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SCALING LIMITS AND STOCHASTIC HOMOGENIZATION FOR SOME NONLINEAR PARABOLIC EQUATIONS

The aim of this paper is twofold. The first is to study the asymptotics of a parabolically scaled, continuous and space-time stationary in time version of the wellknown Funaki-Spohn model in Statistical Physics. After a change of unknowns requiring the existence of a space-time stationary eternal solution of a stochastically perturbed heat equation, the problem transforms to the qualitative homogenization of a uniformly elliptic, space-time stationary, divergence form, nonlinear partial differential equation, the study of which is the second aim of the paper. An important step is the construction of correctors with the appropriate behavior at infinity.

Introduction

The first aim of the paper is to study the limit, as ε → 0, of the stochastic partial differential equation (SPDE for short)

     d t U ε t = divA(DU ε t , x ε , t ε 2 , ω 1 )dt + 1 ε k∈Z d A( x -k ε )dB k t in R d × (0, +∞), U ε 0 = u 0 . in R d .
(1.1) FS

In the above equation, (B k ) k∈Z d is a sequence of independent d-dimensional Brownian motions in a probability space (Ω 0 , F 0 , P 0 ) with Ω 0 = (C 0 (R, R d )) Z d , and A : R d → R d is a smooth map with a compact support. Let (Ω 1 , F 1 , P 1 ) be another probability space endowed with a space-time ergodic group of measure preserving transformations. The vector field A : R d × R d × R × Ω 1 → R is assumed to be smooth, uniformly elliptic and spacetime stationary in (Ω 1 , F 1 , P 1 ), and is independent of the Brownian motions. The precise assumptions are listed in section 4.

A reformulation of (1.1) led us to the second aim of the paper. This is the study of the qualitative (stochastic) homogenization of the divergence form quasilinear partial differential equation (PDE for short)

u ε t -div a(Du ε , x ε , t ε 2 , ω) = f in R d × (0, ∞) u ε (•, 0) = u 0 , (1. 

2) pde
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where a : R d × R d × R × Ω → R d is strongly monotone, Lipschitz continuous and spacetime stationary in an ergodic with respect to Z d × R-action random environment, which we denote again by (Ω, F, P) although it is different than the one for (1.1), and f and u 0 are square integrable. All the assumptions are made precise in section 3.

The result is that, in either case, there exists a strongly monotone map a : R d → R d such that the solutions of (1.1) and (1.2) converge either a.s. or in expectation and in an appropriately weighted L 2 -space in space-time to the unique solution u of the initial value problem

u t -div a(Du) = f in R d × (0, ∞) u(•, 0) = u 0 . (1.3) ivp
The link between (1.1) and (1.2) is made writing U ε as

U ε t (x) = ε V t ε 2 ( x ε ) + W ε t (x),
with V and W ε been respectively the unique up to constants eternal, space-time stationary solution of the stochastically perturbed heat equation

d V t = ∆ V t dt + k∈Z d A(x -k)dB k t in R d × R, (1.4) l2
and the solution of the uniformly elliptic, divergence form PDE

∂ t W ε t = div a(D W ε , x ε , t ε 2 , ω) in R d × (0, +∞) W ε 0 = u 0 in R d , (1.5 

) intro.homopb

with the random nonlinearity a(p, x, t, ω) = A(p + D V t (x, ω 0 ), t, x, ω 1 ) -D V t (x, ω 0 ) (1.6) m112

space-time stationary, strongly monotone and Lipschitz continuous.

The existence and properties of V are the topic of section 2. The construction is based on solving the problem in R d × [-n -2 , ∞) and then letting n → ∞. To prove, however, the convergence to a unique up to constants stationary solution, it is necessary to obtain suitable gradient bounds. This requires, among others, the quantitative understanding the long-space decorrelation properties of the gradients. For the latter, it is necessary to study in detail the properties of the gradients of localized versions of the stochastically perturbed heat equation, which depend on finitely many Brownian motions in balls of radius R, as R → ∞.

The study of the qualitative homogenization of (1.2), which is developed in section 3, is based on the existence, for each p ∈ R d , of space-time stationary solutions χ p = χ(y, τ, ω; p) of ∂ τ χ p -div(a(p + Dχ p , y, τ, ω)) = 0 in R d , (1.7) eq.thetaw.1

such that, as ε → 0, χ ε (x, t; p, ω) = εχ p ( x ε , t ε 2 , ω) → 0 in L 2 loc (R d+1 ), P-a.s. and in expectation.

The existence of correctors in our setting is, to the best of our knowledge, new. The difficulty arises from the unbounded domain and the lack of regularity in time. Overcoming it, requires the development of new and sharp results.

Once correctors are established, the homogenization follows, at least formally, using, at the level of test functions φ, the expansion φ ε (x, t) = φ(x, t) + εχ( x ε , t ε 2 , ω; Dφ(x, t)), the justification of which creates additional problems due to the low available regularity of χ p in p. To overcome it, it is necessary to introduce yet another level of approximation involving "piecewise gradient correctors" corresponding to piecewise constant approximations of Dφ.

Funaki and Spohn showed in [8] the convergence of a system of interacting diffusion processes, modeling the height of a surface in R d , to a deterministic limit equation. More precisely, for any cube Λ ⊆ Z d , they considered processes of the form

dΦ t (x) = - |x-y| 1 =1 V (Φ t (x) -Φ t (y)) + √ 2dB t (x) for x ∈ Λ ⊂ Z d . (1.8) fs1
The fields Φ live on a discrete lattice and take values in R d , B t (x) are i.i.d. Brownian motions, V is the derivative of a strictly convex symmetric function, and | • | 1 is the l 1 -norm. Note that the drift term in (1.8) is simply the discrete divergence of the vector field (V (D + i Φ)) i=1,...,d , where D + i Φ(x) = Φ(x + e j ) -Φ(x) is the discrete forward partial derivative in direction i. The result in [8] is that the rescaled fields

Φ ε (r, t) = εΦ ε -2 t (x) for r ∈ [x -ε/2, x + ε/2) d with N = [ε -1 ]
(1.9) fs2 converge to the solution h of the nonlinear, divergence form deterministic PDE ∂ t h(r, t) = div(Dσ(∇h)) in R d × (0, ∞).

A crucial step in the proof in [8] is the existence of unique gradient Gibbs measures, that is, invariant measures for the discrete gradient of the fields which on finite subsets Λ ⊆ Z d defined by 1 Z e β x∈Λ V (∇ i Φ(x))

x∈Λ dΦ(x).

The SPDE (1.1) we are considering here can be seen as a continuous version of the equation satisfied by Φ ε in (1.9). Our proof of the existence of the limit is purely dynamic, that is, it does not use the existence of invariant measures of a certain structure. Instead, we use the eternal solutions of a linear SPDE, which allows to transform the problem to one like (1.2) with an appropriately defined field a.

Although it may appear so, results about the convergence of the solution of U ε t and Φ ε are not, in any sense, equivalent. For example, the effective nonlinearities a and h are, in general, not the same. To be able to compare the limit problems, it is necessary to understand in precise way how (1.1) with ε = 1 is the continuous (mescopic) limit of (1.8).

The qualitative stochastic homogenization result is new. We are, of course, aware of earlier works of Efentiev and Panov [START_REF] Efendief | Homogenization of nonlinear random parabolic equations[END_REF][START_REF] Efendief | Numerical homogenization of nonlinear random parabolic equations[END_REF] and Efendiev, Jiang and Pankov [START_REF] Efendiev | Individual homogenization of nonlinear parabolic operators[END_REF], which, however, do not apply to the general space-time stationary setting we are considering here. The crucial part of the proof is the existence of a space-time stationary corrector, which requires overcoming the low regularity in time. Beside the references [START_REF] Efendiev | Individual homogenization of nonlinear parabolic operators[END_REF][START_REF] Efendief | Homogenization of nonlinear random parabolic equations[END_REF][START_REF] Efendief | Numerical homogenization of nonlinear random parabolic equations[END_REF] already quoted, the literature on the space-time homogenization of parabolic equations in a random setting is scarce and mostly devoted to linear equations, starting with the pioneering work of Zhikov, Kozlov and Oleinik [START_REF] Zhikov | Averaging of parabolic operators[END_REF]: Landim, Olla and Yau [START_REF] Landim | Convection-diffusion equation with space-time ergodic random flow[END_REF] provide an invariance invariance principle for diffusion in space-time random environment with a bounded stream matrix; Fannjiang and Komorowski [START_REF] Fannjiang | An invariance principle for diffusion in turbulence[END_REF] generalize the result to the case of unbounded stationary vector potentials while Komorowski and Olla [START_REF] Komorowski | On homogenization of time-dependent random flows[END_REF] investigate the problem for divergence free vector fields; Rhodes [START_REF] Rhodes | On homogenization of space?time dependent and degenerate random flows[END_REF] and Delarue and Rhodes [START_REF] Delarue | Stochastic homogenization of quasilinear PDEs with a spatial degeneracy[END_REF] study the homogenization of degenerate diffusions; more recently, Armstrong, Bordas and Mourrat [START_REF] Armstrong | Quantitative stochastic homogenization and regularity theory of parabolic equations[END_REF] provide a convergence rate for the homogenization of parabolic equation in space-time random environment under a finite range condition by using a variational structure for the equation.

Organization of the paper. Section 2 is devoted to the study of the linear problem (1.4).

In section 3 we concentrate on (1.2). The result about (1.1) is presented in section 4. Each of section consists of several subsections which are outlined there. Finally, in the Appendix we include some results about functions with stationary gradients that we use throughout the paper.

Notation. Given x 0 ∈ R d , Q R (x 0 ) = x 0 + (-R/2, R/2) d and B r (x 0 ) is the open ball in R d centered at x 0 and radius r. Moreover, Q R = Q R (0), I R = (-R/2, R/2), B r = B r (0), and Q R = Q R × I R = (-R/2, R/2) d+1 ⊂ R d+1 , while Q and Q are used for any cube in R d+1 . If a, b ∈ R, a ∧ b = min{a, b} and a α b means that there exists a constant C = C(α) > 0 such that a ≤ Cb. We write a ∼ α b if a α b and b α a. The integer part of s ∈ R is s . Given x ∈ R d , |x| ∞ = max{|x i | : i = 1, . . . , d}.
We write 1 A for the characteristic function of a set A and, finally, Int B is the topological interior of B ⊂ R k .

Terminology. We say that a vector field b : R d → R d is strongly monotone and Lipschitz continuous if the there exists C 0 > 0 such that, respectively and for all p, q ∈ R d , The goal here is to construct space-time stationary solutions of the linear SPDE

(b(p) -b(q)) • (p -q) ≥ C -1 0 |p -q| 2 , ( 1 
dV t = ∆V t dt + k∈Z d A(x -k)dB k t .
(2.1) eq:main A building block is the properties of the solutions of the initial value problem

   dV t = ∆V t dt + k∈Z d A(x -k)dB k t in R d × (0, +∞), V 0 = 0 in R d , (2.2) l1
since the solution of (2.1) is going to be obtained as the limit of solutions of

   dV n t (x) = ∆V n t (x)dt + k∈Z d A(x -k)dB k t in R d × (-n 2 , ∞), V n -n 2 = 0 in R d . (2.3) ln
It is immediate that V n satisfy bounds similar to the ones of the solution of (2.2).

We divide the presentation into a a number of subsections. In subsection 2.1 we introduce the assumptions we need to study the problem and state the result. In subsection 2.2 we prove a number of basic estimates for the solution of (2.2). These estimates are not sufficiently strong in order to let n → ∞ in (2.3). In subsection 2.3 we obtain some new stronger estimates taking advantage of the independence at large distances of the Brownian motions. The proof of Theorem 2.1 is presented in subsection 2.4.

ass1 2.1. The assumptions and result. We assume that

        
The family (B k ) k∈Z consists of continuous and independent d-dimensional processes defined on the probability space (Ω 0 , F 0 , P 0 ) with

Ω 0 = (C(R; R d )) Z d such that, for any t 0 ∈ R, (B k t -B k t 0 ) t≥t 0 is a Brownian motion, (2.4) B
and the map A : R d → R d is smooth and has compact support in the ball B R 0 for some R 0 > 0.

(2.5) A

The assumptions on A are made for simplicity and can be relaxed. Moreover, since the coefficients of the noise in (2.1) are deterministic, the question of whether we need to use Itô's or Stratonovich stochastic differential does not arise here.

In the context of (2.1), a process is stationary, if it is adapted to the filtration generated by the (B k ) k∈Z d with a law which is invariant by translation in time and integer translation in space.

The existence of a unique up to constants stationary solution of (2.1) is the subject of the next theorem. In what follows by solution we mean a map Z : R d × R × Ω 0 → R such that, for any x ∈ R d , s, t ∈ R with s < t and P-a.s. ω 0 ∈ Ω 0 ,

Z t (x, ω 0 ) = Z s (x, ω 0 ) + k∈Z d ˆt 0 ˆRd p(x -y, t -r)A(y -k)dydB k r (ω 0 ), (2.6) m115
where p = p(x, t) the heat kernel, that is, the fundamental solution to the heat equation in R d × (0, ∞).

thm:main Theorem 2.1. Assume (2.4) and (2.5). There exists a unique process

Z : Ω 0 ×R d ×R → R d with E ˆ Q 1 |Z t (x)| 2 dxdt < ∞, satisfying, for any i = 1, . . . , d, dZ i,t (x) = ∆Z i,t (x)dt + k∈Z d D x i A(x -k)dB k t .
In addition, Z is an attractor for (2.1)

in the sense that, if V is a solution of (2.1) in R d × (0, ∞) such that V (•, 0) = 0, then lim t→+∞ E ˆQ1 |DV t (x) -Z t (x)| 2 dx = 0. (2.7) attractor
Moreover, for d ≥ 3, there exists a unique up to constants space-time stationary adapted process

V : Ω × R d × R → R solving (2.1) in R d × R such that E ˆ Q 1 |V t (x)| 2 dxdt < ∞.
We remark that, when d ≤ 2, the correctors have stationary gradients but are not themselves stationary.

aux1 2.2. Auxiliary results. We concentrate here on the properties of the solutions of the auxiliary initial value problem.

The first result is about a representation formula for the solution of (2.2) as well as preliminary integral bounds on its derivatives.

Note that the forcing term in (2.2) is periodic only in law and not pointwise. Hence, all the estimates need involve expectation.

lem.boundDV Lemma 2.2. Assume (2.4) and (2.5). Then

V t (x) = k∈Z d ˆt 0 ˆRd p(x -y, t -s)A(y -k)dydB k s (2.8) rep.sol
is a stationary in space with respect to integer translations solutions, solution V of (2.2).

Moreover, for all t ≥ 0, sup

x∈R d E[|DV t (x)| 2 ] + E[|D 2 V t (x)| 2 ] A,d (t ∧ 1), (2.9) ineq.timecont
and

E[|V t (x)| 2 ] A,d t ∧      1 if d ≥ 3, log(t + 1) if d = 2, t 1/2 if d = 1.
(2.10) ineq.timecontBI

Proof. It is immediate that the V given in (2.8) satisfies (2.6) for any 0 < s < t and, hence, is a solution of (2.2). It also follows from (2.8) and the fact that the B k 's are identically distributed that V is stationary in space under integer translations. Hence, we only need to prove the estimates for x ∈ Q 1 .

Itô's isometry and (2.8) yield

E |DV t (x)| 2 = k∈Z d ˆt 0 ˆRd Dp(x -y, t -s)A(y -k)dy 2 ds.
For k ∈ Z and s ≥ 0, let

F k (s) = ˆRd Dp(x -y, t -s)A(y -k)dy = ˆRd p(x -y, t -s)DA(y -k)dy . (2.11) Fk
To proceed we need the following lemma. Its proof is presented after the end of the ongoing one.

lem.intermezzo Lemma 2.3. Assume (2.4) and (2.5) and, for k ∈ Z and s ≥ 0, let F k (s) be given by (2.11). Then

k∈Z d F k (s) 2 A,d (t -s) -(1+d/2) ,
(2.12)

k∈Z d , |k|≥2(R 0 +2) F k (s) 2 A,d (t -s) -1-d/2 exp(-4R 2 0 /(17(t -s))), (2.13) 
F k (s) 2 ≤ DA 2 ∞ .
(2.14)

We continue with the proof of Lemma 2.2.

The arguments depend on whether t ≥ 1 or t < 1.

If t ≥ 1, we observe that there are only finitely many k with |k| < 2(R 0 + 2) and we find, using Lemma 2.3, that

E |DV t (x)| 2 ≤ k∈Z d ˆt-1 0 F k (s) 2 ds + k∈Z d , |k|≥2(R 0 +2) ˆt t-1 F k (s) 2 ds + k∈Z d , |k|<2(R 0 +2) ˆt t-1 F k (s) 2 ds A,d ˆt-1 0 (t -s) -(1+d/2) ds + ˆt t-1 (t -s) -1-d/2 exp{-4R 2 0 /(17(t -s))}ds + k∈Z d , |k|<2(R 0 +2) ˆt t-1 DA 2 ∞ ds A,d 1 + ˆ1 0 s -1-d/2 exp{-4R 2 0 /(17s)}ds A,d 1.
If t ∈ (0, 1], using (2.13) and (2.14), we obtain

E |DV t (x)| 2 ≤ k∈Z d , |k|≥2(R 0 +2) ˆt 0 F k (s) 2 ds + k∈Z d , |k|<2(R 0 +2) ˆt 0 F k (s) 2 ds A,d ˆt 0 (t -s) -1-d/2 exp{-4R 2 0 /(17(t -s))}ds + t A,d ˆt 0 s -1-d/2 exp{-4R 2 0 /(17s)}ds + t A,d t.
Since the structure of the formula for D 2 V is exactly the same as the one for DV , (2.9) is proved similary. The only difference is that now the constants depend on A C 2 too.

To estimate V t (x), recalling that, for any x, s, t, ´Rd p(x -y, t -s)dy = 1, we find

E |V t (x)| 2 ≤ A 2 ∞ k∈Z d ˆt 0 ˆBR 0 +2 (k) p(x -y, t -s)dy 2 ds A,d k∈Z d ˆt-1 0 ˆBR 0 +2 (k) p 2 (x -y, t -s)dyds + ˆt (t-1)∨0 |k|≥R 0 +3 ˆBR 0 +2 (k) p 2 (x -y, t -s)dy ds + (t -(t -1) ∨ 0) .
The first term in the right-hand side can be estimated by

ˆ(t-1)∨0 0 k∈Z d ˆBR 0 +2 (k) p 2 (x -y, t -s)dyds R 0 ˆ(t-1)∨0 0 ˆRd p 2 (x -y, t -s)dyds R 0 ˆ(t-1)∨0 0 (t -s) -d/2 ds R 0 ,d 1 t≥1    1 if d ≥ 3, log(t + 1) if d = 2, t 1/2 if d = 1.
As for second term in the right-hand side, we have

ˆt (t-1)∨0 |k|≥R 0 +3 ˆBR 0 +2 (k) p 2 (x -y, t -s)dy ds R 0 ˆt (t-1)∨0 ˆBc 1 p 2 (x -y, t -s)dy ds R 0 ˆt (t-1)∨0 (t -s) -d ˆ+∞ 1 r d-1 exp{-r 2 /(t -s)}drds R 0 ,d ˆt (t-1)∨0 (t -s) 1-d exp{-1/(2(t -s))}ds R 0 ,d (t ∧ 1).
The proof of (2.10) is now complete.

We present now the proof of Lemma 2.3.

Proof of Lemma 2.3. It follows from (2.5) and the fact that

x ∈ Q 1 ⊂ B 2 that F k (s) ≤ ˆRd |Dp(x -y, t -s)A(y -k)| dy ≤ A ∞ ˆBR 0 +2 |Dp(k -y, t -s)| dy A (t -s) -1-d/2 ˆBR 0 +2 |k -y| exp{-|k -y| 2 /(2(t -s))}dy.
If |k| ≥ 2(R 0 + 2), then, for any y ∈ B R 0 +2 , we have

|k -y| exp{-|k -y| 2 /(2(t -s))} ≤ (|k| + (R 0 + 2)) exp{-|k| 2 /(4(t -s)) + (R 0 + 2) 2 /(2(t -s))} ≤ (|k| + (R 0 + 2)) exp{-|k| 2 /(8(t -s))} A |k| exp{-|k| 2 /(16(t -s))}.
Thus,

F k (s) A,d (t -s) -1-d/2 |k| exp{-|k| 2 /(16(t -s))} if |k| ≥ 2(R 0 + 2), (t -s) -1-d/2 if |k| ≤ 2(R 0 + 2).
Then (2.12) follows, since

k∈Z d F k (s) 2 A,d (t -s) -2-d (1 + k∈Z d |k| 2 exp{-|k| 2 /(8(t -s))}) A,d (t -s) -2-d (1 + ˆRd |z| 2 exp{-|z| 2 /(16(t -s))}dz) A,d (t -s) -(1+d/2) .
For (2.13), using that, for all r ≥ 0, r d+1 exp{-r 2 /16} r exp{-r 2 /17}, we get

k∈Z d , |k|≥2(R 0 +2) F k (s) 2 A,d (t -s) -2-d k∈Z d , |k|≥2(R 0 +2) |k| 2 exp{-|k| 2 /(8(t -s))} A,d (t -s) -2-d ˆBc 2R 0 |z| 2 exp{-|z| 2 /(16(t -s))}dz, A,d (t -s) -1-d/2 ˆ+∞ 2R 0 (t-s) -1/2 r d+1 exp{-r 2 /16}dr, A,d (t -s) -1-d/2 exp(-4R 2 0 /(17(t -s))).
Finally, (2.14) is straightforward, since

F k (s) ≤ DA ∞ ˆRd p(x -y, t -s)dy = DA ∞ .
dec 2.3. The decorrelation estimates. We show that the solution V of (2.2) decorrelates in space.

To quantify this property, we consider solutions of a localized versions of (2.2), that is, problems that depend only on the Brownian motions in a certain ball.

For l ∈ Z and R ≥ 1, let V l,R be the solution to

   dV l,R t = ∆V l,R t dt + k∈Z d , |k-l|≤R A(x -k)dB k t in R d × (0, +∞), V l,R 0 = 0 in R d .
(2.15) eq:mainLinR lem.VVlR Lemma 2.4. Assume (2.4) and (2.5) and let V be the solution to (2.2). Then there exists

R 1 > 0 such that, for any R ≥ R 1 , l ∈ Z d and x ∈ Q 1 (l), E |DV t (x) -DV l,R t (x)| 2 A,d R -d if R 2 /t ≤ 1, exp{-R 2 /(5t)} otherwise, , (2.16 
) liqendsfdxgc and

sup t≥0 E |DV l,R t (x)| 2 A,d 1.
(2.17) lkjnefjjn

If d ≥ 3, then, for all R ≥ R 1 , E V t (x) -V l,R t (x) 2 A,d R 2-d if R 2 /t ≤ 1, exp{-R 2 /(9t)} otherwise, (2.18) liqendsfdxgcBIS and sup t≥0 E (V l,R t (x)) 2 1. (2.19) lkjnefjjnBIS
For later use, we note that V R,l t (x) and V R,l t (x ) are independent, for any t, t and x, x , as soon as |l -l | > 2R. For this reason, we consider Lemma 2.4 as a decorrelation property of V .

Proof. Using the representation formulae of DV t and DV l,R t , we find

D(V t -V l,R )(x) = |k-l|>R ˆt 0 ˆRd Dp(x -y, t -s)A(y + k)dydB k s .
Then (2.5), Itô's isometry and Cauchy-Schwartz inequality yield

E |D(V t -V l,R )(x)| 2 ≤ |k-l|>R ˆt 0 ˆRd Dp(x -y, t -s)A(y + k)dy 2 ds A |k-l|>R ˆt 0 ˆBR 0 (k) (t -s) -1-d/2 |x -y| exp{-|x -y| 2 /(2(t -s))}dy 2 ds A |k-l|>R ˆt 0 ˆBR 0 (k) (t -s) -2-d |x -y| 2 exp{-|x -y| 2 /(t -s)}dyds.
Therefore, for x ∈ Q 1 (l), we get

E |D(V t -V l,R )(x)| 2 A ˆt 0 ˆBc ((R-R 0 )-1) (0) (t -s) -2-d |y| 2 exp{-|y| 2 /(2(t -s))}dyds A ˆt 0 ˆ+∞ ((R-R 0 )-1)(t-s) -1/2 (t -s) -1-d/2 ρ d+1 exp{-ρ 2 /2}dρds.
Choosing R large enough, we can assume that (R -R 0 -1) ≥ R/2, and using that, for ρ ≥ 0, ρ d+1 exp{-ρ 2 /2} ρ exp{-ρ 2 /4}, integrating in space and an elementary change of variables we find

E |D(V t -V l,R )(x)| 2 A ˆt 0 (t -s) -1-d/2 exp{-R 2 /(4(t -s))}ds A R -d ˆ+∞ R 2 /t τ -1+d/2 exp{-τ /4}dτ,
and, hence, (2.16).

The proof of (2.17) is then follows using (2.16) combined and Lemma 2.2.

Next we assume that d ≥ 3. Then

(V t -V l,R )(x) = |k-l|>R ˆt 0 ˆRd p(x -y, t -s)A(y + k)dydB k s ,
and, again, (2.5), Itô's isometry and an application of the Cauchy-Schwartz inequality imply that

E ((V t -V l,R )(x)) 2 ≤ |k-l|>R ˆt 0 ˆBR 0 +2 (k) p(x -y, t -s)A(y + k)dy 2 ds A |k-l|>R ˆt 0 ˆBR 0 +2 (k) (t -s) -d exp{-|x -y| 2 /(t -s)}dyds. Therefore, if x ∈ Q 1 (l), E ((V t -V l,R )(x)) 2 A ˆt 0 ˆBc ((R-R 0 )-1) (0) (t -s) -d exp{-|y| 2 /(t -s)}dyds A ˆt 0 ˆ+∞ (R-R 0 -3)(t-s) -1/2 (t -s) -d/2 ρ d-1 exp{-ρ 2 }dρds. Assuming that R is large so that (R -R 0 ) -1 ≥ R/2, using that, ρ ≥ 0, ρ d-1 exp{-ρ 2 } ρ exp{-ρ 2 /2}
and integrating in space, we get

E ((V t -V l,R )(x)) 2 ≤ C ˆt 0 (t -s) -d/2 exp{-R 2 /(8(t -s))}ds ≤ CR 2-d ˆ+∞ R 2 /t τ -2+d/2 exp{-τ /8}dτ.
Then (2.18) follows easily and the proof of (2.19) is then an application of (2.18) combined with Lemma 2.2.

proof1 2.4. The proof of Theorem 2.1. To prove the existence of a stationary solution of (1.4), we consider the sequence of solutions V n of (2.3).

The main step is to show that (DV n ) n∈N is a Cauchy sequence.

lem.Cauchy Lemma 2.5. Assume (2.4) and (2.5). Then, for any r > 0 and any T > 0, the sequence

(DV n ) n∈N is Cauchy in L 2 (B r × [-T, T ] × Ω), that is, for any n, m ∈ N and t ∈ R with m > n and t ∈ [-n 2 + 1, m -1], E |D(V m t -V n t )(x)| 2 A,d C(t + n 2 ) -(1∧(d/4)) . Proof. Fix n < m and t ∈ [-n 2 , m -1]. Since V m -V n solves the heat equation on [-n 2 , t] with initial condition V m -n 2 , we have V m t (x) -V n t (x) = ˆRd p(x -y, t + n 2 )V m -n 2 (y)dy.
Hence,

E |D(V m t -V n t )(x)| 2 = ˆR2d p(x -y, t + n 2 )p(x -y , t + n 2 )E DV m -n 2 (y) • DV m -n 2 (y ) dydy = k,k ∈Z d ˆQ1 (k)×Q 1 (k ) p(x -y, t + n 2 )p(x -y , t + n 2 )E DV m -n 2 (y) • DV m -n 2 (y ) dydy . Fix R = (t + 1 + n 2 ) 1/4 , and consider, for l ∈ Z d , the solution V m,l,R of      dV m,l,R t = ∆V m,l,R t dt + k∈Z d , |k-l|≤R A(x -k)dB k t in R d × (-m 2 , +∞) V m,l,R -m 2 ≡ 0. For any y ∈ Q 1 (l), Lemma 2.4 gives E |DV m s (y) -DV m,l,R s (y)| 2 A,d R -d if R 2 /(s + m 2 ) ≤ 1, exp{-R 2 /(5(s + m 2 ))} otherwise. (2.20) th1
We replace

DV m -n 2 (y) by DV m,k,R -n 2 (y) in Q 1 (k).
In order to apply (2.20), we note that the assumption on n, m and t, the choice of R, and the facts that m -n ≥ 1 and that t

+ 1 ≤ m imply that m 2 -n 2 ≥ m + n ≥ (t + 1 + n 2 ) 1/2 ≥ R 2 . Hence, R 2 /(m 2 -n 2 ) ≤ 1 and, in view of (2.20), we have E |D(V m t -V n t )(x)| 2 A,d k,k ∈Z d A k,k + B k,k , (2.21) 
where

A k,k = ˆQ1 (k)×Q 1 (k ) p(x -y, t + n 2 )p(x -y , t + n 2 )E DV m,k,R -n 2 (y) • DV m,k ,R -n 2 (y ) dydy and B k,k = ˆQ1 (k)×Q 1 (k ) p(x -y, t + n 2 )p(x -y , t + n 2 ) R -d/2 E 1/2 |DV m,k,R -n 2 (y )| 2 + E 1/2 |DV m -n 2 (y)| 2 dydy .
Using (2.9) and (2.17) we find

k,k ∈Z d B k,k A,d R -d/2 k,k ∈Z d ˆQ1 (k)×Q 1 (k ) p(x -y, t + n 2 )p(x -y , t + n 2 )dydy ∼ A R -d/2 . To estimate A k,k note that, if |k-k | ≥ 2R+2, then DV m,k,R
and DV m,k ,R are independent, and, hence,

A k,k = ˆQ1 (k)×Q 1 (k ) p(x -y, t + n 2 )p(x -y , t + n 2 )E DV m,k,R -n 2 (y) E DV m,k ,R -n 2 (y ) dydy .
Recall that, since V m is stationary in space, we have

E ˆQ1 (k) DV m -n 2 (y)dy = E ˆQ1 (k ) DV m -n 2 (y)dy = 0. (2.22) m111
To make use of this property, we replace A k,k by A k,k given by

A k,k = ˆQ1 (k)×Q 1 (k ) p(x -y, t + n 2 )p(x -y , t + n 2 )E DV m -n 2 (y) E DV m -n 2 (y ) dydy ,
and we note that, with an argument similar to the one above, we have

|k-k |≥2R+2 A k,k - |k-k |≥2R+2 A k,k A,d R -d/2 .
Next we replace p(x -y, t + n 2 ) by p(x -k, t + n 2 ) and p(x -y, t

+ n 2 ) by p(x -k , t + n 2 ) in A k,k , noting that max{|p(x -y, t + n 2 ) -p(x -k, t + n 2 )|, |p(x -y , t + n 2 ) -p(x -k , t + n 2 )|} (t + n 2 ) -1-d/2 exp{-|x -k| 2 /(4(t + n 2 )}.
Since (2.22) and Lemma 2.2 to control the remaining terms, we obtain

A k,k A,d C(t + n 2 ) -1-d exp{-(|x -k| 2 + |x -k | 2 )/(4(t + n 2 )}, Summing the terms A k,k with |k -k | ≥ 2R + 2, we find |k-k |≥2R+2 A k,k A,d (t + n 2 ) -1-d   k∈Z d exp{-|x -k| 2 /(4(t + n 2 ))}   2 A,d (t + n 2 ) -1 .
On the other hand, if |k -k | ≤ 2R + 2, then, (2.17) yields

A k,k A,d ˆQ1 (k)×Q 1 (k ) p(x -y, t + n 2 )p(x -y , t + n 2 ),
and, hence,

|k-k |≤2R+2 A k,k A,d ˆ|y-y |≤2R+4 p(x -y, t + n 2 )p(x -y , t + n 2 ) A,d (t + n 2 ) -d ˆ|y-y |≤2R+4 exp{-(|x -y| 2 + |x -y | 2 )/(2(t + n 2 ))} A,d R d (t + n 2 ) d/2 It follows that E |D(V m t -V n t )(x)| 2 A,d R -d/2 + (t + n 2 ) -1 + R d (t + n 2 ) d/2 , which completes the proof since R = [(t + 1 + n 2 ) 1/4 ].
We have now all the ingredients needed to prove the main result.

Proof of Theorem 2.1. In view of Lemma 2.5, the sequence

(DV n ) n∈N converges along sub- sequences in L 2 (Ω, L 2 loc (R d × R))
to some Z, which is stationary in space, and solves

dZ t (x) = ∆Z t (x)dt + k∈Z d DA(x -k)dB k t in R d × R,
(2.23) eq:Zequation and, thus, is continuous in time and smooth in space.

Moreover, in view of the bound on DV n in Lemma 2.2, for any x ∈ R d , we have

sup t∈R E |Z t (x)| 2 + sup t∈R E |DZ t (x)| 2 A,d 1.
Fix t 0 ∈ R, let V t 0 be the smooth antiderivative of Z t 0 with, for definiteness, V t 0 (0) = 0, which exists since Z is the limit of gradients, and V the solution of (2.1) in

R d × [t 0 , +∞) with initial condition V t 0 . It is immediate that DV = Z.
Next we prove that Z is the unique process satisfying (2.23) which is stationary in space and satisfies the bounds

sup t E[|Z t | 2 ] < +∞.
Let Z be another such process. Then, for any i ∈ {1, . . . , d}, u(x, t) = (Z -Z ) i is an entire solution of the heat equation. It follows from a classical estimate on the heat equation (see, for example, [START_REF] Evans | Partial differential equations[END_REF]) that there exists C > 0 such that, for any r ∈ R,

max (y,s)∈Q r/2 ×[t-r 2 /4,t] |Du(y, s)| ≤ C r d+3 ˆt t-r 2 ˆQr(x) |u(y, s)|dyds,
and, hence,

max y∈Q 1 (0) |Du(y, t)| 2 ≤ C r d+4 ˆt t-r 2 ˆQr(x) |u(y, s)| 2 dyds.
Taking expectation and using the stationarity of u and the L 2 bound, we find

E max y∈Q 1 (0) |Du(y, t)| 2 ≤ C r 2 .
This proves that Z i (•, t) ≡ Z i (•, t) for a fixed t, and, since

E[ ´Q1 Z(x, t)dx] = E[ ´Q1 Z (x, t)dx] = 0, it follows that Z ≡ Z .
Finally, we prove that Z is stationary in time. For this, we note that the map t → Z t is measurable with respect to the σ-algebra generated by (B i s∧t ) s≤t because this is the case for the maps t → DV n t . Therefore, there exists a measurable Z such that Z t (x) = Z(t, x, (B i

•∧t ) i∈Z d ). Next we note that, for any s ∈ R, Z •+s (•) solves the same equation as Z • with Brownian motions shifted in time by s. Hence, by the uniqueness of the solution,

Z t+s (•) = Z(t, x, (B i (•+s)∧t ) i∈Z d ), which has the same law as Z(t, x, (B i •∧t ) i∈Z d ).
It follows that the law of Z • is the same as the law of Z •+s , thus, Z is the stationary in time.

The attractor property of Z, that is, (2.7), is a straightforward consequence of Lemma 2.5. Indeed, choose n = 0, t > 0 and m larger than t + 1 in the lemma. Then

E |D(V m t -V t )(x)| 2 A,d t -(1∧(d/4)) .
Letting m → +∞, the construction of Z, gives

E |Z t (x) -DV t (x)| 2 A,d t -(1∧(d/4)) .
Integrating over Q 1 yields (2.7).

Random homogenization of uniformly elliptic nonlinear parabolic equation in divergence form

sec.homogen

In this section we investigate the random homogenization of

∂ t u ε -div(a(Du ε , x ε , t ε 2 , ω)) = f in R d × (0, T ) u ε (•, 0) = u 0 . (3.1) pde10
We start with the description of the environment in subsection 3.1 and state the assumptions on the vector field in subsection 3.2. Subsection 3.3 is about the existence of the corrector and introduces the effective vector field. The homogenization result is developed in subsection 3.4.

subsec.envi 3.1. Description of the environment. We fix an ergodic environment probability, that is, assume that (Ω, F, P) is a probability space endowed with an ergodic semigroup τ :

Z d × R × Ω → Ω of measure preserving maps, (3.2) omega
and we denote by L 2 the set of stationary maps u = u(x, t, ω) meaning

u(x + k, t + s, ω) = u(x, t, τ (k,s) ω) for all (k, s, ω) ∈ Z d × R × Ω, (3.3) m1
and such that

u L 2 = E ˆ Q 1 u 2 < +∞. (3.4) m2
Note that, if u ∈ L 2 , the stationarity in time implies that the quantity

E ˆt2 t 1 ˆO u(x, s)dxds ,
where O is a bounded measurable subset of R d , is affine in t 2 -t 1 , and, therefore, the limit

E ˆO u(x, t)dx = lim h→0 + E 1 2h

ˆO ˆt+h

t-h u(x, s)dxds exists for any t ∈ R and is independent of t.

Let C be the subset of L 2 of maps with smooth and square integrable space and time derivatives of all order belonging to L 2 . A simple argument using mollification in R d+1 yields that C is dense in L 2 with respect to the norm in (3.4). We denote by H 1 the closure of C with respect to the norm

u H 1 = ( u 2 L 2 + ∂ t u 2 L 2 + Du 2 L 2 ) 1/2 , while H 1
x the closure of C with respect to the norm

u H 1 x = ( u 2 L 2 + Du 2 L 2 ) 1/2 and H -1
x is its dual space. Moreover, L 2 pot is the closure with respect to the L 2 -norm of {Du : u ∈ C} in (L 2 (Ω)) d . For later use, we also note that, in view of the stationarity, for all u, v ∈ H 1 and i = 1, . . . , d,

E ˆ Q 1 u∂ x i v = -E ˆ Q 1 v∂ x i u , and E ˆ Q 1 u∂ t v = -E ˆ Q 1 v∂ t u .
Finally, given a nonnegative weight ρ, we write L 2 ρ , H 1 ρ and H -1 ρ for the spaces in which the norm is evaluated against ρ.

Finally, we note that, whenever an equation is said to be solved in the sense of distributions, then the pairing is the standard and not the weighted one.

subsec.ass 3.2. The assumptions on the vector field. We assume that the vector field a :

R d × R d × R × Ω → R d is
space-time stationary, and, strongly monotone and Lipschitz continuous uniformly in x, t and ω.

(3.5) T Moreover, it is assumed that

|a(0, •, •, •)| : R d × R × Ω → R ∈ L 2 , (3.6) a2
and, hence,

E ˆ Q 1 |a(0, x, t)| 2 dxdt < +∞. (3.7) Hypa3 bsec.corrector 3.3.
The existence of a corrector and the effective nonlinearity. We prove here the existence, for each p ∈ R d , of a corrector, that is a map χ p : R d × R × Ω → R with ∂ t χ p and Dχ p stationary and of mean 0 and such that

∂ t χ p -div(a(p + Dχ p , x, t, ω)) = 0 in R d × R,
and use it to define the effective vector field a :

R d → R d .
The result is stated next.

thm.corrector Theorem 3.1. Assume (3.2), (3.5) and (3.6). For any p ∈ R d , there exists a unique map

χ p : R d+1 × Ω → R such that ˆ Q 1 χ p (x, t, ω)dxdt = 0 P-a.s., Dχ p ∈ L 2 pot , ∂ t χ p ∈ H -1 x ,
and

∂ t χ p -div(a(p + Dχ p , x, t, ω)) = 0 in H -1 x . (3.8) eq.thetaw
Moreover, as ε → 0 and P-a.s. and in expectation,

χ ε (x, t; p, ω) = εχ p ( x ε , t ε 2 , ω) → 0 in L 2 loc (R d+1 ).
In addition, the vector field a : R d → R d defined by

a(p) = E ˆ Q 1 a(p + Dχ p , y, τ, ω)dydτ (3.9) def.barabara
is monotone and Lipschitz continuous.

The proof of Theorem 3.1 is long and technical. At first look, its structure appears to be similar to the ones of the analogous results for periodic and almost periodic media. The standard approach is to consider the solution (approximate corrector) of a regularized version of the corrector equation with small second derivative in time to make the problem uniformly elliptic set in a bounded domain and small discount factor to guarantee the solvability. The next step is to obtain uniformly apriori bounds for the space and time derivatives of the approximate corrector and to pass to the weak limit, which yields an equation involving the weak limit of the time derivative and the divergence of the weak limit of the vector field. Note that, due to the unboundedness of the domain it is necessary to use weighted space, a fact that introduces another layer of approximations and technicalities.

The proof of Theorem 3.1 is organized in a number of lemmata, which provide incremental information leading to the final argument.

Throughout the proof, to justify repeated integration by parts and to deal with the unbounded domain, we use the exponential exponential weight ρ θ , which, for θ > 0, is given by

ρ θ (x, t) = exp{-θ(1 + |x| 2 + t 2 ) 1/2 }.
The first lemma is about the existence of as well as some apriori bounds for the approximate corrector in a bounded domain.

lem.2.2 Lemma 3.2. Assume (3.2), (3.5) and (3.6). For any ω ∈ Ω, λ > 0 and L > 0, let

u L ∈ H 1 0 ( Q L ) be the solution of λu L -λ∂ tt u L + ∂ t u L -div(a(Du L + p, ω)) = 0 in Q L u L = 0 in ∂ Q L . ( 3 

.10) m5

There exists θ 0 > 0, which depends on λ but not on L or ω, such that, for any θ ∈ (0, θ 0 ] and P-a.s., ˆ

Q L λu 2 L + λ(∂ t u L ) 2 + |Du L | 2 ρ θ p,λ,θ (1 + ˆ Q L |a(0)| 2 ρ θ ).
(3.11) eq.bonbound

Note that the integral ´ Q L |a(0)| 2 ρ θ in the right-hand side of (3.11) is random and that the implicit constant does not depend on either ω or L Proof. Using ρ θ u L as a test function in (3.10), the monotonicity and Lipschitz continuity of a and the fact that

|D ρ θ | + |∂ t ρ θ | θ ρ θ , we find ˆ Q L λu 2 L + λ(∂ t u L ) 2 + C -1 0 |Du L + p| 2 ρ θ ≤ - ˆ Q L λ∂ t u L u L ∂ t ρ θ ρ θ - (u L ) 2 ∂ t ρ θ 2 ρ θ -a(Du L + p) • p + u L a(Du L + p) • D ρ θ ρ θ ρ θ ˆ Q L (λθ|∂ t u L ||u L | + θu 2 L + (|a(0)| + |Du L + p|)(|p| + θ|u L |) ρ θ ,
and, hence, the claim.

Next, we use Lemma 3.11 to obtain the existence and bounds for approximate solutions of the approximate regularized problem in all of R d+1 .

lem.23 Lemma 3.3. Assume (3.2), (3.5), and (3.6). For any p ∈ R d , λ > 0 and θ ∈ (0, θ 0 ), there exists, P-a.s. and in the sense of distributions, a unique stationary solution χ λ,p ∈ H 1 ρ θ of λχ λ,p -λ∂ tt χ λ,p + ∂ t χ λ,p -div(a(Dχ λ,p + p, ω)) = 0 in R d+1 , (3.12) eq.approxcorr which is independent of θ ∈ (0, θ 0 ), belongs to H 1 and, in addition,

E ˆ Q 1 λ(χ λ,p ) 2 + λ(∂ t χ λ,p ) 2 + |Dχ λ,p | 2 p 1 (3.13) inequlambda.est
and, for all φ ∈ H 1 ,

E ˆ Q 1 ∂ t χ λ,p φ p λ 1/2 φ H 1 + Dφ L 2 , (3.14) inequlambda.est
both estimates being independent of λ.

Proof. Let u L be as in Lemma 3.2. The stationarity of a and (3.7) yield

E ˆRd+1 |a(0)| 2 ρ θ θ,d E ˆ Q 1 |a(0)| 2 < +∞, Let ω ∈ Ω be such that ˆRd+1 |a(0, x, t, ω)| 2 ρ θ (x, t)dxdt < ∞
for a countable sequence of θ → 0 and, thus, for any θ ∈ (0, 1]. Cleary, the set of such ω has probability 1. Fix such ω. It follows from Lemma 3.2 that the family (u L ) L∈(0,∞) is bounded in H 1 ρ θ for any θ ∈ (0, θ 0 ]. A diagonal argument then yields a subsequence, which, to keep the notation simple, is denoted as the family, and some u ∈ θ ∈(0,θ 0 ] H 1 ρ θ , such that, as L → ∞, u L u in H 1 ρ θ for any θ ∈ (0, θ 0 ]. In particular, u L → u in L 2 ( Q R ) for any R > 0 and, therefore, in L 2 ρ θ for all θ ∈ (0, θ 0 ), since, for any R > 0,

u L -u L 2 ρ θ (R d+1 ) ≤ u L -u L 2 ρ θ ( Q R ) + ( sup R d+1 \ Q R ρ θ ρ θ 0 ) u L -u L 2 ρ θ 0 (R d+1 \ Q R ) ≤ u L -u L 2 ( Q R ) + sup R d+1 \ Q R ρ θ ρ θ 0 )( u L L 2 ρ θ 0 (R d+1 ) + u L 2 ρ θ 0 (R d+1 ) .
Note that above the first term in the right-hand side tends to 0 as L → ∞ and the second one tends to 0, uniformly in L, as R → +∞. We can also assume that, as

L → ∞, a(Du L + p, ω) ξ ∈ θ ∈(0,θ 0 ] L 2 ρ θ . It follows that, in the sense of distributions, λu -λ∂ tt u + ∂ t u -div(ξ) = 0 in R d+1 , (3.15) lekrgndf
and, for all θ ∈ (0, θ 0 ],

ˆRd+1 λu 2 + λ(∂ t u) 2 + |Du| 2 ρ θ p,λ,θ) (1 + ˆRd+1 |a(0)| 2 ρ θ ). ( 3 

.16) lekrgndfBIS

Next we check that u is a solution of (3.12). In what follows, we use that u

∈ θ ∈(0,θ 0 ] H 1 ρ θ . Let φ ∈ C ∞ c (R d+1
). The strong monotonicity of a gives, for L large enough, ˆ

Q L λ(u L -φ) 2 + λ(∂ t u L -∂ t φ) 2 + (a(Du L + p) -a(Dφ + p)) • D(u L -φ) ρ θ ≥ 0.
Moreover, using u L ρ θ as a test function for the equation of u L , we find ˆ

Q L λu 2 L + λ(∂ t u L ) 2 + λ∂ t u L u L ∂ t ρ θ ρ θ + ∂ t u L u L + a(Du L + p) • Du L + u L a(Du L + p) • D ρ θ ρ θ ρ θ = 0.
Hence,

ˆ Q L -2λu L φ + λφ 2 -2λ∂ t u L ∂ t φ + λ(∂ t φ) 2 -a(Du L + p) • Dφ -a(Dφ + p) • D(u L -φ) -∂ t u L u L -λ∂ t u L u L ∂ t ρ θ ρ θ -u L a(Du L + p) • D ρ θ ρ θ ρ θ ≥ 0.
Letting L → +∞ and recalling that, as

L → ∞, u L → u, ∂ t u L ∂ t u, Du L Du and a(Du L + p) ξ in L 2 ρ θ and, hence, in L 2 loc , we obtain ˆRd+1 -2λuφ + λφ 2 -2λ∂ t u∂ t φ + λ(∂ t φ) 2 -ξ • Dφ -a(Dφ + p) • D(u -φ) -∂ t uu -λ∂ t uu ∂ t ρ θ ρ θ -uξ • D ρ θ ρ θ ρ θ ≥ 0.
On the other hand, integrating (3.15) against φ ρ θ , we get

ˆRd+1 λuφ + λ∂ t u∂ t φ + λ∂ t uφ ∂ t ρ θ ρ θ + ∂ t uφ + ξ • Dφ + φξ • D ρ θ ρ θ ρ θ = 0.
Inserting the last equality into the inequality above gives

ˆRd+1 -λφ(u -φ) -λ∂ t φ(∂ t u -∂ t φ) -a(Dφ + p) • D(u -φ) -∂ t u(u -φ) -λ∂ t u(u -φ) ∂ t ρ θ ρ θ -(u -φ)ξ • D ρ θ ρ θ ρ θ ≥ 0.
Using φ = u + hψ for h > 0 small and ψ ∈ C ∞ c (R d+1 ), something that can be done using standard approximation arguments, yields, after dividing by h and letting h → 0,

ˆRd+1 λuψ + λ∂ t u∂ t ψ + a(Du + p) • Dψ + ∂ t uψ + λ∂ t uψ ∂ t ρ θ ρ θ + ψξ • D ρ θ ρ θ ρ θ ≥ 0.
The facts that ψ has a compact support, u and its derivatives are locally integrable and, as θ → 0, the derivatives of ρ θ tend to 0 locally uniformly, gives, after letting θ → 0,

ˆRd+1 λuψ + λ∂ t u∂ t ψ + a(Du + p) • Dψ + ∂ t uψ ≥ 0. Since ψ ∈ C ∞ c (R d+1
) is arbitrary, the last inequality implies that u is a solution of (3.12) in the sense of distributions.

Next we check that u is unique among weak solutions of (3.12) in H 1 ρ θ for some θ > 0.

Let u 1 , u 2 be two solutions and set u = u 1 -u 2 . Using u ρ θ as a test function in the equation for u, we find ˆRd+1

(λ u 2 + λ(∂ t u) 2 + (a(p + Du 1 ) -a(p + Du 2 )) • D u) ρ θ = - ˆRd+1 λ u∂ t u∂ t ρ θ + u(a(p + Du 1 ) -a(p + Du 2 )) • D ρ θ a θ ˆRd+1 (λ| u||∂ t u| + C 0 |D u|| u|) ρ θ .
Then a standard argument based on Cauchy-Schwartz inequality implies that, for θ small enough, u ≡ 0. Since (3.12) has a unique solution in H 1 ρ θ for some θ > 0, the whole family u L converges to u as L → +∞. It follows that u is measurable in Ω. Moreover, the stationarity of the equation and the uniqueness of the solution imply that u is also stationary. To establish the bounds claimed, we test the equation for u against ρ θ u. Using the monotonicity of a and arguing as above we get

ˆRd+1 λu 2 + λ(∂ t u) 2 + C -1 0 |Du + p| 2 ρ θ a ˆRd+1 (λθ|∂ t u||u| + θu 2 + (|a(0)| + |Du + p|)(|p| + θ|u|) ρ θ ,
It follows that, for θ small enough depending on p but independent of ω, ˆRd+1

(λu 2 + λ(∂ t u) 2 + C -1 0 |Du + p| 2 ) ρ θ p ˆRd+1 |a(0)| 2 ρ θ .
Taking expectations and using (3.6) and the fact u is stationary and (3.6) gives gives (3.13).

Finally, to obtain (3.14) we use the equation and (3.13).

In order to proceed, we need the following remark about the reconstruction of a map from its derivatives.

lem.defu Lemma 3.4. Assume (3.2) and let θ ∈ H -1

x and w ∈ L 2 pot satisfy, for all φ ∈ C and i = 1, . . . , d, the compatibility condition

θ, ∂ x i φ H -1 x ,H 1 x = E [w i ∂ t φ] (3.17) compcond
Then there exists a measurable map u : R d+1 ×Ω → R such that, a.s.,

´ Q 1 u(x, t, ω)dxdt = 0, Du = w and ∂ t u = θ in the sense of distributions.

For the proof, we need to use regularizations (convolutions) with a kernel K ε (x, t) = ε -(d+1) K(x/ε, t/ε) for K : R d+1 → [0, +∞) smooth, nonnegative, symmetric, compactly supported and such that ´Rd=1 Kdxdt = 1. For u ∈ L 2 , define

K ε * u(x, t, ω) = ˆRd+1 K ε (x -y, t -s)u(y, s, ω)dyds.
It is a classical fact that K ε * u belongs to C and that

lim ε→0 u -K ε * u L 2 = 0.
The proof of Lemma 3.17. Fix ε > 0 and define θ ε ∈ H -1

x and w ε so that, for all φ ∈ H 1

x and

w ε = K ε * w, θ ε , φ H -1 x ,H 1 x = θ, K ε * φ H -1 x ,H 1 x (3.18) def.thetaep
It is immediate that θ ε , w ε belong to C and, in view of (3.17), for all i = 1, . . . , d,

∂ x i θ ε = ∂ t w ε i .
It follows that there exists a measurable and smooth in x, t map u ε : R d+1 × Ω → R such that ∂ t u ε = θ ε , Du ε = w ε , and, without loss of generality,

´ Q 1 u ε = 0. For any R ≥ 1, Poincaré's inequality gives (see, for instance, the proof of Lemma 4.2.1 in [START_REF] Krylov | Lectures on elliptic and parabolic equations in Sobolev spaces[END_REF])

u ε (•, •, ω) L 2 ( Q R ) d,R Du ε (•, •, ω) L 2 ( Q R ) + ∂ t u ε (•, •, ω) L 2 (I R ,H -1 (Q R )) ,
and, thus,

E u ε (•, •, ω) 2 L 2 ( Q R ) d,R E w ε 2 L 2 + θ ε 2 L 2 (I R ,H -1 (Q R )) .
Using a diagonal argument, we can find ε n → 0 and u ∈ L 2 loc (R d+1 × Ω) such that, for any

R, u εn u in L 2 ( Q R × Ω). It is, then, easy to check that Du = w, ∂ t u = θ and ´ Q 1 u = 0.
We use Lemma 3.4 to obtain the following result which is one of the most crucial steps for the construction of the corrector.

lem.Ewxi=0 Lemma 3.5. Assume (3.2). If θ ∈ H -1 x , w ∈ L 2 pot and ξ ∈ L 2 satisfy the compatibility condition (3.17) and θ -div(ξ) = 0 in

H -1 x , then E ˆ Q 1 w • ξ = 0.
Proof. Let θ ε be defined by (3.18), w ε = K ε * w and ξ ε = K ε * ξ. Then, θ ε -div(ξ ε ) = 0. Lemma 3.4 and its proof yield a measurable in ω and smooth in (x, t) map u ε : R d+1 ×Ω → R such that Du ε = w ε and ∂ t u ε = θ ε , and, in the classical sense,

∂ t u ε -div(ξ ε ) = 0 in R d+1 × Ω. ( 3 

.19) kjhnrsdtf

Arguing by contradiction, we assume that

κ = E ˆ Q 1 ξ • w > 0.
Since the map t → E ´Q1 w(x, t) • ξ(x, t)dx is well-defined and constant, we actually have, for all t ∈ R,

E ˆQ1 w(x, t) • ξ(x, t)dx = κ > 0. ( 3 

.20) kljznesrdOLD

In view of the stationarity of w and ξ, (3.20) implies that there exist ε 0 > 0 and 0 < κ < κ such that, for all t ∈ R, ε ∈ (0, ε 0 ) and R > 0,

E ˆQR w ε (x, t) • ξ ε (x, t)dx ≥ κR d . (3.21) kljznesrd Fix R > 0 and let ψ = ψ R ∈ C 1 (R d × [0, +∞)) be such that ψ(x, R) = 0 in R d \Q R+1 , ψ(x, R) = 1 in Q R , Dψ ∞ + ∂ R ψ ∞ d 1, and |Dψ(x, R)| d ∂ R ψ(x, R).
Note that such ψ can be constructed by convolving in space the map x → 1 Q R+1/2 (x) with a nonnegative kernel with sufficiently small support. Finally, for some c 0 > 0 and T sufficiently large to be chosen later, set

R(t) = (T -c 0 t) 1/2 . Then d dt ˆRd (u ε ) 2 (x, t) 2 ψ(x, R(t))dx = R (t) ˆRd (u ε ) 2 (x, t) 2 ∂ R ψ(x, R(t))dx + ˆRd u ε (x, t)∂ t u ε (x, t)ψ(x, R(t))dx = R (t) ˆRd (u ε ) 2 (x, t) 2 ∂ R ψ(x, R(t))dx - ˆRd ξ ε (x, t) • w ε (x, t)ψ(x, R(t))dx - ˆRd u ε (x, t)w ε (x, t) • Dψ(x, R(t))dx.
Young's inequality yields, for any α > 0,

d dt ˆRd (u ε ) 2 (x, t) 2 ψ(x, R(t))dx ≤ R (t) ˆRd (u ε ) 2 (x, t) 2 ∂ R ψ(x, R(t))dx - ˆQR(t) ξ ε (x, t) • w ε (x, t)dx + ˆQR(t)+1 \Q R(t) |ξ ε (x, t)| |w ε (x, t)|dx + α|R (t)| ˆRd (u ε ) 2 (x, t) 2 |Dψ(x, R(t))|dx + C α|R (t)| ˆQR(t)+1 \Q R(t) |w ε (x, t)| 2 dx.
Recall that, by construction, R < 0, Dψ ∞ d C and |Dψ| d ∂ R ψ Hence, choosing from now on α small enough depending only on d, taking expectations and using (3.21), we find

d dt E ˆRd (u ε ) 2 (x, t) 2 ψ(x, R(t))dx + κ(R(t)) d -E ˆQR(t)+1 \Q R(t) |ξ ε (x, t)| |w ε (x, t)|dx α 1 |R (t)| E ˆQR(t)+1 \Q R(t) |w ε (x, t)| 2 dx . ( 3 

.22) kqhjsndkjnjj

We use next the stationarity of w ε and ξ ε , and the facts that

|Q R(t)+1 \Q R(t) | C(R(t)) d-1 , ξ ε , w ε ∈ L 2 , and R (t) = c 0 (R(t)) -1 to get, for some C > 0, d dt E ˆRd (u ε ) 2 (x, t) 2 ψ(x, R(t))dx ≤ -(R(t)) d κ + C(|R (t)| -1 + 1)(R(t)) d-1 = -(R(t)) d (κ -Cc -1 0 -C(R(t)) -1 ), Choosing c 0 > 1 large so that κ -Cc -1 0 ≥ κ/2 and t ≤ t T = T -16C 2 κ -2 c -1 0 , in order to have C(R(t)) -1 ≤ κ/4 on [0, t T ], we find, for all t ∈ [0, t T ], d dt E ˆRd (u ε ) 2 (x, t) 2 ψ(x, R(t))dx ≤ -(R(t)) d κ 4 .
Integration in time over t ∈ [h, c -1 0 T ] for h ∈ [0, T 1/2 ] (note that, if c 0 and T are large enough, c -1 0 T < t T ) and the fact that ψ ≥ 0 give

E ˆRd (u ε ) 2 (x, h) 2 ψ(x, R(h))dx ≥ κ 4 ˆc-1 0 T h (R(t)) d dt.
Integrating once more in time over h ∈ [0, T 1/2 ] and noting that, since

R(h) ≤ T 1/2 , ψ(x, R(h)) ≤ 1 Q T 1/2 +1 , we get E ˆT 1/2 0 ˆQT 1/2 +1 (u ε ) 2 (x, h) 2 dxdh ≥ C -1 κT (d+3)/2 .
Our goal is to apply A.2 in the Appendix. For this, we note that, since Du ε = w ε ∈ L 2 pot , E[ ´Q1 Du ε (•, t)] = 0. Moreover, in view of (3.19) and the fact that ξ ε ∈ L 2 is stationary,

E ˆ Q 1 ∂ t u ε = ∂ t u ε , 1 H -1 x ,H 1 x = div(ξ ε ), 1 H -1 x ,H 1 x = 0
Hence, we can apply Lemma A.2 which implies that, for any δ > 0, there exists R δ such that, for all R ≥ R δ ,

E ˆR 0 ˆQR (u ε (x, h)) 2 dxdh ≤ δR d+3 .
Choosing R = T 1/2 + 1 and T large, we obtain

δ 2 (T 1/2 + 1) d+3 ≥ E ˆT 1/2 0 ˆQT 1/2 +1 (u ε ) 2 (x, h) 2 dxdh ≥ C -1 κT d+3 2 ,
which yields a contradiction if δ is small enough and T is large enough.

It follows that we must have

E ˆ Q 1 ξ • w ≤ 0.
Arguing similarly for negative t gives the opposite inequality.

The next lemma is the step that provides the sought after corrector as well as the properties (monotonicity and Lipschitz continuity) of a. Finally, the vector field a defined by (3.9) is monotone and Lipschitz continuous.

Proof. Let χ λ,p be given by Lemma 3.3. In view of (3.13) and (3.14), there exist a subsequence λ n → 0, w ∈ L 2 pot , θ ∈ H -1 and ξ ∈ L 2 such that Dχ λn,p w, ∂ t χ λn,p θ , and a(Dχ λn,p + p) ξ in their respective spaces. Moreover, in view of (3.14), for all φ ∈ H 1 , θ, φ L 2 p Dφ L 2 which means that, in fact, θ ∈ H -1

x . Note also that, since the pair (∂ t χ λ,p , Dχ λ,p ) satisfies (3.17), so does (θ, w). Finally, (3.12) implies θ -div(ξ) = 0 in H -1

x .

(3.25) oizuaesnf

It remains to check that (3.23) holds. As we show below, this is a consequence of the monotonicity of a, which gives that, for any test function φ ∈ C,

E ˆ Q 1 λ(χ λ,p -φ) 2 + λ(∂ t χ λ,p -∂ t φ) 2 + (a(Dχ λ,p + p) -a(Dφ + p)) • (Dχ λ,p -Dφ) ≥ 0.
Multiplying (3.12) by χ λ,p and taking expectation, we find

E ˆ Q 1 λ(χ λ,p ) 2 + λ(∂ t χ λ,p ) 2 + a(Dχ λ,p + p) • Dχ λ,p ) = 0,
and, thus,

E ˆ Q 1 λ(-2χ λ,p φ + φ 2 ) + λ(-2∂ t χ λ,p ∂ t φ + (∂ t φ) 2 ) -a(Dχ λ,p + p) • Dφ -a(Dφ + p) • (Dχ λ,p -Dφ))) ≥ 0.
Passing to the limit λ n → 0, in view of the estimates on χ λ,p we get

E ˆ Q 1 -ξ • Dφ -a(Dφ + p) • (w -Dφ) ≥ 0.
Since this last inequality holds for any φ ∈ C, we also have, for any z ∈ L 2 pot ,

E ˆ Q 1 -ξ • z -a(z + p) • (w -z) ≥ 0.
Choose z = w + θz with z ∈ L 2 pot . Then, after dividing by θ and letting θ → 0, in view of Lemma (3.5), we get

E ˆ Q 1 -ξ • z + a(w + p) • z ≥ lim sup θ→0 1 θ E ˆ Q 1 ξ • w = 0,
Since the last inequality holds for any z ∈ L 2 pot , we infer that

E ˆ Q 1 -ξ • z + a(w + p) • z = 0. (3.26) m9
Going back to (3.25), (3.26) implies that, for any φ ∈ H 1 x , θ -div(a(w + p)), φ H -1

x ,H

1 x = E ˆ Q 1 ξ • Dφ -a(w + p) • Dφ = 0,
and, hence, (θ, w) satisfies (3.23).

Next we prove at the same time the uniqueness of (θ, w) and the monotonicity of a.

Let p 1 ∈ R d and (θ 1 , w 1 ) be a solution associated with p 1 , and set ξ 1 = a(w 1 + p 1 ). Then

θ -θ 1 -div(ξ -ξ 1 ) = 0.
Applying Lemma 3.5 to the pair (θ -θ 1 , w -w 1 ), we find

E ˆ Q 1 (ξ -ξ 1 ) • (w -w 1 ) = 0.
The monotonicity of a follows from the following calculation that uses the fact that, since w -w 1 ∈ L 2 pot , we have E[

´ Q 1 w -w 1 ] = 0: (a(p) -a(p 1 )) • (p -p 1 ) = E ˆ Q 1 (a(w + p) -a(w 1 + p 1 )) • (w + p -w 1 -p 1 ) ≥ C -1 0 E ˆ Q 1 |w + p -w 1 -p 1 | 2 = C -1 0 (E ˆ Q 1 |w -w 1 | 2 + |p -p 1 | 2 ).
The uniqueness of (θ, w) also follows from the inequality above. Indeed set p 1 = p. It follows that w = w 1 , which in turn implies that θ = θ 1 . The Lipschitz continuity follows from the observation that

|a(p) -a(p 1 )| ≤ E ˆ Q 1 |a(w + p) -a(w 1 + p 1 )| ≤ C 0 (E 1/2 ˆ Q 1 |w -w 1 | 2 + |p -p 1 |) ≤ C 0 ( (a(p) -a(p 1 )) • (p -p 1 ) 1/2 + |p -p 1 |) ≤ 1 2 |a(p) -a(p 1 )| + C|p -p 1 |.
Note that the above also yields (3.24).

We have now all the necessary ingredients to prove Theorem 3.1.

Proof of Theorem 3.1. Fix p ∈ R d and let (θ p , w p ) and χ p be given respectively by Lemma 3.6 and Lemma 3.4.

Then, for χ ε (x, t; p, ω)

= εχ p ( x ε , t ε 2 , ω) and a ε (p, x, t, ω) = a(p, x ε , t ε 2 , ω), we have ∂ t χ ε -div(a ε (p + Dχ ε , x, t)) = 0 in R d × R. (3.27) eq.xiep
First we show that there exists a universal constant C 0 such that, P-a.s. and for any R, T > 0,

lim sup ε→0 ˆT 0 ˆQR (χ ε (x, t)) 2 dxdt ≤ C 0 T 3 R d-2 E ˆ Q 1 |a(Dχ + p)| 2 . (3.28) Step11 Fix ξ ∈ C ∞ (R; [0, 1]) such that ξ ≡ 0 in (-∞, -1), ξ ≡ 1 in [0, +∞) and ξ ≤ 2 and set φ(x, s, t) = ξ (3 -2t -1 s) -R -1 |x| ∞ .
We note for later use that, since 1

≤ (3 -2t -1 s) ≤ 3 for s ∈ [0, t], φ(x, s, t) = 1 in Q R , while φ(x, s, t) = 0 in R d \Q 4R .
Using the equation satisfied by χ ε and Young's inequality, we find, for any t > 0 fixed and any s ∈ (0, t), d ds ˆRd

1 2 (χ ε (s)) 2 φ(x, s, t) = ˆRd 1 2 (χ ε ) 2 ∂ s φ -(a ε Dχ ε φ + χ ε a ε Dφ). ≤ ˆRd 1 2 (χ ε ) 2 ∂ s φ -a ε Dχ ε φ + 1 2 R -1 t|a ε | 2 |Dφ| + 1 2 Rt -1 (χ ε ) 2 |Dφ|.
The computation above, which here is made at a formal level, can be easily be rigorous by regularizing χ ε by convolution. Since ∂ s φ = -2t -1 ξ while |Dφ| ≤ R -1 ξ , we can absorb the last term in the righthand side into the first one to obtain d ds ˆRd

1 2 (χ ε (s)) 2 φ(x, s, t) ≤ ˆRd -a ε Dχ ε φ + R -2 t ˆQ4R |a ε | 2 .
Integrating the above inequality in time, between 0 and t and using the definition of φ we get

ˆQR 1 2 (χ ε (t)) 2 dx ≤ ˆQ4R 1 2 (χ ε (0)) 2 dx - ˆt 0 ˆRd a ε (s)Dχ ε (s)φ(x, s, t)dxds + R -2 t ˆt 0 ˆQ4R |a ε (s)| 2 dxds.
A second integration in t ∈ (0, T ) gives

ˆT 0 ˆQR 1 2 (χ ε (t)) 2 dxdt ≤ T ˆQ4R 1 2 (χ ε (0)) 2 dx - ˆT 0 ˆt 0 ˆRd a ε (s)Dχ ε (s)φ(x, s, t)dxdsdt + R -2 ˆT 0 t ˆt 0 ˆQ4R |a ε (s)| 2 dxdsdt.
We now let ε → 0. It follows from Lemma A.2 and the ergodic theorem that, P-a.s.,

lim sup ε→0 ˆT 0 ˆQR 1 2 (χ ε (t)) 2 dxdt ≤ (3.29) kqeusrndxc - ˆT 0 ˆt 0 ˆRd E ˆ Q 1 a(Dχ + p) • Dχ φ(x, s, t)dxdsdt + R -2 T ˆT 0 ˆt 0 ˆQ4R E ˆ Q 1 |a(Dχ + p)| 2 dxdsdt.
(3.30) Lemma 3.5 gives that the first term in the right-hand side vanishes. Thus,

lim sup ε→0 ˆT 0 ˆQR 1 2 (χ ε (t)) 2 dxdt R d-2 T 3 E ˆ Q 1 |a(Dχ + p)| 2 ,
and, hence, (3.28).

A symmetric argument yields that, P-a.s.,

lim sup ε→0 ˆT -T ˆQR (χ ε (x, t)) 2 dxdt ≤ C 0 T 3 R d-2 E ˆ Q 1 |a(Dχ + p)| 2 . (3.31) lem.convconv
Next we show the convergence of (χ ε ) to 0.

Let ω ∈ Ω be such that (3.31) holds for any T, R > 0. Then, in view of (3.31), the families (χ ε ) ε>0 , (Dχ ε ) ε>0 and (∂ t χ ε ) ε>0 are respectively is bounded in

L 2 loc (R d × R), L 2 loc (R d × R) and L 2 loc (H -1
). Hence, in view of the classical Lions-Aubin Lemma [2, 14], the family (χ ε ) ε>0 is relatively compact in L 2 loc (R d+1 ). Let (χ εn ) be any converging subsequence with limit χ in L 2 loc (R d × R). Since a and Dχ ε are stationary in an ergodic environment, a ε (Dχ ε + p) converges weakly to a constant. Thus, in view of (3.27), χ solves ∂ t χ = 0 in R d × R. Dividing (3.31) and letting T → 0 yields that χ(•, 0) = 0. Therefore χ ≡ 0, and, hence,

χ εn → 0 in L 2 loc (R d × R).
subsec.homogen 3.4. Homogenization. We now turn to the homogenization of (3.1). The aim is to show that the family (u ε ) ε>0 converges to the solution u of the homogenous equation

∂ t u -div(a(Du)) = f (x, t) in R d × (0, T ) u(•, 0) = u 0 in R d , (3.32) eq.AHlim
where a : R d → R is defined by (3.9), see below for a precise statement.

For the statement and the proof of the result we will use again the weight

ρ θ (x) := exp{-θ(1 + |x| 2 ) 1/2 } (3.33) def.rhothetaBIS
and we will work in the weighted spaces

L 2 ρ θ = L 2 ρ θ (R d ), H 1 ρ θ = H 1 ρ θ (R d
), etc... The homogenization result is stated next.

thm.homo Theorem 3.7. Assume (3.2), (3.5), and (3.6) and let a : R d → R d be the monotone and Lipschitz continuous vector field defined by (3.9). Then, for every T > 0, u 0 ∈ L 2 (R d ) and f ∈ L 2 (R d × (0, T )), if u ε and u solve respectively (3.1) and (3.32), then, P-a.s. and in expectation,

u ε (•, t) → u(•, t) in L 2 ρ θ (R d × (0, T )) for any θ > 0.
The argument is long. To help the reader we split it in several parts (subsubsections). In the first subsubsection we prove a refined energy estimate for solutions of (3.1). Then, in subsubsection 3.4.2 we identify Ω 0 ⊂ Ω of full measure where the homogenization takes place. In subsubsection 3.4.3 we extract a subsequence ε n → 0 along which u εn has a limit. To show that this limit satisfies the effective PDE, we construct a special test function in subsubsection 3.4.4. Theorem 3.7 is proved in subsubsection 3.4.5. The last three subsubsections are devoted to the proof of some technical parts used in subsubsection 3.4.5.

ubsubsec.preli

Preliminary estimates. A solution to (3.1) is a measurable map u

ε : R d × [0, T ] × Ω → R such that, P-a.s., u ε (•, •, ω) ∈ L 2 ([0, T ], H 1 ρ θ ) ∩ C 0 ([0, T ], L 2 ρ θ
) which satisfies the equation in the sense of distributions. Since, P-a.s., a(0,

•, •, ω) ∈ L 2 loc (R d × (0, T ]), u ε (•,
•, ω) exists and is unique.

In the next lemma we sharpen the standard energy estimate for solutions of (3.1). lem.estiuep Lemma 3.8. Assume (3.2), (3.5), and (3.6), u 0 ∈ L 2 (R d ) and f ∈ L 2 (R d × (0, T )). There exists C ε θ (ω) > 0, which is P-a.s. finite, converges, as ε → 0, in L 1 (Ω), and depends on θ, T , f 2 and the monotonicity and Lipschitz constants of a such that

sup t∈[0,T ] u ε (•, t) 2 L 2 ρ θ + ˆT 0 Du ε (•, t) 2 L 2 ρ θ dt + ˆT 0 ∂ t u ε 2 H -1 ρ θ ≤ C ε θ (ω). (3.34) eq.Comega
Proof. Throughout the proof, to simplify the notation, in place of a(Du ε , x ε , t ε 2 , ω), we write a ε (Du ε ).

It is immediate that, for a.e. t ∈ (0, T ], u ε satisfies the standard energy inequality

ˆRd 1 2 u ε (t) 2 ρ θ - ˆRd 1 2 u 2 0 ρ θ = ˆt 0 ˆRd -a ε (Du ε ) • (Du ε ρ θ + u ε Dρ θ ) + f u ε ρ θ ≤ ˆt 0 ˆRd (-C -1 0 |Du ε | 2 + |a ε (0)||Du ε | + θ|u ε |(|a ε (0)| + C 0 |Du ε |) + |f ||u ε |)ρ θ ≤ ˆt 0 ˆRd (- 1 2C 0 |Du ε | 2 + C(|a ε (0)| 2 |u ε | 2 + |f | 2 )ρ θ ≤ ˆt 0 ˆRd (- 1 2C 0 |Du ε | 2 + C|u ε | 2 )ρ θ + C θ ( C ε θ (ω) + 1),
where C θ is a constant which depends only on θ, T , f 2 and C 0 in (3.5) (and might change from line to line) and

C ε θ (ω) = ˆT 0 ˆRd |a ε (0, x, t)| 2 ρ θ (x)dx.
It then follows from Gronwall's Lemma that sup

t∈[0,T ] u ε (•, t) 2 L 2 ρ θ + ˆT 0 Du ε (•, t) 2 L 2 ρ θ dt ≤ C θ (1 + C ε θ (ω)).
To estimate

∂ t u ε , we use φρ θ with φ ∈ C ∞ c (R d × [0, T ]) as a test function in (3.1) and get ˆT 0 ∂ t u ε , φ H -1 ρ θ (R d ),H 1 ρ θ (R d ) = ˆT 0 ˆRd -a ε (Du ε ) • Dφρ θ -a ε (Du ε ) • Dρ θ φ + f φρ θ ≤ C θ ( a ε (0) L 2 ρ θ + C 0 u ε L 2 (H 1 ρ θ ) + f L 2 ρ θ ) φ L 2 (H 1 ρ θ ) ,
and, in view of the previous estimate on

u ε , ˆT 0 ∂ t u ε 2 H -1 ρ θ dt ≤ C θ ( C ε θ + 1).
To complete the proof, we note that the ergodic Theorem implies that C ε θ converges, P-a.s. and in L 1 (Ω), to

E ˆT 0 ˆRd |a(0, x, t)| 2 ρ θ (x)dxdt < +∞. def.Omega0E
3.4.2. The identification of Ω 0 . Let χ ε (x, t; p, ω) = εχ( x ε , t ε 2 ; p, ω), where χ(y, τ ; p, ω) is the corrector found in Theorem 3.1. We know from Theorem 3.1 that χ ε solves in the sense of distributions the corrector equation

∂ t χ ε -div(a(p + Dχ ε , x ε , t ε 2 , ω)) = 0 in R d × R, and satisfies lim ε→0 ˆ Q R |χ ε | 2 = 0 P -a.s.. (3.35) cvchiep
In addition, since, for each p ∈ R d , a(p+Dχ, •, •, •) ∈ L 2 and stationary, the ergodic theorem yields, for any cube Q and any g ∈ L 2 ( Q, R d ) and P-a.s.,

ˆ Q g(x, t) • a(p + Dχ ε (x, t; p), x ε , t ε 2 , ω)dxdt → ε→0 ˆ Q g(x, t) • a(p)dxdt. (3.36) eq.cvDchiep
Similarly, in view of the stationarity of Dχ, for any g ∈ L 2 ( Q) and P-a.s.,

ˆ Q g(x, t)|Dχ ε (x, t; p)| 2 dxdt → ε→0 E ˆ Q g(x, t)|Dχ(x, t; p)| 2 . (3.37) eq.cvDchiepBIS
Finally, Lemma 3.5 yields

ˆ Q g(x, t)a ε (p + Dχ ε (x, t), x, t) • Dχ ε (x, t; p)dxdt → ε→0 0. (3.38) eq.cvDchiepTER
Hence, given a countable family E dense in R d and the (countable) family Q of cubes with rational coordinates, we can find using a diagonal argument a set Ω 1 of full probability such that, for any ω ∈ Ω 1 , any p ∈ E and D ∈ Q, (3.35), (3.36), (3.37) and (3.38) hold.

Let Ω 2 be the full measure subset of Ω such that, for any ω ∈ Ω 2 , the limit of the constant C ε θ (ω) in (3.34) exists and is finite for any (rational) θ > 0 and such that, for ε 0 = ε 0 (ω) > 0 small enough and every R > 0,

sup ε∈(0,ε 0 ) ˆ Q R (|a ε (0, x, t)| 2 + |Dχ ε (x, t; p)| 2 )dxdt < +∞.
(3.39) eq.choixomega3

The full measure subset of Ω in which homogenization takes place is Ω 0 = Ω 1 ∩ Ω 2 . Heretofore, we always work with ω ∈ Ω 0 . subsubseq 3.4.3. Extracting a subsequence. Fix ω ∈ Ω 0 . In view of (3.34), we know that the family (u ε ) ε>0 is compact in L 2 loc (R d+1 ). Let (u εn ) n∈N be a converging sequence with limit u. Then, for any θ > 0,

     u εn → u in L 2 ρ θ (R d × (0, T )), Du εn Du in L 2 ρ θ (R d × (0, T )), and 
a εn (Du εn , x ε n , t ε 2 n , ω) ξ in L 2 ρ θ (R d × (0, T )). (3.40) alkejzred
The aim is to prove that u is the unique solution to (3.32), which will then yield the a.s. convergence of u ε to u. Heretofore, we work along this particular subsequence ε n , which we denote by ε to simplify the notation. Note that, in view of (3.1), we have

∂ t u -div(ξ) = f (x, t) in R d × (0, T ) u(•, 0) = u 0 in R d . (3.41) laerkjnsrdc
In addition, in view of (3.34), for any θ > 0, we have sup

t∈[0,T ] u(•, t) 2 L 2 ρ θ + ˆT 0 Du(•, t) 2 L 2 ρ θ dt + ˆT 0 ∂ t u 2 H -1 ρ θ ≤ C θ (ω), (3.42) eq.Comega2BIS
where C θ (ω) = sup ε∈(0,ε 0 ] C ε θ (ω) is finite, for ε 0 small, since by the construction of Ω 0 , C ε θ (ω) has a limit as ε → 0. Similarly to the construction of the corrector, we need to prove that we can replace ξ by a(Du) in (3.41). ubsectionTestF 3.4.4. The test functions. Following the usual approach to prove homogenization for divergence form elliptic equations, given a test function

φ ∈ C ∞ c (R d ×[0, T ))
, we need to consider, for each ε > 0, the corrector χ ε (x, t, ω) = χ( x ε , t ε 2 , Dφ(x, t), ω) and work with Dχ ε . The dependence on Dφ creates technical problems since we do not have enough information about the regularity of the map p → χ(•, •, p, ω).

To circumvent this difficulty, we introduce a localization argument for the gradient of the corrector, which is based on a piecewise constant approximation of Dφ.

Fix δ ∈ (0, 1) and consider a locally finite family ( 

Q k ) k∈N of disjoint cubes Q k = Q R k (x k ) × (t k -T k , t k + T k ) in Q with T k + R k ≤ δ covering R d × [0, T ] up to a set of 0 Lebesgue measure. Let p k = - ˆ Q k Dφ(x, t)dxdt,
D φ(x, t) = k p δ k 1 Q k and D χ ε (x, t, ω) = k Dχ ε (x, t; p δ k ). ( 3 

.43) m40

Note that above we abused notation, since neither D φ nor D χ ε are gradients. We use, however, the gradient symbol in order to stress the fact that they are respectively close to Dφ and Dχ ε . Indeed, we note, for later use, that D φ and D χ ε depend on δ and that D φ converges, as δ → 0 + , uniformly to Dφ. We write for simplicity below a ε (p, x, t) for a(p, x ε , t ε 2 , ω). The monotonicity of a gives ˆT 0 ˆRd

a ε Du ε (x, t), x, t -a ε D φ(x, t) + D χ ε (x, t), x, t •(Du ε (x, t) -D φ(x, t) -D χ ε (x, t))ρ θ (x)ζ(t)dxdt ≥ 0.
Multiplying (3.1) by u ε ρ θ ζ and integrating in space and time we find

- ˆRd u 2 0 (x) 2 ρ θ (x)dx - ˆT 0 ˆRd (u ε (x, t)) 2 2 ρ θ (x)ζ (t)dxdt + ˆT 0 ˆRd a ε (Du ε (x, t), x, t) • Du ε (x, t)ρ θ (x)ζ(t)dxdt + ˆT 0 ˆRd u ε a ε (Du ε (x, t), x, t) • Dρ θ ζdxdt = ˆT 0 ˆRd f (x, t)u ε (x, t)ρ θ (x)ζ(t).
Subtracting the last two expressions we obtain

ˆRd u 2 0 2 ρ θ + ˆT 0 ˆRd (u ε ) 2 2 ρ θ ζ + ˆT 0 ˆRd -a ε (Du ε ) • (D φ + D χ ε ).
(3.44) eq.lhjeznrgdgf

-a ε (D φ + D χ ε ) • (Du ε -D φ -D χ ε ) + f u ε ρ θ ζ - ˆT 0 ˆRd u ε a ε (Du ε ) • Dρ θ ζ ≥ 0.
To let ε → 0 in the above inequality, we first note that, in view of (3.40),

lim ε→0 ˆRd u 2 0 2 ρ θ + ˆT 0 ˆRd (u ε ) 2 2 ρ θ ζ + ˆT 0 ˆRd -a ε (Du ε ) • D φ + f u ε ρ θ ζ - ˆT 0 ˆRd u ε a ε (Du ε ) • Dρ θ ζ = ˆRd u 2 0 2 ρ θ + ˆT 0 ˆRd u 2 2 ρ θ ζ + ˆT 0 ˆRd -ξ • D φ + f u ρ θ ζ - ˆT 0 ˆRd uξ • Dρ θ ζ.
We claim that 

lim ε→0 ˆT 0 ˆRd a ε (D φ(x, t) + D χ ε (x, t), x, t) • (D φ(x, t) + D χ ε (x, t))ρ θ (x)ζ(t)dxdt = ˆT 0 ˆRd a(D φ(x, t)) • D φ(x, t)ρ θ (x)ζ(t)dxdt, ( 3 
2 ρ θ + ˆT 0 ˆRd u 2 2 ρ θ ζ + ˆT 0 ˆRd -ξ • D φ -a(D φ) • (Du -D φ) + f u ρ θ ζ - ˆT 0 ˆRd uξ • Dρ θ ζ ≥ 0.
Next we let δ → 0. Since, D φ → Dφ uniformly, we obtain, 

ˆRd u 2 0 2 ρ θ + ˆT 0 ˆRd u 2 2 ρ θ ζ + ˆT 0 ˆRd -ξ • Dφ -a(Dφ) • (Du -Dφ) + f u ρ θ ζ - ˆT 0 ˆRd uξ • Dρ θ ζ ≥ 0. ( 3 
ˆRd u 0 φ(0)ρ θ + ˆT 0 ˆRd u(-∂ t φρ θ ζ -φρ θ ζ ) + ξ • (Dφρ θ ζ + φDρ θ ζ) -f φρ θ ζ.
Combining the equation above and (3.47) we get ˆRd

( u 2 0 2 -u 0 φ(0))ρ θ + ˆT 0 ˆRd u( u 2 -φ)ρ θ ζ + ˆT 0 ˆRd -a(Dφ) • (Du -Dφ) + f (u -φ) -u∂ t φ ρ θ ζ (3.48) izuakzesdnfc - ˆT 0 ˆRd (u -φ)ξ • Dρ θ ζ ≥ 0.
We choose φ = u σ +sψ where s > 0, ψ ∈ C ∞ c (R d ×[0, T )) and u σ is a smooth approximation of u with compact support in R d × [0, T ] such that, as σ → 0, u σ (•, 0) → u 0 , u σ → u and Du σ → Du in L 2 ρ θ , and ∂ t u σ → ∂ t u in L 2 (H -1 ρ θ ); note that such an approximation is possible in view of (3.42). We prove below that

lim σ→0 ˆRd ( u 2 0 2 -u 0 u σ (0))ρ θ + ˆT 0 ˆRd u( u 2 -u σ )ρ θ ζ - ˆT 0 ˆRd u∂ t u σ ρ θ ζ = 0. (3.49) limlim3
Thus, in the limit σ → 0, (3.48) becomes

-s ˆRd u 0 ψ(0)ρ θ -s ˆT 0 ˆRd uψρ θ ζ + s ˆT 0 ˆRd a(Du + sDψ) • Dψ -f ψ -u∂ t ψ ρ θ ζ + s ˆT 0 ˆRd ψξ • Dρ θ ζ ≥ 0.
Then, we divide by s and let s → 0 to get

- ˆRd u 0 ψ(0)ρ θ - ˆT 0 ˆRd uψρ θ ζ + ˆT 0 ˆRd a(Du) • Dψ -f ψ -u∂ t ψ ρ θ ζ + ˆT 0 ˆRd ψξ • Dρ θ ζ ≥ 0.
Finally, letting ζ → 1 and θ → 0, so that ζ → 0 and ρ θ → 1 while Dρ θ → 0 locally uniformly, we get

- ˆRd u 0 ψ(0) + ˆT 0 ˆRd a(Du) • Dψ -f ψ -u∂ t ψ ≥ 0,
which, since ψ is arbitrary, yields that u is a weak solution to (3.32) since ψ is arbitrary.

The proof of the P-a.s. convergence of the family (u ε ) ε>0 to u in L 2 ρ θ (R d × [0, T ]) for any θ > 0 is now complete. Moreover, in view of the estimates in (3.34), where C ε θ converges in expectation, the L 2 convergence of u ε to u also holds in expectation.

In the next subsections, we prove (3.45), (3.46) and (3.49) hold. 

ˆT 0 ˆRd a ε (D φ(x, t) + D χ ε (x, t), x, t) • (D φ(x, t) + D χ ε )ρ θ (x)ζ(t)dxdt = k ˆ Q k a ε (p δ k + Dχ ε (x, t; p δ k ), x, t) • (p δ k + Dχ ε (x, t; p δ k ))ρ θ (x)ζ(t)dxdt.
Since, in view of the choice of p δ k and of Q k , (3.36) and (3.38) hold, we get

lim ε→0 ˆT 0 ˆRd a ε (D φ(x, t) + D χ ε (x, t), x, t) • D φ(x, t))ρ θ (x)ζ(t)dxdt = k ˆ Q k a(p δ k ) • p δ k ρ θ (x)ζ(t)dxdt = ˆT 0 ˆRd a(D φ(x, t)) • D φ(x, t)ρ θ (x)ζ(t)dxdt,
which is (3.45).

3.5. The proof of (3.46). The argument is longer and more complicated.

Using again the piecewise structure of D χ ε and D φ, we find

ˆT 0 ˆRd a ε (Du ε (x, t), x, t) • D χ ε (x, t)ρ θ (x)ζ(t)dxdt + ˆT 0 ˆRd a ε (D φ(x, t) + D χ ε (x, t), x, t)) • Du ε (x, t)ρ θ (x)ζ(t)dxdt = k ˆ Q k a ε (Du ε (x, t), x, t) • Dχ ε (x, t; p δ k ) + a ε (p δ k + Dχ ε (x, t; p δ k ), x, t)) • Du ε (x, t) ρ θ (x)ζ(t)dxdt.
Now we work separately in each cube Q k . To simplify the notation, we denote by Q = Q R (x 0 ) × (t 0 -T, t 0 + T ) a generic cube Q k and let p = p δ k , χ = χ(•, •; p), and recall that R + T ≤ δ ≤ 1.

Note that (3.46) follows, if we show that lim sup

ε→0 ˆ Q a ε (Du ε (x, t), x, t) • Dχ ε (x, t) + a ε (p + Dχ ε (x, t), x, t)) • Du ε (x, t) ρ θ (x)ζ(t)dxdt (3.50) ailzkejnsf = ˆ Q a(p) • Du(x, t)ρ θ (x)ζ(t)dxdt.
To proceed, we need to work with functions which are compactly supported in Q. For this, we prove below that, for any δ > 0, we can choose

ψ ∈ C ∞ c (Int( Q)) and ε 0 > 0 such that sup ε∈(0,ε 0 ) ˆ Q a ε (Du ε (x, t), x, t) • Dχ ε (x, t) + a ε (p + Dχ ε (x, t), x, t) • Du ε (x, t) ρ θ (x)ζ(t) |1 -ψ(x, t)|dxdt (3.51) alsrdgc + ˆ Q |a(p) • Du(x, t)ρ θ (x)ζ(t)||1 -ψ(x, t)|dxdt ≤ δ .
Then, we show that, if κ := ρ θ ζψ, then 

lim ε→0 ˆ Q a ε (Du ε , x, t) • Dχ ε + a ε (p + Dχ ε , x, t) • Du ε κdxdt = ˆ Q a(p) • Duκdxdt. ( 3 
ˆ Q a ε (Du ε (x, t), x, t) • Dχ ε (x, t) + a ε (p + Dχ ε (x, t), x, t)) • Du ε (x, t) ρ θ (x)ζ(t)dxdt - ˆ Q a(p) • Du(x, t)ρ θ (x)ζ(t)dxdt ≤ 2δ ,
which gives the result since δ is arbitrary. We now prove (3.52). Using χ ε κ as a test function in (3.1) u ε κ as a test function in the equation satisfied by χ ε we get

ˆt0 +T t 0 -T ∂ t u ε , χ ε κ H -1 ,H 1 + ˆ Q a(Du ε ) • (Dχ ε κ + Dκχ ε ) = ˆ Q f χ ε κ. and ˆt0 +T t 0 -T ∂ t χ ε , u ε κ H -1 ,H 1 + ˆ Q a(p + Dχ ε ) • (Du ε κ + Dκu ε ) = 0,
and, hence, after using an easy regularization argument, we find

ˆ Q f χ ε κ = ˆt0 +T t 0 -T ∂ t u ε , χ ε κ H -1 ,H 1 + ˆt0 +T t 0 -T ∂ t χ ε , u ε κ H -1 ,H 1 + ˆ Q (a(Du ε ) • (Dχ ε κ + Dκχ ε ) + a(p + Dχ ε ) • (Du ε κ + Dκu ε )) = - ˆ Q (u ε χ ε )∂ t κ + ˆ Q (a(Du ε ) • (Dχ ε κ + Dκχ ε ) + a(p + Dχ ε ) • (Du ε κ + Dκu ε )),
Recalling (3.36), (3.40) and that, in view of (3.35), χ ε → 0 in L 2 loc , we pass to the limit ε → in the last equalities and get

lim ε ˆ Q (a(Du ε ) • Dχ ε + a(p + Dχ ε ) • Du ε )κ + a(p)Dκu = 0
An integration by parts then yields (3.52).

To complete the proof, we show that it is possible to build ψ with values in [0, 1] in such a way that (3.51) holds. Indeed, choose an increasing family of cubes ( Q n ) n∈N in Q (recall was Q is defined in subsubsection 3.4.2) such that | Q\ Q n | → 0. Then, given γ > 0 to be chosen below, in view of (3.37) and for n large enough, we have

lim ε ˆ Q\ Qn |Dχ ε | 2 dxdt = E ˆ Q 1 |Dχ| 2 | Q\ Q n | ≤ γ 2 /2.
Hence, there exists ε 0 such that sup

ε∈(0,ε 0 ] ˆ Q\ Qn |Dχ ε | 2 dxdt ≤ γ 2 . Choose ψ ∈ C ∞ c (Int( Q); [0, 1]) such that ψ = 1 in Q n . Then, for any ε ∈ (0, ε 0 ], ˆ Q a ε (Du ε ) • Dχ ε ρ θ (x)ζ(t) |1 -ψ(x, t)|dxdt ≤ ρ θ ζ ∞ a ε (Du ε ) L 2 ( Q) Dχ ε |1 -ψ| L 2 ( Q) ≤ ρ θ ζ ∞ ( a ε (0) L 2 ( Q) + C 0 Du ε L 2 ( Q) ) Dχ ε |1 -ψ| L 2 ( Q) ω Dχ ε L 2 ( Q\ Qn) ω γ;
the dependence on ω is through the constants in (3.34) and in (3.39).

Treating the other terms in (3.51) similarly we obtain, for γ small enough,

sup ε∈(0,ε 0 ) ˆ Q a ε (Du ε (x, t), x, t) • Dχ ε (x, t) + a ε (p + Dχ ε (x, t), x, t) • Du ε (x, t) ρ θ (x)ζ(t) |1 -ψ(x, t)|dxdt + ˆ Q |a(p) • Du(x, t)ρ θ (x)ζ(t)||1 -ψ(x, t)|dxdt ω Cγ ≤ δ . 3.5.1. The proof of (3.49). Note first that lim σ→0 ˆRd ( u 2 0 2 -u 0 u σ (0))ρ θ + ˆT 0 ˆRd u( u 2 -u σ )ρ θ ζ = ˆRd - u 2 0 2 ρ θ - ˆT 0 ˆRd u 2 2 ρ θ ζ . (3.53) aomkesfd1
On the other hand, the weak convergence, as σ → 0, of We use the results of the two previous sections to study the behavior, as ε →, of (1.1). We begin with the assumptions. As far the (B k ) k∈Z d and A are concerned we assume (2.4) and (2.5). We also assume

∂ t u σ to ∂ t u yields ˆT 0 ∂ t u σ 2 H -1 ρ θ dt 1. Thus, as σ → 0, ˆT 0 ˆRd (u -u σ )∂ t u σ ρ θ ζ ≤ ˆT 0 ∂ t u σ 2 H -1 ρ θ dt 1/2 ˆT 0 (u -u σ )ζ 2 H 1 ρ θ 1/2 ˆT 0 (u -u σ ) 2 H 1 ρ θ 1/2 → 0. Therefore, lim σ→0 ˆT 0 ˆRd u∂ t u σ ρ θ ζ = lim σ→0 ˆT 0 ˆRd u σ ∂ t u σ ρ θ ζ = lim σ→0 - ˆRd (u σ ) 2 (0) 2 - ˆT 0 ˆRd (u σ ) 2 2 ρ θ ζ = - ˆRd u 2 0 (0) 2 - ˆT 0 ˆRd u 2 2 ρ θ ζ . ( 3 
(Ω 1 , F 1 , P 1 )is a probability space endowed with an ergodic measure-preserving group of transformations τ :

Z d × R × Ω 1 → Ω 1 , (4.1) omega1 and 
       A : R d × R d × R × Ω 1 → R d is a smooth and stationary in (Ω 1 , F 1 , P 1 )
vector field, which is strongly monotone and Lipschitz continuous in the first variable, uniformly with respect to the other variables;

(4.2) F note that the family (B k ) k∈Z d and the vector field A are defined in different probability spaces.

Finally, for the random environment we assume that (Ω, F, P) is the product probability space of (Ω 0 , F 0 , P 0 ) and (Ω 1 , F 1 , P 1 ),

(4.3) omega2 that is, Ω = Ω 0 × Ω 1 , F = F 0 ⊗ F 1 and P = P 0 ⊗ P 1 .
We continue making precise the meaning of a solution of (1.1). A field U ε solves (1.1) if

U ε t (x, ω) = εV t ε 2 ( x ε , ω 0 ) + W ε (x, t, ω) = V ε t (x, ω 0 ) + W ε (x, t, ω), (4.4) 
UepVepWep with V and W ε solving respectively (2.2) and 

∂ t W ε t = div ( a ε (DW ε t , x, t, ω)) in R d × (0, +∞) W ε 0 = u 0 in R d , ( 4 
ε : R d × [0, T ] × Ω → R is a solution of (4.5), if it is measurable in ω for each (x, t), W ε • (•, ω) ∈ L 2 ([0, T ], H 1 ρ θ ) ∩ C 0 ([0, T ],
L 2 ρ θ ) P-a.s. with ρ θ defined in (3.33), and it satisfies (4.5) in the sense of distributions. It is easily checked that such a solution exists and is unique.

homogenization Theorem 4.1. Assume (2.4), (2.5), (4.1), and (4.2). Then there exists a strongly monotone and Lipschitz continuous vector filed a : R d → R d such that, for any u 0 ∈ L 2 (R d ), the solution U ε of (1.1) converges to the solution of the homogenized problem

∂ t u = div(a(Du)) in R d × (0, ∞) u(•, 0) = u 0 in R d , ( 4 
.8) eq.limiteq in the sense that, for any T > 0,

lim ε→0 E ˆT 0 ˆRd |U ε t (x) -u(x, t)| 2 ρ θ (x)dxdt = 0, where ρ θ (x) = exp{-θ(1 + |x| 2 ) 1/2 }.
The proof is a combination of the results of the previous sections. The first step consists in replacing the non-stationary in time process DV ε by the spacetime stationary random field Z constructed in Theorem 2.1. To keep the notation in the statement simpler, we introduce the maps a ε and a which are defined as 

a ε (p, x, t, ω) = a(p, x ε , t ε 2 , ω), (4.9) 
∂ t W ε = div a ε ( W ε , x, t, ω) in R d × (0, ∞) W ε 0 = u 0 in R d , ( 4 
.11) eq.tildeW with a ε given by (4.9). Then, for any θ > 0,

lim ε→0 sup t∈[0,T ] E ˆRd |W ε (x, t) -W ε (x, t)| 2 ρ θ (x)dx = 0. (4.12) uhzbqensd Proof. Let V ε (x, t)) = DV t ε 2 ( x ε ) and Z ε t (x) = Z t ε 2 ( x ε ).
Using the strong monotonicity and Lipschitz continuity of A as well as (4.6) and (4.7) we find, after some routine calculations, that, for some constants C > 0,

d dt E ˆRd (W ε t -W ε t ) 2 ρ θ dx ≤ -E ˆRd |D(W ε t -W ε t )| 2 ρ θ dx + CE ˆRd (W ε t -W ε t ) 2 ρ θ dx + CE ˆRd |DV ε t -Z ε t | 2 ρ θ dx .
Since DV and Z are stationary in space, we find

E ˆRd |DV ε t -Z ε t | 2 ρ θ dx ≤ C θ E ˆQ1 |DV ε -2 t (x) -Z ε -2 t (x)| 2 dx ,
with the right hand side bounded and converging, in view of (2.7), to 0 for t > 0.

We conclude using Gronwall's inequality.

The proof of Theorem 4.1. It now remains to show that (1.1) homogenizes.

On Ω we define the ergodic measure preserving group τ :

Z d × R × Ω → Ω by τ k,s ω = (ω l+k 0 (s + •), τ k,s ω 1 ) for any ω = (ω 0 , ω 1 ) = ((ω l 0 ) l∈Z d , ω 1 ) ∈ Ω = (C 0 (R, R d )) Z d × Ω 1 . Set a(p, x, t, ω) = A(p + Z t (x, ω 0 ), x, t, ω 1 ) -Z t (x, ω
) and note that a satisfies (3.5) and (3.6). Then, in view of Theorem 3.7, the vector field a is strongly monotone and Lipschitz continuous and the solution W ε of (4.11) converges, for all θ > 0, P-a.s. in L

2 ρ θ (R d × [0, T ]) and in L 2 ρ θ (R d × [0, T ] × Ω)
to the solution u of (4.8). Finally we return to U ε . In view of (4.4), for any θ > 0, we have

E ˆT 0 ˆRd |U ε t (x) -u(x, t)| 2 ρ θ (x)dxdt ≤ 2E ˆT 0 ˆRd |εV ε -2 t (ε -1 x)| 2 ρ θ (x)dxdt + 2E ˆT 0 ˆRd |W ε t (x) -W ε t (x)| 2 ρ θ (x)dxdt + 2E ˆT 0 ˆRd | W ε t (x) -u(x, t)| 2 ρ θ (x)dxdt .
In view of (2.10), Lemma 4.2 and Theorem 3.7, the right hand side of the inequality above tends to 0 as ε → 0.

Appendix A

We summarize here with proofs results about stationary gradients, which are needed in the paper. Some of them appear in the literature in different structures and with stronger assumptions.

The following is classical in the literature (see for instance the proof of Theorem 5.3 of [START_REF] Kosygina | Homogenization of Hamilton-Jacobi-Bellman equations with respect to time-space shifts in a stationary ergodic medium[END_REF]). We give a proof here because the environment has not exactly the same structure as in [START_REF] Kosygina | Homogenization of Hamilton-Jacobi-Bellman equations with respect to time-space shifts in a stationary ergodic medium[END_REF] and the maps here have lower regularity in time.

append.lem2 Lemma A.1. Assume that (Ω, F, P) be a probability space endowed with an ergodic group of measure preserving maps τ : Z d × R × Ω → Ω, and, for i = 1, . . . , d and t ∈ R, let G i and G t be respectively the σ-algebra of sets A ∈ F such that, for any k ∈ Z, P[A∆(τ (ke i ,0) A)] = 0, and the σ-algebra of sets A ∈ F such that, for any s ∈ R, P[A∆(τ (0,s) A)] = 0. If u : R d × R × Ω → R has space-time stationary weak derivatives Du and ∂ t u such that (u(x + ne 1 + z, t) -u(x + ne 1 , t))ξ(x, t)dxdt .

E[ ˆ Q 1 |Du| 2 ] < +∞, E[ ˆ Q 1 Du] = 0, E[ ˆ1 0 ∂ t u(•, t) 2 H -1 (Q 1 ) dt] < +∞, E[ ˆ1 0 ∂ t u(•, t), 1 H -1 (Q 1 )
The goal is to divide by n and let n → +∞. The left-hand side and the first term in the right-hand side have a limit given by the previous equality.

We show next that the two remaining terms after divided by n tend to 0. In order to use the time regularity of u, we need to regularize in space the indicatrix function of Q 1 . Let ζ δ ∈ C ∞ c (Q 1 ) with 1 -ζ δ L 2 (Q 1 ) ≤ δ. Then, using the stationarity of ∂ t u and the fact that ξ is G 1 -measurable, we find is P-a.s constant. Since it is also stationary in an ergodic environment, it must also be constant in ω and, as it has a zero expectation, it has to be equal to 0. The proof of the time derivative follows is similar and, hence, we omit it.

We discuss next the sublinearity of maps with stationary derivatives. The above result can also be formulated as follows. Let u ε (x, t, ω) = εu(x/ε, t/ε, ω). Then, for any fixed R > 0, P-a.s. and in expectation, lim ε→0 ˆQR |u ε (x, 0)| 2 dxdt = 0 and lim

ε→0 ˆ Q R |u ε (x, t)| 2 dxdt = 0.
Note that, here, the scaling is hyperbolic in contrast with what we did throughout the paper.

Proof. In view of Lemma A.1, we can apply Theorem 5.3 of [START_REF] Kosygina | Homogenization of Hamilton-Jacobi-Bellman equations with respect to time-space shifts in a stationary ergodic medium[END_REF] to the map x → u(x, 0) to infer that, for any R > 0 and P-a.s. In [START_REF] Kosygina | Homogenization of Hamilton-Jacobi-Bellman equations with respect to time-space shifts in a stationary ergodic medium[END_REF], the problem is stationary with respect to any (space) translation, while here the problem is Z d -stationary. However, a careful inspection of the proof of Theorem 5.3 in [START_REF] Kosygina | Homogenization of Hamilton-Jacobi-Bellman equations with respect to time-space shifts in a stationary ergodic medium[END_REF] shows that the result still holds in our setting, the key point of the proof in [START_REF] Kosygina | Homogenization of Hamilton-Jacobi-Bellman equations with respect to time-space shifts in a stationary ergodic medium[END_REF] being precisely the statement in Lemma A.1.

Let ξ R ∈ C ∞ c (R d ; [0, 1]) be such that ξ R = 1 in Q R , ξ R = 0 in R d+1 \Q c R+1
and Dξ R ∞ ≤ 2. Then, after an integration by parts in time, we have ˆR/2

0 ˆQR u ε (x, t)ξ R (x)dxdt = ˆQR u ε (x, 0)ξ R (x)dxdt - ˆR/2 0 (1 -t) ∂ t u ε (•, t), ξ R H -1 ,H 1 dt.
In view of (A.1), the first term in the right-hand side tends to 0 as ε → 0, while, since q(k, s, ω) = ∂ t u(•, t), 1 H -1 (Q 1 ),H 1 (Q 1 ) is stationary, the ergodic theorem also implies that the second term in the right-hand side has a P-a.s limit., which again does not depend on ω and, therefore, has to be zero since E[ ∂ t u, 1 H -1 ,H 1 ] = 0. It follows that, P-a.s., lim sup ε→0 ˆR/2 0 ˆQR u ε (x, t)ξ R (x)dxdt = 0.

Applying similar arguments on the time interval [-T, 0], we also find that, P-a.s.,

lim ε→0 ˆ Q R u ε (x, t)ξ(x)dxdt = 0. (A.2) lsekjcv
Next, we claim that there exists a constant C such that, P-a.s.,

lim sup ε→0 ˆ Q R (u ε (x, t)) 2 dxds ≤ C.
Indeed, set

u ε ξ R := ( ˆ Q R ξ R (x)dxdt) -1 ˆ Q R u ε (x, t)ξ R (x)dxdt,
and observe that a minor generalization of the classical Poincaré 's inequality yields, for some C R which depends on ξ R ,

ˆ Q R (u ε (x, t)) 2 dxdt ≤ 2 ˆ Q R (u ε (x, t) -u ε ξ R ) 2 dx + 2R d+1 u ε 2 ξ R ≤ C R [ ˆ Q R |Du ε (x, t)| 2 dxdt + ˆR/2 -R/2 ∂ t u ε (•, t) 2 H -1 (Q R ) dt] + 2R d+1 u ε 2 ξ R ,

  .10) monotone and |b(p) -b(q)| ≤ C 0 |p -q|. (1.11) Lip 2. The linear problem (1.4) sec:linearpb

  and, for each k, choose p δ k in the countable family E defined in subsection 3.4.2 and is such that |p k -p δ k | ≤ δ. The localizations of Dφ and Dχ ε are

Finally, we fixhomo1 3 . 4 . 5 .

 345 a smooth nonincreasing function ζ : [0, T ] → R such that ζ(0) = 1 and ζ(1) = 0.thm.The proof of Theorem 3.7. We prove that ξ = a(Du) in (3.41).

  .47) aoiuscn while using φρ θ ζ as a test function in (3.41) yields 0 = -

3. 4 . 6 .

 46 The proof of (3.45). The definition of D φ and D χ ε gives

E ˆ Q 1 ( 1 ( 1 ( 1 ( 1 ( 1 ( 1 ( 1 ( 1 (

 111111111 u(x + ne 1 + z, t + s) -u(x + ne 1 + z, t))ζ δ (x)ξ(x, t)dxdt= E ˆ1/2 -1/2 ˆs 0 ∂ t u(• + ne 1 + z, t + s ), ζ δ ξ(•, t) H -1 ,H 1 ds dt = E ˆ1/2 -1/2 ˆs 0 ∂ t u(• + z, t + s ), ζ δ ξ(•, t) H -1 ,H 1 ds dt , u(x + ne 1 + z, t + s) -u(x + ne 1 + z, t))ζ δ (x)ξ(x, t)dxdt = E ˆ Q u(x + z, t + s) -u(x + z, t))ζ δ (x)ξ(x, t)dxdt ,and, after letting δ → 0,E ˆ Q u(x + ne 1 + z, t + s) -u(x + ne 1 + z, t))ξ(x, t)dxdt = E ˆ Q u(x + z, t + s) -u(x + z, t))ξ(x, t)dxdt .Similarly, using the stationarity of Du, we getE ˆ Q u(x + ne 1 + z, t) -u(x + ne 1 , t))ξ(x, t)dxdt = E ˆ Q u(x + z, t) -u(x, t))ξ(x, t)dxdt . It follows that, for any (z, s) ∈ R d × R and any G 1 -measurable ξ, E ˆ Q ∂ x 1 u(x + z, t + s) -∂ x 1 u(x, t))ξ(x, t)dxdt = 0 Hence, the map (z, s) → E ˆ Q ∂ x 1 u(x + z, t + s)dxdt | G 1

  lem.appendix Lemma A.2. Let (Ω, F, P) and u : R d+1 × Ω → R be as in Lemma A.1. Then, P-a.s. and in expectation,lim R→∞ R -(d+2) ˆQR |u(x, 0)| 2 dxdt = 0 and lim R→∞ R -(d+3) ˆ Q R |u(x, t)| 2 dxdt.

  Assume (3.2), (3.5), and (3.6). For any p ∈ R d there exists a unique pair (θ p , w p ) ∈ H -1

	x × L 2 pot satisfying (3.17) and		
	θ p -div(a(w p + p, x, t, ω)) = 0 in H -1 x .	(3.23) eqthetaw
	Moreover, for all p, p ∈ R d ,			
	w p -w p	L 2	a |p -p |.	(3.24) eq.reguwp

m10 Lemma 3.6.

  .52) kujqhdbjsfnx

	Once we know (3.52), we can combine (3.50) and (3.51) to get
	lim sup
	ε→0

  W2Note that a is strongly monotone and Lipschitz continuous in the first variable, uniformly with respect to the other variables, and satisfies (3.7) (thanks to Lemma 2.2). We say that W

						.5) W
	where	a ε (p, x, t, ω) = a(p,	x ε	,	t ε 2 , ω),	(4.6) W1

and a(p, x, t, ω) = A(p + DV t (x, ω 0 ), x, t, ω 1 ) -DV t (x, ω 0 ). (4.7)

  ,H 1 (Q 1 ) dt] = 0 and ˆQ1 udx = 0 P -a.s., then, for any i = 1, . . . , d and any(z, t) ∈ R d × R, E ˆQ1 ∂ x i u(• + z, t) G i = 0 and E ∂ t u(• + z, t), 1 H -1 (Q 1 ),H 1 (Q 1 ) G t = 0.Proof. To fix the ideas we prove the result for i = 1. Fix (z, s) ∈ R d × R and let ξ : R d × R × Ω → R be bounded, stationary, and G 1 -measurable.For any n ∈ N large, we have ˆ∂ x 1 u(x + le 1 + re 1 + z, t + s)ξ(x, t)dxdtdrIt follows from the stationarity of ∂ x 1 u and the G 1 -measurability of ξ that (u(x + ne 1 + z, t + s) -u(x + ne 1 + z, t))ξ(x, t)dxdt

				(u(x + ne 1 + z, t + s) -u(x, t))ξ(x, t)dxdt
			Q 1	
			=	n-1 l=0 ˆ	ˆ Q 1 ˆ1 0
			+			(u(x + z, t + s) -u(x, t))ξ(x, t)dxdt.
				Q 1
	ˆ				
	E				
	Q 1 = nE	ˆ1 0	ˆ		
	Hence		lim n→∞	1 n	E	ˆ Q 1
	On the other hand, ˆ		
	E	(u(x + ne 1 + z, t + s) -u(x, t))ξ(x, t)dxdt =
		Q 1				ˆ
					E	(u(x + ne 1 , t) -u(x, t))ξ(x, t)dxdt
						Q 1 ˆ
						+ E
						Q 1 ˆ
						+ E
						Q 1

(u(x + ne 1 + z, t + s) -u(x, t))ξ(x, t)dxdt

Q 1 ∂ x 1 u(x + re 1 + z, t + s)ξ(x, t)dxdtdr + E ˆ Q 1 (u(x + z, t + s) -u(x, t))ξ(x, t)dxdt = nE ˆ Q 1 ∂ x 1 u(x + z, t + s)ξ(x, t)dxdt + E ˆ Q 1 (u(x + z, t + s) -u(x, t))ξ(x, t)dxdt ,

the last two lines following from the Z-periodicity of s → E [∂ x 1 u(x + se 1 + z, t + s)ξ(x, t)dxdt].

(u(x + ne 1 + z, t + s) -u(x, t))ξ(x, t)dxdt = E ˆ Q 1 ∂ x 1 u(x + z, t + s)ξ(x, t)dxdt .

Then, the ergodic Theorem and (A.2), give that, P-a.s.,

To summarize, we have shown that there exists Ω 0 ⊂ Ω on which, for every R > 0 and P-a.s., the family (u

. Since, as ε → 0, Du ε 0 and ∂ t u ε 0, u is a constant, which, in view of (A.2), must be zero. It follows that, as n → ∞ and in L 2 loc (R d+1 ), u εn → 0, and, therefore that, as ε → 0 and P-a.s., u ε → 0 in L 2 loc (R d+1 ), and, by the estimate above, in expectation. The claim for u ε (•, 0) follows similarly and with a simpler argument, hence, we omit it.