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1 Introduction

In this article we consider the regular and semiregular tilings of the Eucledian
plane by convex regular polygons. There are three regular tilings: made of
polyominoes with vertex con�guration (44), polyiamonds (36), polyhexes (63),
see Figure 1.

(a) polyominoes (b) polyiamonds (c) polyhexes

Figure 1: Three regular tilings.
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Our task will be to count horizontally convex (or row-convex) regular and
semiregular tilings with a given number of tiles. It is known that the number of
horizontally convex polynominoes composed by n squares follows the sequence
s1 = 1, s2 = 2, s3 = 6, s4 = 19, s5 = 61, s6 = 196, etc. [14] and the recurrent
relationship is

sn = 5sn−1 − 7sn−2 + 4sn−3, for n ≥ 5. (1)

The related generating function is

S(x) =

∞∑
n=1

snx
n =

x(1− x)3

1− 5x+ 7x2 − 4x3
. (2)

The recurrent relationship for the number of horizontally convex polyhexes is

hn = 6hn−1 − 10hn−2 + 7hn−3 − hn−4, for n ≥ 5 , (3)

with the generating function

H(x) =

∞∑
n=1

hnx
n =

x(1− x)3

1− 6x+ 10x2 − 7x3 + x4
, (4)

and the sequence looks like 1, 3, 11, 42, 162, 626, 2419, . . . [15].
The recurrent relationship and the generating function is known for the

number of horizontally convex polyiamonds as well:

tn = 3tn−1 − 4tn−3 + tn−4 + tn−5 + 3tn−6 − tn−7, for n ≥ 8 (5)

T (x) =

∞∑
n=1

tnx
n =

x(1− x)(2− x− 4x2 + 2x4 + 3x5)

1− 3x+ 4x3 − x4 − x5 − 3x6 + x7
. (6)

with the sequence 2, 3, 6, 14, 34, 84, 208, 515, 1272, . . . [16].

2 Semiregular tilings

There are eight semiregular tilings with vertex con�gurations (4, 82), (33, 42),
(32, 4, 3, 4), (3, 6, 3, 6), (34, 6), (3, 4, 6, 4), (3, 122), (4, 6, 12), see Figure 2.

3 Horizontally convex semiregular tilings

For counting the number of horizontally convex semiregular tilings we shall use
the technique similar to [3]. It is essential to de�ne the layered structure of
tilings. There are might be di�erent possibilities to do so, therefore the shape
and the number of tilings may be di�erent.

Without going deep into the details we assume that the de�nition of a hori-
zontally convex semiregular tilings is intuitively clear and very well corresponds
to the de�nition of horizontally convex regular tilings. That is each layer/row
is well connected.

To simplify the reasoning we may use a natural map between some complex
tilings and more simple brickwork. For example, there is the bijection between
hexagonal tilings and a very standard plain brickwork, see Figure 3a and [13].
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(a) (4, 82) (b) (33, 42) (c) (32, 4, 3, 4) (d) (3, 6, 3, 6)

(e) (34, 6) (f) (3, 4, 6, 4) (g) (3, 122) (h) (4, 6, 12)

Figure 2: Semiregular tilings.

(a) (b)

Figure 3: Map between tilings and rectangular plain brickwork.

Consider the tiling with the vertex con�guration (4, 82). It can be naturally
transformed into a plain brickwork composed by rectangles and squares, Fig-
ure 3b. Therefore, we can use the natural layered structure and related notion
of row-convexity, Figure 4.

(a)
(b) horizontally con-
vex

(c) not horizontally
convex

Figure 4: Tiling of type (4, 82).

Exercise 1. Find a di�erent layered structure for the tiling of type (4, 82).

Consider the tiling with the vertex con�guration (33, 42). There exists a
natural layered structure composed by a layer of squares and another layer of
triangles, Figure 5.

Exercise 2. Find other layered structures for the tiling of type (33, 42).
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(a)
(b) horizontally con-
vex

(c) not horizontally
convex

Figure 5: Tiling of type (33, 42).

Consider the tiling with the vertex con�guration (3, 4, 6, 4). There exists a
natural layered structure composed by two types of layers: one layer is composed
by a sequence of squares and hexagons, another layer is composed by a sequence
of squares and triangles, Figure 6.

(a)
(b) horizontally con-
vex

(c) not horizontally
convex

Figure 6: Tiling of type (3, 4, 6, 4).

Consider the tiling with the vertex con�guration (4, 6, 12). There exists a
natural layered structure composed by two types of layers: one layer is composed
by a sequence of squares and hexagons, another layer is composed by a sequence
of squares and octagons, Figure 7.

Consider the tiling with the vertex con�guration (32, 4, 3, 4). To see a natural
layered structure of this tiling we shall turn this tiling, compare Figure 2c and
Figure 8.

We shall turn the tiling with the vertex con�guration (34, 6) on Figure 2e in
order to be able to see a natural layered structure of it, Figure 9.

Consider the tiling with the vertex con�guration (3, 6, 3, 6). It can be decom-
posed into equally shaped row layers, see Figure 10a. Nevertheless, the notion
of a layer continuity requires some additional considerations which we will not
be discussing here leaving a reader to think about it.

The last tiling in the list is of type (3, 122), Figure 2g. It looks like it is
impossible to determine the layered structure for it. However there exists a
bijection between tiling of type (3, 122) and the one of type (3, 6, 3, 6), Fig-
ure 10b. Therefore, the problem of counting the number of possible tilings of
(3, 122) is somehow equivalent to the problem of counting the number of tilings
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(a)
(b) horizontally con-
vex

(c) not horizontally
convex

Figure 7: Tiling of type (4, 6, 12).

(a)
(b) horizontally con-
vex

(c) not horizontally
convex

Figure 8: Tiling of type (32, 4, 3, 4).

for (3, 6, 3, 6).

4 Recurrent relationship for the tiling of type

(4, 82) with combinatorial proof

Let G denotes the set of all possible horizontally convex tilings of type (4, 82).
Let Gn be a subset of G with the number of tiles n, let gn = |Gn|.

Theorem 1. For n ≥ 6 the following equality holds

gn = 5gn−1 − 3gn−2 − 5gn−3 + 7gn−4 − gn−5. (7)

We shall establish the proof by a series of Lemmas. First of all, let us de�ne
several subsets of G based on the shape of the top layer, Figure 11:

a) A: the top layer consists of a single square;

b) B: the top layer the number of octagons is larger than the number of
squares by 1;

c) C: the top layer contains at least one octagon and the number of octagons
is less than the number of squares by 1;

d) D or D∗: the top layer contains the equal number of octagons and squares,
with the rightmost �gure either square or octagon respectively.
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(a)
(b) horizontally con-
vex

(c) not horizontally
convex

Figure 9: Tiling of type (34, 6).

направляющие

(a) (3, 6, 3, 6) (b) mapping (3, 122) to (3, 6, 3, 6)

Figure 10: Tilings (3, 6, 3, 6) and (3, 122).

Consider also the set H = B ∪ C ∪ D ∪ D∗, which contains at least one
octagon on its top layer. Note that G = A ∪H.

Denote by An, Bn, Cn, Dn, D
∗
n and Hn the subsets of A, B, C, D, D∗ è

H, containing he number of tiles n. Also an = |An|, bn = |Bn|, cn = |Cn|,
dn = |Dn|, d∗n = |D∗n| and hn = |Hn|. Due to the symmetry we note that
dn = d∗n.

From the above de�nitions follows

hn = bn + cn + dn + d∗n = bn + cn + 2dn, (8)

gn = an + bn + cn + dn + d∗n = an + hn. (9)

Lemma 1. For n ≥ 2 the following equalities hold

a) dn = bn−1 , b) cn = dn−1 .

Proof. a) If we add to a tiling from the set B at the top layer at the right
one square then the resulting tiling will be from the set D. This process can be
reversed, Figure 12. Therefore dn = bn−1 for n ≥ 2.

b) Similar reasoning holds for adding the square to the left. �

Taking into account the Lemma 1, for n ≥ 3 the equality (8) can be written
as

hn = bn + 2bn−1 + bn−2. (10)

In order to simplify the following reasoning we shall take advantage of the
bijection between tiling of the type (4, 82) and the brickwork from Figure 3b.
The notion of octagons will be replaced by bricks of size 1× 3.

We shall introduce subsets of A, Figure 13.
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A B C D D*

Figure 11: The subsets of the set G.

+

Figure 12: Relationship between sets B and D.

a) I: at the sub-row of the top layer the number of bricks (octagons) is larger
than the number of squares by one;

b) J : the sub-row of the top layer contains at least one brick and the number
of bricks is less than the number of squares by one;

c) E and E∗: at the sub-row of the top layer the number of bricks (octagons)
is equal to the number of squares, either starting or ending by a brick.

Similarly to the above we denote in = |In|, jn = |Jn|, en = |En|, e∗n = |E∗n|.

I: J: E: E*:

Figure 13: Subsets of A.

Due to the symmetry en = e∗n. It is clear that for n ≥ 2

an = in + jn + en + e∗n = in + jn + 2en. (11)

Lemma 2. For n ≥ 2 the following equalities hold

a) en = in−1 , b) jn = en−1 .

Proof. a) See Figure 14).
b) Similar reasoning as for the case a). �

Taking into account the above result we can rewrite (11) for n ≥ 3 as

an = in + 2in−1 + in−2. (12)

We shall de�ne more subsets, see Figure 15. Let P denotes the subset of
B, such as the rightmost brick of the top layer is placed on top of the leftmost
element (brick or square) of the sub-row.
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Figure 14: Relationship between En and In−1.

Let Q denote the subset of I, such that none of the squares of the top layer
are placed on top of the rightmost brick of the sub-row.

Let R denotes the subset of Q, such that the rightmost brick of the sub-row
is placed on the leftmost element of the sub-sub-row, tilings from the set R
contain at least three layers.

On the Figure 15 we mark by �xxx� the position where it prohibited to place
a square. As usual, pn = |Pn|, qn = |Qn|, rn = |Rn|.

P:

xxx
Q:

R:
xxx

xxx

Figure 15: Additional subsets.

Lemma 3. For n ≥ 3 holds pn = pn−2 + gn−1.

Proof. If the top layer of tiling from Pn contains at least 3 elements, then
taking away a brick and a square we obtain a tiling from Pn−2, see Figure 16. If
there is only one brick at the top layer of Pn, then this brick should be located
exactly on top of the leftmost element of the sub-row. Taking away this brick
we obtain a tiling from Gn−1. This procedure can be inverted. �

+ +

Figure 16: See Lemma 3.

Lemma 4. For n ≥ 3 holds in = qn + bn−1.

Proof. The set In\Qn contains tilings such that the only square from the top
layer is placed on top of the rightmost brick of the sub-row. If we take away
this square, we obtain a tiling from the set Bn−1, see Figure 17. This procedure
can be inverted. �

Lemma 5. For n ≥ 3 holds qn = rn + in−2.
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Figure 17: See Lemma 4.

Proof. The set Qn\Rn contains tilings such that it is possible to take away a
square and a brick at the right side of the sub-row and to obtain a tiling from
the set In−2, see Figure 18. This procedure can be inverted. �

+
xxx

Figure 18: See Lemma 5.

Lemma 6. For n ≥ 4 holds rn = rn−2 + pn−3.

Proof. If the square from the top layer of tiling from the set Rn is placed
exactly on top of the leftmost brick then it is possible to take away that top
square and the leftmost brick with square from the sub-row in order to obtain a
tiling from the set Pn−3. If the square from the top layer is not placed on top of
the leftmost brick of the sub-row, then it is possible to take away the leftmost
brick and square in order to obtain a tiling from the set Rn−2, see Figure 19.
This procedure can be inverted. �

xxx

+
xxx

xxx

+
xxx

Figure 19: See Lemma 6.

Lemma 7. For n ≥ 4 holds bn = pn + bn−2 + an.

Proof. The top layer of a tiling from the set B contains odd number of elements.
Consider a tiling from the set Bn\Pn. If the top layer contains tree or more
elements, then it is possible to take away the rightmost square and brick in
order to obtain a tiling from the set Bn−2, see Figure 20a. This procedure can
be inverted.

Consider a tiling from the set Bn\Pn such that the top layer contains a
single brick. This tiling does not belong to the set Pn, therefore the square just
below this brick is not the leftmost element of the sub-row. There should be a
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brick at the sub-row and an empty space just on top of it where we can place a
square instead of the brick, see Figure 20b. The resulting tiling is from the set
An. Therefore there is a bijection between An and Bn\Pn. Which means that
for n ≥ 4 holds bn − pn = bn−2 + an. �

+

(a) top layer contains three or more elements

(b) top layer contains a single brick

Figure 20: See Lemma 7.

Proof of the theorem 1. Let us put together the obtained recurrent relations:

gn = an + hn, (9)
hn = bn + 2bn−1 + bn−2, (10)
an = in + 2in−1 + in−2, (12)
pn = pn−2 + gn−1, Lemma 3
in = qn + bn−1, Lemma 4
qn = rn + in−2, Lemma 5
rn = rn−2 + pn−3, Lemma 6
bn = pn + bn−2 + an, Lemma 7

=⇒



gn = an + hn,
hn = bn + 2bn−1 + bn−2,
an = in + 2in−1 + in−2,

pn − pn−2 = gn−1,
in − in−2 = rn + bn−1,
rn − rn−2 = pn−3,
bn − bn−2 = pn + an.

For n ≥ 4
hn − hn−1 = pn + an + pn−1 + an−1.

Therefore
gn − gn−1 = 2an + pn + pn−1.

Then
gn − gn−1 − (gn−1 − gn−2) = 2an − 2an−1 + gn−1.

Finally, for n ≥ 4
gn − 3gn−1 + gn−2 = 2an − 2an−1. (13)

On the other hand

an − an−1 = rn + bn−1 + rn−1 + bn−2.

Therefore, for n ≥ 5

an − an−1 − (an−2 − an−3) = pn−3 + pn−4 + pn−1 + an−1 + pn−2 + an−2.

Then
an − 2an−1 − 2an−2 + an−3 = pn−1 + pn−2 + pn−3 + pn−4.

Following

an−2an−1−2an−2+an−3−(an−1−2an−2−2an−3+an−4) = pn−1−pn−3+pn−3−pn−5 = gn−2+gn−4.
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Obtaining
gn−2 + gn−4 = an − 3an−1 + 3an−3 − an−4.

The right hand side can be manipulated using (13). Then for n ≥ 6

gn−2 + gn−4 = an − an−1 − 2(an−1 − an−2)− 2(an−2 − an−3) + an−3 − an−4

=
gn − 3gn−1 + gn−2

2
− (gn−1 − 3gn−2 + gn−3)− (gn−2 − 3gn−3 + gn−4) +

gn−3 − 3gn−4 + gn−5
2

=
gn − 5gn−1 + 5gn−2 + 5gn−3 − 5gn−4 + gn−5

2
.

Which means

2gn−2 + 2gn−4 = gn − 5gn−1 + 5gn−2 + 5gn−3 − 5gn−4 + gn−5.

Finally
gn = 5gn−1 − 3gn−2 − 5gn−3 + 7gn−4 − gn−5.

This completes the proof of the theorem 1. �

The Table 1 contains �rst few values for the sequences used in the Theorem 1.

n a b c d i j e p q r h g

1 1 1 0 0 0 0 0 0 0 0 1 2

2 1 3 0 1 1 0 0 2 0 0 5 6

3 5 12 1 3 3 0 1 6 0 0 19 24

4 20 49 3 12 13 1 3 26 1 0 76 96

5 83 197 12 49 54 3 13 102 5 2 307 390

6 337 802 49 197 216 13 54 416 19 6 1245 1582

7 1370 3251 197 802 884 54 216 1684 82 28 5052 6422

8 5559 13199 802 3251 3575 216 884 6838 324 108 20503 26062

9 22561 53558 3251 13199 14527 884 3575 27746 1328 444 83207 105768

Table 1: First few elements from the sequences of the Theorem 1.

Exercise 3. Using the methodology of Theorem 1, prove the formula (3) for
the number of horizontally convex polyhexes.

5 Some auxiliary calculations using power series

Exercise 4. Using de�nitions, prove the formulas for the following in�nite
geometric progressions

a)

∞∑
k=1

vk =
v

1− v
, b) (2 + 2u)

∞∑
k=1

u2k =
2u2

1− u
.

Exercise 5. Using integration and di�erentiation of formal power series prove

a)

∞∑
k=1

(k−1)vk =
v2

(1− v)2
, b)

∞∑
k=1

kvk =
v

(1− v)2
, c)

∞∑
k=1

k(k−1)vk =
2v2

(1− v)3
.
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Exercise 6. Using results from exercises 4 and 5 prove

a)

∞∑
k=1

kukvk−1 =
u

(1− uv)2
, b)

∞∑
k=1

(kv + 1)ukvk−1 =
u+ uv − u2v
(1− uv)2

,

c)

∞∑
k=1

k2ukvk−1 =
u+ u2v

(1− uv)3
, d)

∞∑
k=1

k(kv + 1)ukvk−1 =
u(1 + v − uv + uv2)

(1− uv)3
.

Exercise 7. Prove the following formulas

a)

∞∑
k=1

(ku+ (2 + u)(k − 1))u2k =
u3

(1− u)2
, b)

∞∑
k=1

(u+2k+2uk)u2k =
u2(2− u)
(1− u)2

,

c)

∞∑
k=1

(
k2u+ (k − 1)(2k + u(k + 1))

)
u2k =

u3(1 + 2u− u2)
(1 + u)(1− u)3

.

Let us de�ne a generating function of three variables

H(u, v, y) =
∑
p,q,m

h(p, q,m)upvqym .

The value of the partial derivative with respect of variable y at point y = 1 we
denote by

χ(u, v) =
∂

∂y
H(u, v, y)

∣∣∣∣
y=1

.

The formal term by term di�erentiation of the following series results in

∂

∂y

(
ykH(u, v, y)

)∣∣∣∣
y=1

=
∂

∂y

(∑
p,q,m

h(p, q,m)upvqym+k

)∣∣∣∣∣
y=1

=
∑
p,q,m

(m+ k)h(p, q,m)upvq

=
∑
p,q

(∑
m

(m+ k)h(p, q,m)

)
upvq ,

for all integer k ≥ 0.
On the other hand using the rule of product di�erentiation

∂

∂y

(
ykH(u, v, y)

)∣∣∣∣
y=1

= kH(u, v, 1) + χ(u, v).

Therefore for all integer k ≥ 0

kH(u, v, 1) + χ(u, v) =
∑
p,q

(∑
m

(m+ k)h(p, q,m)

)
upvq. (14)

In particular for k = 0

χ(u, v) =
∑
p,q

(∑
m

mh(p, q,m)

)
upvq. (15)
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6 Generating functions for the number of hori-

zontally convex tilings of type (4, 82)

Theorem 2. The number of horizontally convex tilings of type(4, 82) can be
computed using the following generating functions

G(x) =
∑
n

gn x
n =

2x(1− x)3(1 + x)

1− 5x+ 3x2 + 5x3 − 7x4 + x5
,

and

G(u, v, 1) =
(1− uv)3(u+ v + 2uv)

1− 2u− 9uv + 4u2v − 4uv2 − u3v + 14u2v2 − uv3 − 6u3v2 + 4u2v3 − 13u3v3 − 4u3v4 + u4v4
,

where x is the total number of tiles (squares and octagons), u � the number of
octagons, v � the number of squares.

In order to prove this theorem we shall use the subsets A, B, C, D, D∗, H
and G de�ned in Section 4. In addition we denote a(p, q, 0), b(p, q,m), c(p, q,m),
d(p, q,m) and d∗(p, q,m) � the number of tilings in each subset A, B, C, D è
D∗ correspondingly, which contain p octagons and q squares, and the top layer
contains m octagons.

Following the de�nitions we note that the top layer of a tiling from the set
B contains m octagons and m− 1 squares for m ≥ 1. The top layer of a tiling
from the set C contains m octagons and m+1 squares for m ≥ 1. The top layer
of a tiling from the set D or D∗ contains m octagons and m squares for m ≥ 1,
also d(p, q,m) = d∗(p, q,m) due to symmetry, which also means that generating
functions related to the sets D and D∗ are the same.

Let us consider the following generating functions of three variables with
u counting the number of octagons, v counting the number of squares and y
counting the number of octagons at the top layer.

A(u, v, y) =
∑
p,q

a(p, q, 0)upvq,

B(u, v, y) =
∑
p,q,m

b(p, q,m)upvqym,

C(u, v, y) =
∑
p,q,m

c(p, q,m)upvqym,

D(u, v, y) = D∗(u, v, y) =
∑
p,q,m

d(p, q,m)upvqym.

Since A(u, v, y) does not depend on y, then A(u, v, y) = A(u, v, 1) and

∂

∂y
A(u, v, y) = 0.

Lemma 8. For all p ≥ 1, q ≥ 0, m ≥ 1 holds

b(p, q,m) = d(p, q + 1,m) = c(p, q + 2,m).

Proof. See the proof of Lemma 1, Figure 12. �
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From Lemma 8 follows

D(u, v, y) = vB(u, v, y), C(u, v, y) = v2B(u, v, y).

Then

H(u, v, y) = B(u, v, y)+C(u, v, y)+D(u, v, y)+D∗(u, v, y) = (1+2v+v2)B(u, v, y),
(16)

G(u, v, y) = A(u, v, y) +H(u, v, y) = A(u, v, y) + (1 + 2v + v2)B(u, v, y).

Note that in our reasoning we do not need to �nd the exact expression for three-
variables function G(u, v, y). It is su�cient to �nd the value of this function at
y = 1. As before, denote

χ(u, v) =
∂

∂y
H(u, v, y)

∣∣∣∣
y=1

.

Proof of Theorem 2. First, we shall obtain the recurrent relations for
a(p, q,m), b(p, q,m), h(p, q,m) and then we shall compose the generating func-
tions.

Let us start with the set A. Take a square and place it on top to some initial
tiling of type G. This type of operation is impossible if the initial tiling was
from the set A. If the initial tiling was from the set H and its top layer contains
already m octagons, then this type of operation can produce m di�erent tilings
from A. Therefore, for any p and q

a(p, q + 1, 0) =
∑
m

mh(p, q,m).

For a single square we have a(0, 1, 0) = 1. And �nally,

A(u, v, y) = v + v

(
∂H(u, v, y)

∂y

)∣∣∣∣
y=1

= v + v χ(u, v). (17)

Taking into account (15), obtain

v + vχ(u, v) = v +
∑
p,q

(∑
m

mh(p, q,m)

)
upvq+1

= v +
∑
p,q

a(p, q + 1, 0)upvq+1

= A(u, v, y).

Let us work now with the set B. Consider a tiling from the set B which
consists of a single row with k octagons and k − 1 squares. This row can be
placed on top of some initial tiling of type G. If the initial tiling was from the
set A, then this operation can be produce k di�erent tilings. If the initial tiling
was from the set H and its top layer contain already m octagons, then we are
able to produce m + k di�erent tilings. This way it is possible to produce any
tiling from the set B but the ones that are made of a single row. Therefore, for
any p and q holds

b(p+ k, q + k − 1, k) = k a(p, q, 0) +
∑
m

(m+ k)h(p, q,m).
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And for the tilings from B made of a single row we have b(k, k − 1, k) = 1.
Using (14), obtain

B(u, v, y) =
∑
p,q,m

b(p, q,m)upvqym

=
∑
k

b(k, k − 1, k)ukvk−1yk +
∑
p,q,k

b(p+ k, q + k − 1, k)up+kvq+k−1yk

=

∞∑
k=1

ukvk−1yk +

∞∑
k=1

ukvk−1yk

(∑
p,q

(
ka(p, q, 0) +

∑
m

(m+ k)h(p, q,m)

)
upvq

)

=

∞∑
k=1

ukvk−1yk +

∞∑
k=1

ukvk−1yk(kA(u, v, 1) + kH(u, v, 1) + χ(u, v)) .

From (17) follows

B(u, v, y) =
∞∑
k=1

ukvk−1yk +
∞∑
k=1

ukvk−1yk(kv + kvχ(u, v) + kH(u, v, 1) + χ(u, v))

= H(u, v, 1)

∞∑
k=1

kukvk−1yk + (1 + χ(u, v))

∞∑
k=1

(kv + 1)ukvk−1yk .

Taking into account (16) we obtain some relations for generating function
H(u, v, y)

H(u, v, y)

1 + 2v + v2
= H(u, v, 1)

∞∑
k=1

kukvk−1yk+(1+χ(u, v))

∞∑
k=1

(kv+1)ukvk−1yk. (∗)

From here we can compose a system of equations for H(u, v, 1) and χ(u, v). The
�rst equation can be obtained by substituting y = 1 in (∗). The second equation
can be obtaned by di�erentiation of (∗) with relation to y and substituting y = 1.

H(u, v, 1)

(1 + v)2
= H(u, v, 1)

∞∑
k=1

kukvk−1 + (1 + χ(u, v))

∞∑
k=1

(kv + 1)ukvk−1,

χ(u, v)

(1 + v)2
= H(u, v, 1)

∞∑
k=1

k2ukvk−1 + (1 + χ(u, v))

∞∑
k=1

k(kv + 1)ukvk−1.

Now we shall use the computations made in Exercise 6. The system of equations
can be rewritten as

H(u, v, 1)

(
1

(1 + v)2
− u

(1− uv)2

)
= (1 + χ(u, v))

u+ uv − u2v
(1− uv)2

,

(1 + χ(u, v))

(
1

(1 + v)2
− u(1 + v − uv + uv2)

(1− uv)3

)
= H(u, v, 1)

u+ u2v

(1− uv)3
+

1

(1 + v)2
.

From the �rst equation obtain

1 + χ(u, v) =
H(u, v, 1)

(
(1− uv)2 − u(1 + v)2

)
(1 + v)2(u+ uv − u2v)

. (∗∗)
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Substituting this relation into the second equation and performing some
technical calculations we obtain

H(u, v, 1) =
(1− uv)2(1 + v)2(u+ uv − u2v)

1− 2u− 9uv + 4u2v − 4uv2 − u3v + 14u2v2 − uv3 − 6u3v2 + 4u2v3 − 13u3v3 − 4u3v4 + u4v4
.

From (17) and (∗∗) follows

A(u, v, y) =
v(1− uv)2(1− u− 4uv − uv2 + u2v2)

1− 2u− 9uv + 4u2v − 4uv2 − u3v + 14u2v2 − uv3 − 6u3v2 + 4u2v3 − 13u3v3 − 4u3v4 + u4v4
.

Recall that G(u, v, 1) = A(u, v, 1) +H(u, v, 1), then

G(u, v, 1) =
(1− uv)3(u+ v + 2uv)

1− 2u− 9uv + 4u2v − 4uv2 − u3v + 14u2v2 − uv3 − 6u3v2 + 4u2v3 − 13u3v3 − 4u3v4 + u4v4
.

Let u = v = x, then

H(x) =
x(1− x)2(1 + x)(1 + x− x2)
1− 5x+ 3x2 + 5x3 − 7x4 + x5

,

A(x) =
x(1− x)2(1 + x)(1− 3x+ x2)

1− 5x+ 3x2 + 5x3 − 7x4 + x5
,

B(x) =
x(1− x)2(1 + x− x2)

(1 + x)(1− 5x+ 3x2 + 5x3 − 7x4 + x5)
,

G(x) =
∑
n

gn x
n =

2x(1− x)3(1 + x)

1− 5x+ 3x2 + 5x3 − 7x4 + x5
.

This �nishes the proof of the theorem. �

We use a mathematical software, for example [17], to obtain the power series
of two variable based on the above generating functions

A(u, v, 1) = v + uv + 2u2v + 3uv2 + 4u3v + 13u2v2 + 3uv3 + 8u4v + 41u3v2 + 33u2v3 + uv4 + . . .

G(u, v, 1) = u+ v + 2u2 + 4uv + 4u3 + 14u2v + 6uv2 + 8u4 + 42u3v + 42u2v2 + 4uv3

+ 16u5 + 113u4v + 192u3v2 + 68u2v3 + uv4 + . . .

Similarly

A(x) = x+ x2 + 5x3 + 20x4 + 83x5 + 337x6 + 1370x7 + 5559x8 + 22561x9 + 91554x10 + . . .

G(x) = 2x+ 6x2 + 24x3 + 96x4 + 390x5 + 1582x6 + 6422x7 + 26062x8 + 105768x9 + 429228x10 + . . .

These coe�cients are obviously the same as in Table 1. It is easy to obtain
now another proof of Theorem 1.
Proof of Theorem 1, as Corollary from Theorem 2. Using Theorem 2,
for G(x) holds

(1− 5x+ 3x2 + 5x3 − 7x4 + x5)
∑
n

gn x
n = 2x(1− x)3(1 + x).

Since the right hand side is a polynomial, then the left hand side should be the
same polynomial. Therefore the sequence gn follows the recurrent relation of
the 5th order:

gn+5 = 5gn+4 − 3gn+3 − 5gn+2 + 7gn+1 − gn. �
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The characteristic equation for the above recurrent relation is (see [7])

x5 − 5x4 + 3x3 + 5x2 − 7x+ 1 = 0.

This equation has real roots and the largest root is xmax ≈ 4, 058206109671.
Since this root is not a root of the numerator of the generating function, then

we can obtain the following asymptotic boundary 4.0582n ≤ gn ≤ 4.05821n.
Let us point onto the particular substitution v = 1,

G(u, 1, 1) =
(1− u)3(1 + 3u)

1− 16u+ 22u2 − 24u3 + u4
=
∑
n

wn u
n.

The term wn is a number of horizontally convex tilings of type (4, 82) containing
n octagons. We assume that w0 = 1 corresponds to the case of a single square.
The �rst few values in this sequence are w1 = 16, w2 = 228, w3 = 3328,
w4 = 48612, w5 = 710032. This sequence satis�es the recurrent relation of the
4th order:

wn+4 = 16wn+3 − 22wn+2 + 24wn+1 − wn ,

with the characteristic equation

u4 − 16u3 + 22u2 − 24u+ 1 = 0.

This equation has real roots and the largest root is umax ≈ 14.6059427255653.
The asymptotic boundary is 14.6059n ≤ wn ≤ 14.606n

7 Generating functions for the number of hori-

zontally convex tilings of type (33, 42)

Denote by F the set of all possible horizontally convex tilings of type (33, 42)
and by Fn the subset of F , such that the number of elements (triangles and
squares) is n. Also denote fn = |Fn|.

In order to simplify the announce of the theorem let us introduce the follow-
ing polynomials of two variables

S(u,v) = 2u+ v − 4u2 − 9uv − 3v2 + 17u2v + 17uv2 + 3v3 + 4u4 − 3u3v − 26u2v2 − 15uv3 − v4

− 2u5 − 17u4v − 4u3v2 + 17u2v3 + 5uv4 + 9u5v + 35u4v2 + 15u3v3 − 6u2v4 − 5u5v2 − 29u4v3

− 4u3v4 − 9u6v2 − 11u5v3 + 9u4v4 + u7v2 + 10u6v3 + 3u5v4 + 4u7v3 − 3u6v4 − u7v4,

R(u,v) = 1− 3u− 4v + 2u2 + 12uv + 6v2 + 2u3 − 10u2v − 18uv2 − 4v3 − 3u4 − 6u3v

+ 12u2v2 + 12uv3 + v4 + u5 + 12u4v + 16u3v2 − 6u2v3 − 3uv4 − 4u5v − 16u4v2 − 14u3v3

+ 2u2v4 − 4u5v2 + 8u4v3 + 2u3v4 + 4u6v2 + 8u5v3 − u4v4 − u6v3 − u5v4 − u7v3.

Theorem 3. Generating functions for the number of horizontally convex tiles
of type (33, 42) are

F (x) =
∑
n

fn x
n =

x(1− x)(3− 13x+ 24x2 − 17x3 − 18x4 + 35x5 − 3x6 − 14x7 + x9)

1− 7x+ 20x2 − 30x3 + 16x4 + 20x5 − 32x6 + 6x7 + 11x8 − 2x9 − x10
,
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and

F (u, v, 1) =
S(u, v)

R(u, v)
,

where S(u, v) and R(u, v) are de�ned just above, the variable u counts the num-
ber of triangles in given tiling, v � the number of squares.

Following the methodology we developed in previous sections let us de�ne
six subsets of F depending on the shape of the top layer, refer to Figure 21.

A B C D D* E

Figure 21: The subsets of F .

Let us de�ne the set H as a union of B, C, D and D∗. Therefore the set F
is a union of A, H and E.

Proof of Theorem 3. We shall be using some helpful functions of three
variables (u, v, y), where u counts the number of triangles, v � number of squares,
y � the number of free slots at the top layer, that is the length of the top side
of top layer assuming the side length of an element equals to 1.

These functions a(p, q, 0), b(p, q,m), c(p, q,m), d(p, q,m), d∗(p, q,m) and
e(p, q,m) counts the number of elements in their corresponding sets. Remark
that due to symmetry d(p, q,m) = d∗(p, q,m). Let us look into more details:

A(u, v, y) =
∑
p,q

a(p, q, 0)upvq ,

B(u, v, y) =
∑
p,q,m

b(p, q,m)upvqym ,

C(u, v, y) =
∑
p,q,m

c(p, q,m)upvqym ,

D(u, v, y) = D∗(u, v, y) =
∑
p,q,m

d(p, q,m)upvqym ,

E(u, v, y) =
∑
p,q,m

e(p, q,m)upvqym .

Obviously, A(u, v, y) does not depend on y (the top side length is zero).
Therefore

A(u, v, y) = A(u, v, 1) and
∂

∂y
A(u, v, y) = 0.

Lemma 9. For all p ≥ 1, q ≥ 0, m ≥ 0 holds

a) d(p+ 1, q,m+ 1) = a(p, q, 0) + b(p, q,m)

b) c(p+ 2, q,m+ 2) = a(p, q, 0) + b(p, q,m)

Proof. a) If we add a triangle of the type 5 to the right of the top layer of a
tiling of type A or B the we obtain a tiling of type D. The top side length will
increase by 1. This operation can be inverted. Therefore, for all p ≥ 1, q ≥ 0,
m ≥ 0 holds d(p+ 1, q,m+ 1) = a(p, q, 0) + b(p, q,m).

18
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Figure 22: See Lemma 9.

b) If we add two triangles of type 5 one to the right and another to the left
to the top layer of a tiling of type A or B, then the obtained tiling will be
from the set C, Figure 22. The top side length will be increased by 2. This
operation can be inverted. Therefore, for all p ≥ 1, q ≥ 0, m ≥ 0 holds
c(p+ 2, q,m+ 2) = a(p, q, 0) + b(p, q,m). �

From Lemma 9a) follows

D(u, v, y) = uy(A(u, v, y) +B(u, v, y)).

Taking into account the fact that the triangle5 corresponds to the monomial
uy, from Lemma 9b) follows

C(u, v, y) = uy + u2y2(A(u, v, 1) +B(u, v, y)) = uy + uyD(u, v, y).

Since H(u, v, y) = B(u, v, y) + C(u, v, y) +D(u, v, y) +D∗(u, v, y), then

H(u, v, y) = uy +B(u, v, y) + (2 + uy)D(u, v, y) , (18)

F (u, v, y) = A(u, v, y) +H(u, v, y) + E(u, v, y) . (19)

Recall that we do not need to construct the complete expression for F (u, v, y)
as a function of three variables, it is su�cient to �nd this expression for y = 1,
i.e. F (u, v, 1).

Let us introduce the following notation for the value of partial derivative of
E(u, v, y) for y = 1

∂E(u, v, y)

∂y

∣∣∣∣
y=1

= ε(u, v).

In order to construct a tiling that belongs to the set A we take the triangle
4 and place it to the top of some initial tiling. This is only possible for the
initial tiling from the set E. Therefore, for all p, q holds

a(p+ 1, q, 0) =
∑
m

me(p, q,m).

For a single triangle 4 we have a(1, 0, 0) = 1. Finally,

A(u, v, 1) = A(u, v, y) = u+ u

(
∂E(u, v, y)

∂y

)∣∣∣∣
y=1

= u+ u ε(u, v). (†)

Recalling (15), obtain

u+ u ε(u, v) = u+
∑
p,q

(∑
m

me(p, q,m)

)
up+1vq

= u+
∑
p,q

a(p+ 1, q, 0)up+1vq = A(u, v, y) .
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Let us construct a tiling from the set B. Let us take a single row tiling from
B with top side length k (and bottom side length k + 1). Let us place it on
top of some initial tiling from F in order to create a new tiling of F . This is
possible only if the initial tiling belongs to the set E. If this initial tiling has
the top side length m, then we are able to produce m+k new tilings. This way,
we are able to produce any tiling from B but a single-row tiling. Therefore, for
all p, q holds

b(p+ 2k + 1, q, k) =
∑
m

(m+ k)e(p, q,m).

And for a single-row tiling of B holds b(2k + 1, 0, k) = 1. Using (14), obtain

B(u, v, y) =
∑
p,q,m

b(p, q,m)upvqym

=
∑
k

b(2k + 1, 0, k)u2k+1yk +
∑
p,q,k

b(p+ 2k + 1, q, k)up+2k+1vqyk

=

∞∑
k=1

u2k+1yk +

∞∑
k=1

u2k+1yk

(∑
p,q

(∑
m

(m+ k)e(p, q,m)

)
upvq

)

=

∞∑
k=1

u2k+1yk +

∞∑
k=1

u2k+1yk(kE(u, v, 1) + ε(u, v)) .

Therefore,

B(u, v, y) = (1 + ε(u, v))

∞∑
k=1

u2k+1yk + E(u, v, 1)

∞∑
k=1

ku2k+1yk. (‡)

Let us construct a tiling from the set D. Let us take a single-row tiling from
D with the top side length k and place it on top of some initial tiling in order
to construct a new tiling from F . This is only possible for the initial tiling from
the set E, and if the initial tiling has the top side length m than we are able to
produce m+ k − 1 new tilings. For all p, q holds

d(p+ 2k + 1, q, k) =
∑
m

(m+ k − 1)e(p, q,m).

For a single-row tiling from D holds d(2k, 0, k) = 1. Using (14), obtain

D(u, v, y) =
∑
p,q,m

d(p, q,m)upvqym

=
∑
k

d(2k, 0, k)u2kyk +
∑
p,q,k

d(p+ 2k, q, k)up+2kvqyk

=

∞∑
k=1

u2kyk +

∞∑
k=1

u2kyk

(∑
p,q

(∑
m

(m+ k − 1)e(p, q,m)

)
upvq

)

=

∞∑
k=1

u2kyk +

∞∑
k=1

u2kyk((k − 1)E(u, v, 1) + ε(u, v)) .
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Therefore,

D(u, v, y) = (1 + ε(u, v))

∞∑
k=1

u2kyk + E(u, v, 1)

∞∑
k=1

(k − 1)u2kyk. (††)

Let us construct a tiling from the set E. Let us take a single-row tiling from
E with the top side length k and place it on top of some initial tiling in order
to construct a new tiling from F . This is only possible for the initial tiling from
the set H, and if the initial tiling has the top side length m than we are able to
produce m+ k − 1 new tilings. For all p, q holds

e(p, q + k, k) =
∑
m

(m+ k − 1)h(p, q,m).

For a single-row tiling of type E holds e(0, k, k) = 1. Using (14) obtain

E(u, v, y) = (1 + χ(u, v))
∞∑
k=1

vkyk +H(u, v, 1)
∞∑
k=1

(k − 1)vkyk. (‡‡)

From (18) taking into account (‡) and (††) obtain

H(u, v, y) = uy +B(u, v, y) + (2 + uy)D(u, v, y)

= uy + (1 + ε(u, v))

∞∑
k=1

u2k+1yk + E(u, v, 1)

∞∑
k=1

ku2k+1yk

+ (2 + uy)

(
(1 + ε(u, v))

∞∑
k=1

u2kyk + E(u, v, 1)

∞∑
k=1

(k − 1)u2kyk

)
.

Therefore

H(u, v, y) = uy+(1+ε(u, v))(2+u+uy)

∞∑
k=1

u2kyk+E(u, v, 1)

∞∑
k=1

(ku+ 2(k − 1) + (k − 1)uy)u2kyk.

(† † †)
Using (‡‡), († † †) obtain the system of equations for H(u, v, 1), χ(u, v),

E(u, v, 1) and ε(u, v). Two equations come from the substitution y = 1. Two
more are obtained from di�erentiation by y and substitution y = 1:

H(u, v, 1) = u+ (1 + ε(u, v))(2 + 2u)
∑

k≥1 u
2k

+E(u, v, 1)
∑

k≥1 (ku+ (2 + u)(k − 1))u2k,

χ(u, v) = u+ (1 + ε(u, v))
∑

k≥1(2k + uk + u(k + 1))u2k

+E(u, v, 1)
∑

k≥1
(
k2u+ (k − 1)(2k + u(k + 1))

)
u2k,

E(u, v, 1) = (1 + χ(u, v))
∑

k≥1 v
k +H(u, v, 1)

∑
k≥1(k − 1)vk,

ε(u, v) = (1 + χ(u, v))
∑

k≥1 kv
k +H(u, v, 1)

∑
k≥1 k(k − 1)vk.
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Using computations from exercises 4�7 rewrite the system as

H(u, v, 1) = u + (1 + ε(u, v))
2u2

1− u
+ E(u, v, 1)

u3

(1− u)2
,

χ(u, v) = u + (1 + ε(u, v))
u2(2− u)
(1− u)2

+ E(u, v, 1)
u3(1 + 2u− u2)
(1 + u)(1− u)3

,

E(u, v, 1) = (1 + χ(u, v))
v

1− v
+ H(u, v, 1)

v2

(1− v)2
,

ε(u, v) = (1 + χ(u, v))
v

(1− v)2
+ H(u, v, 1)

2v2

(1− v)3
.

From last two equations obtain

χ(u, v) =
E(u, v, 1)(1− v)

v
− H(u, v, 1)v

1− v
− 1

ε(u, v) =
E(u, v, 1)

1− v
+
H(u, v, 1)v2

(1− v)3

(‡ ‡ ‡)

Substituting these into the �rst two equations obtain generating functions E(u, v, 1)
and H(u, v, 1).

E(u, v, 1) =
v(1 + u)(1− u)2P1(u, v)

R(u, v)

H(u, v, 1) =
u(1 + u)(1− v)2P2(u, v)

R(u, v)

where R(u, v) was de�ned at the beginning of the section,

P1(u, v) = 1− u− 3v + u2 + 4uv + 3v2 − 3u2v − 5uv2 − v3 − u3v + u2v2 + 2uv3 + 4u3v2 − u2v3

− u3v3 + u4v2 ,

P2(u, v) = 1− 2u− 2v + v2 + 6uv − 2uv2 − 5u2v + 2u3 − u2v2 − u3v − u4 + 4u3v2 + u4v − u5v2 .

From (†) and (‡ ‡ ‡) obtain

A(u, v, 1) = u+ uε(u, v)

= u+
uE(u, v, 1)

1− v
+
uH(u, v, 1)v2

(1− v)3

=
u(1− u)P3(u, v)

R(u, v)
,

where

P3(u, v) = 1− 2u− 3v + 7uv + 4v2 + 2u3 − 2u2v − 8uv2 − 3v3 − u4 − 7u3v + 5uv3 + v4 + 3u4v

+ 10u3v2 + 2u2v3 − 2uv4 + 2u4v2 − 6u3v3 − 2u5v2 − 5u4v3 + 2u3v4 − u5v3 + u4v4.

Finally, from (19) obtain F (u, v, 1).
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Substituting u = v = x, everything becomes very simple. Indeed,

R(x, x) = 1− 7x+ 20x2 − 30x3 + 16x4 + 20x5 − 32x6 + 6x7 + 11x8 − 2x9 − x10 ,
P1(x, x) = 1− 4x+ 8x2 − 9x3 + 2x4 + 3x5 ,

P2(x, x) = (1− x)(1− x− x2)(1− 2x+ 3x2 − x4) ,
P3(x, x) = (1− x− x2)(1− 4x+ 8x2 − 7x3 − x4 + 5x5) .

Then

E(x) =
x(1 + x)(1− x)2(1− 4x+ 8x2 − 9x3 + 2x4 + 3x5)

1− 7x+ 20x2 − 30x3 + 16x4 + 20x5 − 32x6 + 6x7 + 11x8 − 2x9 − x10
,

H(x) =
x(1− x)3(1 + x)(1− x− x2)(1− 2x+ 3x2 − x4)

1− 7x+ 20x2 − 30x3 + 16x4 + 20x5 − 32x6 + 6x7 + 11x8 − 2x9 − x10
,

A(x) =
x(1− x)(1− x− x2)(1− 4x+ 8x2 − 7x3 − x4 + 5x5)

1− 7x+ 20x2 − 30x3 + 16x4 + 20x5 − 32x6 + 6x7 + 11x8 − 2x9 − x10
,

F (x) =
x(1− x)(3− 13x+ 24x2 − 17x3 − 18x4 + 35x5 − 3x6 − 14x7 + x9)

1− 7x+ 20x2 − 30x3 + 16x4 + 20x5 − 32x6 + 6x7 + 11x8 − 2x9 − x10
.

This completes the proof of the Theorem. �

We use online mathematical software to obtain the power series for above
generating functions.

F (u, v, 1) = 2u+ v + 2u2 + 2uv + v2 + 2u3 + 5u2v + 4uv2 + v3 + 2u4 + 10u3v + 14u2v2 + 6uv3 + v4

+ 2u5 + 18u4v + 34u3v2 + 29u2v3 + 8uv4 + v5 + 2u6 + 30u5v + 74u4v2 + 88u3v3 + 52u2v4

+ 10uv5 + v6 + 2u7 + 47u6v + 146u5v2 + 228u4v3 + 194u3v4 + 85u2v5 + 12uv6 + v7 + . . .

Also

E(x) = x+ 2x2 + 5x3 + 13x4 + 34x5 + 94x6 + 266x7 + 751x8 + 2093x9 + 5793x10 + . . . ,

H(x) = x+ 2x2 + 4x3 + 11x4 + 32x5 + 92x6 + 255x7 + 698x8 + 1925x9 + 5362x10 + . . . ,

A(x) = x+ x2 + 3x3 + 9x4 + 26x5 + 71x6 + 194x7 + 539x8 + 1511x9 + 4222x10 + . . . ,

F (x) = 3x+ 5x2 + 12x3 + 33x4 + 92x5 + 257x6 + 715x7 + 1988x8 + 5529x9 + 15377x10 + . . .

Corollary 1. The sequence fn satis�es the recurrent relation of 10th order:

fn+10 = 7fn+9−20fn+8+30fn+7−16fn+6−20fn+5+32fn+4−6fn+3−11fn+2+2fn+1+fn.
(20)

Proof. For F (x) holds

(1− 7x+20x2 − 30x3 + 16x4 + 20x5 − 32x6 + 6x7 + 11x8 − 2x9 − x10)
∑
n

fn x
n

= x(1− x)(3− 13x+ 24x2 − 17x3 − 18x4 + 35x5 − 3x6 − 14x7 + x9) .

These are equal polynomials, therefore the recurrent relation (20) holds. �

The corresponding characteristic equation is

x10 − 7x9 + 20x8 − 30x7 + 16x6 + 20x5 − 32x4 + 6x3 + 11x2 − 2x− 1 = 0.

This equation has real roots, and the largest root is xmax ≈ 2.77906203737.
Therefore 2.779n ≤ fn ≤ 2.7791n.
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