2

)
, (A28)

where (A27) gives the exact response (also in �CDM) and (A28) is
only exact in an Einstein–de Sitter universe for which D2 ≈ −3/7D2

1 .
The coefficient 8/7 matches the result known from second-order
perturbation theory; in addition, the coefficient of 26/21 of the
term proportional to the long-wavelength density perturbation also
matches known perturbation theory results Baldauf et al. (2011) and
Wagner et al. (2015b).

Based on our numerical results above, we found as a good fit
(equivalent to the one in Fig. A1) for the response in a flat �CDM
universe:

GK ≈ 8

7
�1/185

m (a), (A29)

which deviates by less than a per cent from 8/7 at z = 0 and by much
less at earlier times.

APPENDI X B: ELLI PTI CAL TREEPM

As discussed in Section 3.3, we need to calculate the potential of an
ellipsoid to infer an expression for the short range force. Here, we
derive the integral that needs to be solved for an exact evaluation and
further show how it can be approximated to a reasonable accuracy
through a series expansion.
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B1 Elliptical potential

To find a real-space representation of the long-range potential, we
have to evaluate φl = 1

r
× f as a convolution of the Green’s function

G = 1
r

with f, which has an ellipsoidal shape with a Gaussian kernel:

f (u) = ρ0 exp[−u2/(2σ 2)], (B1)

u2(r) = x2

a2
+ y2

b2
+ z2

c2
, (B2)

where we have written for simplicity α1 = a, α2 = b, α3 = c, and r1

= x, r2 = y, and r3 = z are isotropic comoving coordinates. Further,
σ = √

2rs . The half-axes of the ellipsoid are thus given by αirs.
Therefore, we have to calculate the potential of an ellipsoid which
is, following e.g. Chandrasekhar (1969) and Binney & Tremaine
(2008), given by

φl = 2πabc

∫ ∞

0

G(∞) − G(u(v, x, y, z))√
(a2 + v)(b2 + v)(c2 + v)

dv, (B3)

with

G(u) =
∫ u

0
u′ρ(u′)du′,

and

u =
√

x2

a2 + v
+ y2

b2 + v
+ z2

c2 + v
.

In this specific case, we have for the kernel ρ(u) = f(u). With that
G(u) and G(∞) can be calculated by

G(u) = ρ0

∫ u

0
u′ exp

(
− u′2

2σ 2

)
du′ (B4)

= ρ0σ
2

[
1 − exp

(
− u2

2σ 2

)]
,

G(∞) = ρ0σ
2. (B5)

Now, inserting equation (B4) into equation (B3), the equation for the
potential is found as

φl(x) = 2πa b cρ0σ
2

×
∫ ∞

0

exp
[
− 1

2σ 2

(
x2

a2+v
+ y2

b2+v
+ z2

c2+v

)]
(
(a2 + v)(b2 + v)(c2 + v)

)1/2 dv. (B6)

This is now a function of the three (scaled) axes of the ellipsoid
a, b, c = α0, α1, α2 and an elliptical coordinate v. The long-range
potential equation (B6) cannot be solved analytically. In this work, we
approximate the long-range potential by a series expansion around a
mean ᾱ ≡ (α0α1α2)1/3. This results in an integral that is independent
of the different directions, which means the integral can be calculated
once and stored in an interpolation table for different ᾱ. Only the
additional factors from the expansion are dependent on direction and
are easy and – most importantly – fast to calculate.

B2 Elliptical potential approximation – series expansion

Following the short derivation of its analytic form, an approximation
for the long-range potential is now described. Since we only expect
moderate axial ratios, we expand the integrand in equation (B6),

ζ =
exp

[
− 1

2σ 2

(
x2

a2+v
+ y2

b2+v
+ z2

c2+v

)]
((

α2
0 + v

) (
α2

1 + v
) (

α2
2 + v

))1/2 , (B7)

around the spherical case αi = ᾱ ∀i ∈ 0, 1, 2. In the spherical case,
the integrand (B7) can be simplified to

ζ |α=ᾱ = L3, (B8)

with

Lm =
exp

[
− 1

4r2
s

(
r2

ᾱ2+v

)]
(
ᾱ2 + v

)m/2 , (B9)

where we replaced σ = √
2rs . The series expansion up to second

order is given as

ζ ≈ L3 +
∑

i

∂ζ

∂αi

∣∣∣∣
α=ᾱ

(αi − ᾱ)

+ 1

2

∑
ij

∂2ζ

∂αi∂αj

∣∣∣∣
α=ᾱ

(αi − ᾱ)(αj − ᾱ) + O(3). (B10)

The first and second order terms are then

∂ζ

∂αi

∣∣∣∣
α=ᾱ

= −L5ᾱ + L7r
2
i

ᾱ

2r2
s

(B11)

= L5f5,I + L7f7,I , (B12)

∂2ζ

∂αi∂αi

∣∣∣∣
α=ᾱ

= −L5 + L7

(
3ᾱ2 + r2

i

2r2
s

)

+ ᾱ2

(
−L9

3r2
i

r2
s

+ L11
r4
i

4r2
s

)
=: f5,I IL5 + L7f7,I I ,i=j + L9f9,I I ,i=j

+L11f11,I I ,i=j , (B13)

∂2ζ

∂αi∂αj

∣∣∣∣
α=ᾱ

i 	=j= ᾱ2

(
L7 − L9

r2
i + r2

j

2r2
s

+ L11

r2
i r2

j

4r2
s

)

= f7,I I ,i 	=jL7 + f9,I I ,i 	=jL9 + f11,I I ,i 	=jL11, (B14)

where we have given labels to the factors that are associated with
different Lm: fm, I for the first order terms and fm, II, ... for the second-
order terms. Integrating equation (B9) over v we find the solution:

Im =
∫ ∞

0
Lmdv =

(
2r2

s

r

)m−2

×
(

�

[
m − 2

2
, 0

]
− �

[
m − 2

2
,

r2

4ᾱ2r2
s

])
, (B15)

with the incomplete gamma function �. Thus the potential equa-
tion (B6) can be written to first order as a series in �αi = αi − ᾱ:

φl(x) ≈ 4πabcρ0r
2
s

×

⎛
⎜⎝I3(r) +

∑
i

(
−I5(r)ᾱ + I7r

2
i

ᾱ

2r2
s

) ≡�αi︷ ︸︸ ︷
(αi − ᾱ) +...

⎞
⎟⎠ .

(B16)

or we write as an abbreviation for the potential to higher orders

φl(x) ≈ 4πabcρ0r
2
s

∑
fmIm (B17)

where the sum goes over all required terms for a given order. The
fm (as defined above up to second order) have general (but analytic)
coordinate dependences. The Im depend only on the radial coordinate.
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B3 Force equations

The next step is to derive the equation for the force. We have to
take the derivative with respect to anisotropic comoving coordinates
which is related to the gradient in isotropic coordinates in a simple
manner:

F
long
k = − ∂φl

∂xk

= −αk

∂φl

∂rk

=: −αk∂rk φ. (B18)

The gradient in isotropic coordinates is given by

∂rk φl = 4πabcρ0r
2
s

( rk

r

∑
fm∂rIm(r) +

∑
Im∂rk fm

)
, (B19)

with the factors fm from equations (B11) to (B14) and the derivative
of Im,

I ′
m := ∂rIm = 1

4r

( rs

r

)m

(
8ᾱ2 exp

(
− r2

4ᾱ2r2
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(B20)

The derivatives for fm with respect to rk are

∂rk f3 = 0, (B21)

∂rk f5 = 0, (B22)

∂rk f7,I = δik

ᾱ

r2
s

�αiri, (B23)

∂rk f7,I I ,i=j = δik

ri

r2
s

, (B24)

∂rk f7,I I i 	=j = 0, (B25)

∂rk f9,I I ,i=j = −δik

6ri

r2
s

ᾱ2, (B26)

∂rk f9,I I ,i 	=j = − ᾱ2

r2
s

(
δikri + δjkrk

)
, (B27)

∂rk f11,I I ,i=j = δik

r3
i

r4
s

ᾱ2, (B28)

∂rk f11,I I ,i 	=j = ᾱ2

2r4
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2
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2
i rj

)
, (B29)

Therefore the potential gradient up to first order is given by

∂φl
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, (B30)

with the difference from the mean, �αk = αk − ᾱ. The second-order
terms are
rk

2r

∑
i

∑
j

(
�αi�αj
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f5I

′
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′
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11
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+ 1

2
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∑
j

(
�αi�αj (∂rk f5)I5 + (∂rk f7)I7 + (∂rk f9)I9

+ (∂rk f11)I11

)
. (B31)

These equations can be further simplified in order to allow better
implementation into the code, and give very good approximations
for the force in the anisotropic case for the axial ratios we use.
Knowing the long-range force, the short-range force can easily be
calculated due to the force split in GADGET4 .

As elaborated in this section, the force-split is chosen to be
spherical in the anisotropic comoving frame. Therefore, the force
transition scale and the truncation scale of the tree force are spherical
in the anisotropic frame and ellipsoidal in the isotropic comoving
frame. However, there is an additional numerical choice to be made
for the softening. We choose to make the softening spherical in the
isotropic comoving frame. This is the simpler choice, since it ensures
that the potential of a particle becomes identical to that of a point
mass beyond the softening radius.

B4 Long-range potential

Using the expansion above, we find the following expression for the
long-range potential:
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(B32)

which can be simplified by merging terms.

B5 Approximation error

Here, we evaluate the error in our approximate real-space repre-
sentation of the long-range force. We evaluate the exact force F
through numerical integration (and differentiation) of equation (B6)
and compare it to our Taylor-approximated version from equation
(B19) for different approximation orders. In Fig. B1, we show the
relative error for the case of α = (0.9, 1, 1.1)T for different orders of
the expansion. This case has already slightly larger axial ratios than
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Figure B1. Relative error of the force approximation as a function of radius
for the axes α = (0.9, 1.0, 1.1)T . The dotted lines show the error between
approximated and true force of the ellipsoid (= FL) and the solid lines show
the error relative to the full force estimate Fs + FL. This choice of α has
already slightly larger axial ratios than our typical simulations, but it still has
relative errors smaller than 10−3 at all radii.

Figure B2. Maximal relative error �F/�Ftot of the force cut on the interval
[0.01rs, 10rs] for different axial ratios. The x-axis indicates the difference
between the largest and smallest axis (normalized to the mean axis) and
approximately �α ≈ λ. For example, in our simulations with λ ∼ 10−1, we
expect force errors well below 10−3. However, simulations with axial ratios
of order unity could not be simulated well with the current approximation.

we typically have in our simulations. The force error is evaluated at
random directions at a distance r. The dotted lines show the error
relative to the true force of the ellipsoid and help to understand the
nature of the approximation error. The solid lines show the error
relative to the total force (= short-range + long-range) and therefore
give an estimate of the relevance of the force error for the simulations.
The errors seems to be relatively independent of the angle. For the
second-order expansion, the error is well below 10−3 at most radii.
We can clearly see that the expansion up to second order pays off.

Further we test how the accuracy of the force approximation
behaves as a function of the axial ratios. It is expected that the
approximation gets worse if the differences between the axes gets
large and we want to check quantitatively in which regime our
approximations are good enough. We sample a large number of
realizations for the axes α and for each realization we determine the
maximum force error on the interval r ∈ [0.01rs, 10rs] (the maximum
of the solid lines as seen in Fig. B1). We then plot the maximal relative
force error versus the (normalized) difference between the largest and
smallest axis as can be seen in Fig. B2. For example, the case from
Fig. B1 lands at �α/α = 0.2.

We find that the second-order expansion is very accurate for cases
considered in this paper with λ ∼ �α ∼ 0.1. In future studies, we
could still consider the approximation reasonably accurate up to
�α ≈ 0.4.7 For simulations with larger axial ratios than that, more
accurate approximations would be needed.

A P P E N D I X C : C O N V E R G E N C E O F T H E
RESPONSE MEASUREMENT

Here, we discuss how to infer the response on small scales by employ-
ing a folding technique. Folding techniques have been benchmarked
previously on power spectra, but never on the response measurement.
Further, we test the impact of a shot-noise correction and of numerical
simulation parameters, such as the softening and the particle number.
All these tests are presented in Fig. C1.

C1 Folding

For all lines presented in Fig. C1, we use a cloud-in-cell (cic)
assignment of all simulation particles on to a periodic mesh with
a subsequent deconvolution of the cic-kernel in Fourier space to
obtain the Fourier representation of the density field.

To measure the response up to small scales, it is necessary to
have a Fourier representation that extends up to those scales. For
our boxes with 500 h−1 Mpc side length, it is hard to achieve this
with a single mesh. We therefore combine two meshes using a
folding approach. The first mesh has N = 512 cells and a side length
of 500 h−1 Mpc – giving an accurate measurement of quantities in
Fourier space up to k ∼ 2 h Mpc−1. For the second mesh, the density
field is folded periodically by a factor of 8 on to a grid of side
length 62.5 h−1 Mpc. Results for the two meshes are indicated by
crosses and pluses in Fig. C1 for the default case with N = 5123

and ε = 40 h−1 kpc. The solid and dashed lines show combinations
of the two foldings, switching from the unfolded to the folded
representation at a matching scale of k = 2 h Mpc−1 where the two
meshes give reasonably similar results.

C2 Shot-noise correction

For a uniform Poisson distribution, the power spectrum is given by
a constant,〈
δ2
k

〉 = 1

N
, (C1)

where N is the number of particles that have been used to infer
the density field. It is common to subtract this ‘shot-noise’
contribution to obtain a more accurate Fourier representation of
the underlying density field. We therefore subtract 1/N from δ2

k

before the response-binning to obtain the solid lines in Fig. C1. We
also present the power spectra and response measurements without
shot-noise corrections as dashed lines. The shot-noise correction
becomes substantial at small scales that are, in any case, subject to
other uncertainties, and as a result, it is not entirely necessary.

C3 Softening and particle number

The blue lines in Fig. C1 represent our fiducial case of N = 5123 par-
ticles and a softening of ε = 40 h−1 kpc. The orange line represents
a reduction of the particle number by a factor of 8. It first deviates

7We remind the reader here that Fig. B2 shows the maximum approximation
error. Typical errors are smaller.
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Figure C1. The power spectrum (top), the GK-response (centre), and the RK-response (bottom), showing how they are influenced by numerical details. The N
= 2563 case is in very good agreement with the higher resolution case up to a scale of k = 3.5 h Mpc−1. We estimate that the N = 5123 simulations should be
reliable up to roughly k = 7 h Mpc−1. Please refer to Appendices C1–C3 for details about the meaning of individual lines and markers.

from the N = 5123 case by more than 0.1 in Gk at a scale of k =
3.5 h Mpc−1. We use this to estimate that the N = 5123 simulations are
reliable at least up to a wavenumber twice as large, k = 7 h Mpc−1,
since the Nyquist frequency is also larger by a factor of 2.

The green line shows a variation of the softening by a factor
of 2 and we find that this leads to no change on scales larger than
k = 10 h Mpc−1 and only to minor differences at higher wavenumber.

We conclude that we consider our response measurements reliable
up to a scale of k = 7 h Mpc−1. This scale is indicated in the plots in
Section 5 of the main text.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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