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Abstract 12 

Highly curved helical pipes (HCHPs) offer tremendous potentialities for intensified heat/mass transfer performances as they 13 

generate intense Dean-type vortices. However, these designs have not been explored so far in the literature, probably because 14 

they are difficult to build using traditional manufacturing techniques. Nowadays, thanks to a witnessed progress in 3D-15 

printing, the fabrication of HCHPs has become achievable. Therefore, investigating their performance in terms of heat and 16 

mass transfer intensification presents significant interest from both academic and industrial points of view.    17 

In this paper, CFD simulations are carried out to determine the heat/mass transfer efficiency in helical pipes (particularly 18 

highly curved ones) under laminar flow conditions. The packing density (i.e. interfacial area) of these geometries is evaluated 19 

using a CAD software. The results reveal that HCHPs not only allow achieving much higher transfer rates than straight and 20 

classical helical pipes, but they can also be densely packed. Therefore, when appropriate designs are selected, impressive 21 

process intensification factors are achievable, with up to 8-fold volume reductions. 22 

Finally, correlations are developed for evaluating the interfacial area and the heat/mass transfer efficiency in classical and 23 

highly curved helical pipes. In future works, these correlations will be used in model-based optimization for determining the 24 

optimal designs of helically coiled heat/mass exchangers. 25 

 26 
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 28 

1. Introduction 29 

 30 

Economic issues and continuously strengthening environmental regulations force the industry to develop 31 

increasingly compact reactors and heat and mass transfer equipment. Such units allow improving the processes 32 

efficiency while reducing their overall energy requirements, costs, environmental impacts, weight and footprint. 33 

More specifically, minimizing volume and/or weight is of primary importance in applications where space is 34 

limited, e.g. decentralized energy production, domestic applications, space and offshore processes.   35 

Various strategies to enhance heat and mass transfer efficiencies have been proposed and employed [1, 2]. 36 

They include the use of rotating devices [3], pulsating flow [4], twisted tape inserts [5], vortex generators [6] or 37 

helical pipes, etc. Compared to other alternatives, helical pipes present the advantage of not involving any 38 

internals or moving parts. Therefore, they are less subject to failure, breakdown, fouling and clogging, and thus, 39 

require lower maintenance costs. 40 

Compared to straight tubes, due to centrifugal effects, the flow in curved and helical pipes develops 41 

secondary flow structures called Dean cells (Figure 1). They consist in a pair of counter-rotating vortices in the 42 

cross-stream direction, perpendicularly to the primary flow. These vortices allow a great improvement of the 43 

transfer efficiency. Indeed, if we consider fully developed laminar flow conditions, in the case of straight tubes, 44 

fluid particles move along straight streamlines parallel to the walls. Therefore, lateral mixing, i.e. radial 45 

heat/mass transfer, occurs under the sole effect of conduction/diffusion, which leads to poor transfer efficiencies 46 

when the pipe diameter is not too small. On the other hand, in helical pipes, Dean cells provide efficient 47 

advective transport of the fluid particles between the pipe walls and its centerline, leading to increased transfer 48 

performance. Accordingly, these geometries have been suggested and/or employed in several applications and 49 

industrial processes: (1) Heat transfer enhancement for nuclear plants [7] and many other applications [8, 9]. (2) 50 

Increased mass transfer rates in catalytic reactors [10], dense [11] and porous [2] membrane contactors, etc. (3) 51 

Improvement of mixing efficiency [12]. 52 
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 54 
Figure 1: Schematic representation of Dean cells in a helical pipe.  55 

 56 

The shape of a helical pipe is described by two geometric parameters, the dimensionless pitch, �∗ � �/�, and 57 

the dimensionless helix radius, ��∗ � ��/�, where d is the pipe diameter, p the helix pitch and �� the helix 58 

radius. Figure 2 illustrates some representative helical tube geometries and the limits of the so-called forbidden 59 

region. The equation of this frontier has been determined by Przybył and Pierański [13]: it corresponds to the 60 

limit beyond which it is not possible to further decrease the helix pitch because the consecutive turns of the helix 61 

would overlap one with another. In other terms, the forbidden region corresponds to the set of  �∗ and ��∗  for 62 

which it is no more possible to design helical shapes. Figure 3 is a contour plot of the dimensionless helix 63 

curvature, �∗ � �	� � �/
, in the (��∗  , p*) space, where � is the pipe curvature and 
 its curvature radius. The 64 

mathematical expression of � is as follows: 65 

 � � 1�� 1 � � �2����2� Eq. 1 

 66 

Figure 3 illustrates the fact that the helix curvature tends toward zero at three asymptotic limits: (1) when the 67 

dimensionless pitch, �∗ � �/�, tends to infinity. (2) when the dimensionless helix radius ��∗ � ��/�  tends to 68 

zero. (3) when ��∗  tends to infinity. Indeed, as shown in Figure 2, at the first two limits, the helix geometry tends 69 

toward that of a straight tube, while at the third limit, the helical tube straightens and becomes locally similar to a 70 

straight pipe.   71 

  72 

 73 
Figure 2: Limit of the forbidden region in the (��∗  , p*) space (adapted from [13]) and some representative helix 74 

geometries [14]. 75 

 76 

 77 
Figure 3: Contour plot of the dimensionless helix curvature in the (��∗  , p*) space. 78 

 79 
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Most importantly, Figure 3 reveals that the highest pipe curvatures are associated to helixes of low pitch and 80 

relatively low helical radius. These geometries will be referred to as Highly Curved Helical Pipes (HCHPs) 81 

further on in this paper. Given their low radius of curvature, they exhibit the highest centrifugal effects. Thus, 82 

HCHPs are expected to produce the most intense Dean vortices, which should lead to the best heat/mass transfer 83 

performance. Nonetheless, to the authors’ best knowledge, no previous study has focused yet on the transfer 84 

efficiency in such geometries. As can be noticed from Table 1 for example, only ‘classical’ helical geometries 85 

have been considered thus far in literature. This is probably because HCHPs are difficult to fabricate using 86 

traditional manufacturing techniques.   87 

Studies dealing with classical helical pipes have shown that these geometries allow a significant enhancement 88 

of the heat/mass transfer. Indeed, Nusselt and Sherwood numbers up to 7 times greater than in straight tubes 89 

were reported in literature [19, 24, 25]. However, it is noteworthy that helical pipes cannot be as densely packed 90 

as straight ones. Therefore, the transfer efficiency improvement they allow is - at least partially - 91 

counterbalanced by their lower packing density. For example, Kaufhold et al. [26] reported that if ��∗  is not 92 

sufficiently small, classical helixes lead to lower performance than straight tubes in terms of volumetric mass 93 

transfer rates (i.e. mass flux per unit volume). 94 

Interestingly, HCHPs are not only expected to lead to better transfer rates than classical helixes, but also, 95 

their elongated shape (Figure 2) allow them to be densely packed. Hence they should allow a significant 96 

intensification of the overall transfer rate, i.e. a meaningful unit volume reduction of reactors, heat exchangers 97 

and membrane contactors. Nowadays, with the development of 3D-printing technologies, manufacturing HCHPs 98 

has become achievable [14]. Therefore, investigating their performance in terms of heat and mass transfer 99 

efficiency offers significant interest from both academic and industrial points of view.    100 

This paper focuses on transport phenomena in helical pipes, particularly highly curved ones (HCHPs), under 101 

fully developed laminar flow conditions. The laminar flow regime is encountered in many applications of 102 

practical interest, in particular small-scale devices, e.g. microfluidics, micro-structured heat exchangers and 103 

reactors, micro-mixers and hollow fiber membranes. CFD (computational fluid dynamics) simulations are 104 

reported hereafter in order to determine the Nusselt number in helical pipes, and by analogy, the Sherwood 105 

number. Different operating conditions, described by the Reynolds number, and various helix designs are 106 

examined. Prandtl numbers (and by analogy, Schmidt numbers) ranging from 1 to 10 are considered. This range 107 

of fluid properties covers many existing processes. Additionally, for evaluating the volumetric transfer rates 108 

allowed, helixes packing density as a function of the helixes geometry has been determined using a CAD 109 

(computer-aided design) software.         110 

CFD results revealed that among helical pipes, highly curved ones allow achieving the maximal Nusselt and 111 

Sherwood numbers, which can be nearly an order of magnitude higher than in straight ones. Moreover, 112 

numerical data confirmed that HCHPs can be densely packed. The volumetric transfer rates they allow is up to 8 113 

times higher than that reached with straight tubes. On the other hand, given their low packing densities, classical 114 

helical pipes may lead to lower overall performance than straight ones.  115 

It is also shown that available correlations fail in estimating the heat/mass transfer rates in HCHPs and the 116 

helixes packing density with a sufficient accuracy. Therefore, two new correlations are proposed in this paper. 117 

The first one allows predicting the Nusselt and Sherwood numbers over a wide range of helical pipe geometries 118 

and operating condition, and the second allows determining the optimal packing density as a function of the 119 

helix geometry. This set of correlations, along with that proposed by Abushammala et al. [14] for calculating the 120 

friction coefficient in helical pipes, can be used in model-based optimization of helically coiled heat exchangers / 121 

membrane contactors. This procedure allows determining the optimal helix geometry, i.e. the one leading to the 122 

most lucrative trade-off between the process intensification (unit volume reduction) and energy efficiency (extra 123 

pressure drop). 124 

 125 
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Sheeba et al. [23] 

Ghobadi and 
Muzychka [22] 

Xin and Ebadion 
[21] 

Yildiz et al. [20] 

Moulin et al. [19] 

Manlapaz and 
Churchill [18] 

 

Kalb and Seader [17] 

Dravid et al. [16] 

Schmidt [15] 

Reference 

���� � 3.6063	��� !.""#$	%&!.!'(!	) � ∗2���∗ *!.!(+" 

���� � ,3.66( � -0.91375		��� !.'		%&1!.#2(3# (4  

���� � )0.318��� !.$(6 	� 2.153*%&!.#++ 
���� � 0.0551	��� !.7$(		%&!.( 
���� � 0.14	��9!.+'	�:!.66 

���� � ;<3.657 � 4.343=# >6 � 1.158<��� =" >
6 "4 ?# 64  

=# � )1 � 957��� "	%&*"		; 			=" � 1 � 0.477%& 	 

���� � 0.836	��� !.'		%&!.# 
���� � )0.76 � 0.65��� !.'*%&!.#+' 

���� � 3.65 � 0.08 ;1 � 0.8 A 12��∗ B
!.C? %&#6	��D 

E � 0.5 � 0.2903A 12��∗ B
!.#C(

 

Correlation 

200 F ��� F 700 

40 F ��� F 700 5 F %& F 15 

20 F ��� F 2	000 0.7 F %& F 175 
 

1	265 F ��� F 2	000 5 F %& F 175 

150 F �� F 2	000 

Entire laminar regime 
 

��� G 80  0.7 F %& F 5 

50 F ��� F 2	000 5 F %& F 175 
 

Laminar regime with Re ≥ 100 
Large range of Pr (air, water and 

oil were used as test fluids) 

Correlation’s validity range 

according to its authors 

��∗ � 29.7 2 F �∗ F 18.2 

6.1 F ��∗ F 24.2 
The range of p* is not reported. 

22.6 F ��∗ F 75 
The value of p* was not reported. 

120 F �∗ F 360 
 ��∗ � 7.5 

11.5 F ��∗ F 12.4 9.9 F �∗ F 15.4 
 

��∗ G 2.5 
The range of p* is not reported. 

5 F ��∗ F 50 
The range of p* is not reported. 

10 F ��∗ F 50 
The range of p* is not reported. 

2.5 F ��∗ F 42 3 F �∗ F 137 
 

Geometric parameters of the helical 

pipes investigated 
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2.1. Nusselt (and Sherwood) number in helical pipe flows 147 

 148 

In helical and curved pipes undergoing heat transfer between the fluid flow and the wall, the convective heat 149 

transfer is not uniform over the wall, but varies in both radial and axial directions. However, in most engineering 150 

applications, only the heat transfer coefficient averaged over the pipe circumference (i.e. in the radial direction) 151 

is of practical interest. It will be simply referred to as convective heat transfer coefficient, h, in the remaining 152 

part of this paper.  153 

Considering a cross-section of the tube, the fluid mixing-cup temperature (i.e. mass flow rate weighted 154 

temperature), HI,KL, at this position is calculated as follows:  155 

 156 

 HI,KL � ∬ N	H	OPPQR . SPPQ	��∬ N	OPPQR . SPPQ	�� � ∬ N	H	OPPQR . SPPQ	��ET  Eq. 2 

 157 

where S is the surface of the circular flow section (Figure 4) and SPPQ its unit normal vector. N denotes the fluid 158 

density, T the local fluid temperature, OPPQ its velocity and ET  its total mass flow rate. The convective heat transfer 159 

coefficient at this position is defined and can be calculated as follows:  160 

 161 

 � � lim	RX→! 	 Z�[	-H[ \ HI,KL2 Eq. 3 

 162 

where Sw is an annular surface on the wall (Figure 4) inclosing the flow section, S. H[ is the average temperature 163 

of this wall element, or simply the wall temperature when an isothermal wall is considered as in this paper. Z 164 

denotes the heat flux transferred between the wall element and the flow. The Nusselt number, Nu, which can be 165 

regarded as a dimensionless expression of h, is defined as follows in both helical and straight pipes: 166 

 167 

 �� � �	�]  Eq. 4 

 168 

where d is the pipe internal diameter and ] the fluid thermal conductivity.  169 

 170 

 171 

Figure 4: Typical shape of a wall element (in red) over which h is averaged. 172 

 173 

Figure 5a illustrates a qualitative variation of Nu (and thus of h) along a helical or a straight tube, the abscissa 174 

axis being the - curvilinear - position along the pipe centerline. The Nusselt number is the highest at the pipe 175 

entrance and decreases over a distance called ‘thermal entrance length’ before reaching an asymptotic value, 176 ���. For a laminar flow in a straight pipe under uniform wall temperature conditions, the length of the thermal 177 

entrance region, Lth, can be estimated as follows [27]: 178 

 179 

  ^_` � abcdE�E	)0.0565	��	�	; 0.037	�� Pr �* Eq. 5 
 180 �� � g�/h is the Reynolds number, where U is the mean velocity of the primary flow and h the fluid kinematic 181 

viscosity, %& � h/i is the Prandtl number where i is the fluid thermal diffusivity. The first term on the right 182 

hand side of Eq. 5 represents the length required for the flow to fully develop, i.e. for the velocity field and the 183 

local friction factor to become axially invariant, while the second term corresponds to the distance required for 184 

the flow to become thermally developed.  185 
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 186 
Figure 5: Typical variation of the Nusselt (Sherwood) number from the entrance of a straight or a helical pipe.  187 

 188 

Equation 5 reveals that the thermal entrance length may become very important for large values of Pr. 189 

However, in the current study, only Pr numbers ranging from 1 to 10 are considered. With such fluids, entrance 190 

effects are usually negligible in the case of pipes of small diameter and/or sufficient length, which is generally 191 

the case in the applications targeted in this study, namely heat exchangers (and catalytic reactors and hollow 192 

fiber membranes in the case of mass transfer). This is particularly true when dealing with helical geometries. 193 

Indeed, under similar operating conditions, the entrance length in helical pipes is generally shorter than in 194 

straight ones [28]. Therefore, the asymptotic Nusselt number,	���, is sufficient for characterizing the effective 195 

heat transfer in helical shape exchangers. Accordingly, in this paper, determination of ��� in helical pipes via 196 

CFD simulations will be emphasized. Thus, although the flow and heat transfer characteristics over the entire 197 

pipe are simulated, only ��� results are reported; entrance effects data are considered beyond the scope of this 198 

paper and will not be reported here.  199 

With a laminar flow regime and an isothermal wall, under ideal conditions (see Section 2.2), the asymptotic 200 

Nusselt number in straight pipes, ��R�, equals 3.657 [29]. On the other hand, contrary to ��R�, the asymptotic 201 

Nusselt number in helical pipes, ����, is not constant, but depends on both Reynolds and Prandtl numbers as 202 

well as on the pipe geometry.  203 

Assuming an incompressible flow with uniform fluid properties, the heat transfer coefficient under thermally 204 

developed flow conditions would depend on the helical pipe geometric parameters (d, RH and p), the fluid 205 

properties (ρ, ν, ] and α) and the mean velocity of the primary flow, U. Therefore, according to the Buckingham 206 

π theorem, ���� is a functional relation of the following four independent dimensionless parameters: (1) The 207 

dimensionless helix pitch, �∗ � �/� . (2) The dimensionless helix radius, ��∗ � ��/� . These first two 208 

parameters characterize the helix shape. (3) The Reynolds number, �� � g�/h , which accounts for the 209 

operating conditions. (4) The Prandtl number, Pr, which accounts for the fluid properties. As a result of the heat 210 

transfer enhancement by the Dean vortices, ���� is always greater than 3.657. Table 1 shows a summary of 211 

commonly used correlations for evaluating ���� under laminar flow conditions.  212 

Finally, it is worthy to note that the heat transfer analysis carried out in this section can be transposed and 213 

applied to mass transfer phenomena. In fact, it has been long recognized that heat and mass transfer processes 214 

present similar behaviours. Indeed, in many practical situations, the equations describing mass and heat transfer 215 

are mathematically analogous (see Sections 2.2 and 2.3 for details). Accordingly, heat transfer results can be 216 

converted to mass transfer results and vice versa.  217 

Hence, in the framework of the present study, the heat/mass analogy stipulates that if the same geometric (��∗  218 

and �∗) and operating conditions (Re) are considered, then:  219 

 220 

 		���� � ����		)bj�	�� � ��*						dk						�: � %&	 Eq. 6 
 221 

where Sh is the Sherwood number (the mass transfer analogue to Nu) and ����	its asymptotic value in helical 222 

pipes. Sh is defined as follows: 223 

 224 

 �� � l	��  Eq. 7 

 225 

where	l is the convective mass transfer coefficient between the wall and the fluid and � the mass diffusivity of 226 

the involved species. Under laminar flow conditions and uniform wall concentration, ���� equals 3.657 in virtue 227 



7 

 

 

of the heat/mass transfer analogy. �: � h/�  is the Schmidt number, the mass transfer analogue of Pr. It 228 

represents the ratio of momentum diffusivity (kinematic viscosity) to mass diffusivity. Based on the above 229 

discussion about ���� and the heat/mass transfer analogy, it can be argued that ���� depends on the following 230 

four dimensionless numbers: ��∗ , �∗, �� and Sc.  231 

 232 

2.2. CFD modeling and simulation of heat transfer in helical pipes under laminar flow conditions 233 

 234 

CFD simulations were carried out for various helical pipe designs and operating conditions. The geometries 235 

were drawn using Autodesk Inventor Professional 2018 software, based on a sufficient tube length to attain the 236 

thermally developed flow region. The 3D numerical domain was meshed using the ANSYS Meshing software. 237 

The grid consisted of hexahedral cells only, with a boundary layer mesh in the near-wall region for an accurate 238 

calculation of the steep gradients prevailing in this zone. Based on preliminary simulations, the cells size and 239 

density were chosen so at to ensure a mesh-independent solution for all the cases studied.  240 

CFD simulations were conducted using the commercial code ANSYS Fluent 16. The flow field in the pipe 241 

was determined by solving the continuity and Navier-Stokes equations assuming a Newtonian, incompressible, 242 

and steady flow and uniform fluid properties (density and viscosity): 243 

 244 

 �dm)OPPQ* � 0 

Eqs. 8 
 	nopPPPPPQ)OPQ	⨂	OPQ* � \ 1N rPQ% � 	h	∆PQOPQ 
  245 

As boundary conditions, a uniform velocity profile was set at the pipe inlet: as the flow rate is imposed and 246 

since a uniform fluid density is considered, the gravity force has no effect on the velocity field and therefore this 247 

body force term was not included in the Navier-Stokes equations. At the pipe outlet, a uniform pressure 248 

condition was used and the no-slip condition was set at the pipe wall. 249 

The temperature field was determined by solving the energy balance equation: 250 

 251 

 �dm)OPPQ	H* � i	∆H Eq. 9 
 252 

As boundary conditions, a uniform fluid temperature is enforced at the inlet, an isothermal wall is considered and 253 

the zero temperature gradient is imposed at the pipe outlet. It is noteworthy that the velocity and temperature 254 

profiles at the inlet affect the flow and heat transfer phenomena in the entrance region only. Therefore, as this 255 

paper focuses on heat transfer in the thermally developed zone (i.e. ���� ), the velocity and temperature 256 

distributions at the inlet were simply considered as uniform.   257 

The CFD model (i.e. Equations 8 and 9 and their boundary conditions) assumes: (1) Steady-state flow and 258 

heat transfer phenomena. (2) An incompressible Newtonian fluid with uniform properties. (3) The absence of 259 

phase transition phenomena. (4) A purely forced convection. Indeed, natural convection effects are neglected 260 

since the fluid density is supposed uniform. This assumption is relevant as long as the Reynolds number is not 261 

extremely low and the Grashof number (i.e. buoyancy effects) not extremely high, which is generally the case in 262 

heat exchangers. (5) Radiative phenomena are ignored. (6) Heat generation by viscous dissipation is neglected in 263 

Equation 9. This hypothesis is relevant apart in few particular situations where highly viscous fluids are used 264 

under high strain rate conditions. It is worthy to note that, if in addition the axial heat conduction effects are 265 

neglected, these assumptions lead to the theoretical result of ��R� = 3.657 in the case of straight pipes [29].   266 

The hydrodynamics and heat equations were iteratively solved until convergence. The advective terms were 267 

discretized using the QUICK scheme while the diffusive ones were central-differenced. Pressure interpolation 268 

was carried out using a second order scheme.  269 

A total of nearly 280 CFD simulations was carried out. More than 25 helix designs (particularly highly 270 

curved ones) were investigated within the following range of geometric conditions: 1.25 F �∗ F 15 and 0.05 F271 ��∗ F 10. Eight Reynolds number values, ranging from 10 to 2 000, were examined. Three Prandtl numbers 272 

were considered in the simulations: 1, 5 and 10. Fluids used in many industrial applications fall within this range 273 

of Pr, e.g. most gases, water, refrigerants, many light organic liquids, molten salts and some oils under very high 274 

temperature conditions. 275 

For each simulation, the local Nu was calculated at different longitudinal positions across the pipe length 276 

using Equations 3 and 4 (and considering a sufficiently small wall element as that depicted on Figure 4), and its 277 

asymptotic value, ����, was determined. These CFD results were used to correlate ���� as a function of the 278 

helix design (�∗ and ��∗ ), the fluid properties (Pr) and the flow conditions (Re). They are provided in an Excel 279 

sheet as supplementary material to this paper. 280 

 281 
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2.3. Heat and mass transfer analogy  282 

 283 

The procedure described in Section 2.2 allows determining the Nusselt number characterizing the heat 284 

transfer between the fluid and the pipe wall for Pr ranging from 1 to 10. Under some conditions discussed 285 

thereafter, the obtained results may be transposed to describe mass transfer between the fluid and the wall (e.g. 286 

mass transfer in membranes, adsorption or heterogeneous reaction processes). Obviously, this is possible for 287 

Schmidt numbers in the range of 1 to 10, which is the case in most gas-gas systems.   288 

In binary mixtures with uniform density, the diffusive mass flux of a component A, SPPQt (in kg m-2 s-1), is 289 

given by Fick’s law:   290 

 291 

 SPPQt � \�	uvwnPPPPPPPPPPPQ)Nx* � NxpPPQ Eq. 10 
 292 

where ρA is the mass concentration of A and D its mass diffusivity. pPPQ is the velocity resulting from the diffusive 293 

motion of A and the other species within the mixture. The second term on the right-hand side of Eq.10 is 294 

generally referred to as the ‘bulk motion contribution’. It represents the advective mass flux resulting from the 295 

diffusion of the different species which induces a local motion of the mixture. When this term is negligible, 296 

Fick’s law becomes analogue to Fourier’s law of heat conduction. This is the case under equimolar counter 297 

diffusion of species of similar molecular weights or under dilute mixture conditions. Such conditions are 298 

encountered in many important gas-gas applications such as tritium removal, recovery of volatile organic 299 

compounds and adsorption processes in isotropic mixtures, etc. Most importantly, the bulk motion contribution 300 

can be generally neglected in forced convection situations when the Reynolds number is not very low and the 301 

flow field three-dimensional (as in the presence of Dean vortices). This significantly broadens the range of 302 

conditions for which the heat/mass transfer analogy can be applied in helical geometries. 303 

When the bulk motion contribution is negligible, in the absence of any homogeneous chemical reaction, if 304 

uniform fluid properties are considered, the steady-state the mass transfer equation becomes analogue to Eq. 9 305 

and is given by: 306 

 307 

 �dm)OPPQ	yx* � �	∆yx Eq. 11 
 308 

where CA is the molar concentration of component A.  309 

Another restriction to the validity of the heat/mass transfer analogy concerns the boundary condition at the 310 

wall. Indeed, in heat transfer simulations (Section 2.2), the no-slip condition applies at the pipe wall, while in 311 

mass transfer processes, the mass flux at the wall obviously results in a non-zero wall-normal velocity. However, 312 

in many situations, this velocity component has negligible effects on the flow field, and thus, the heat/mass 313 

transfer analogy remains valid. This is the case in equimolar counter diffusion of species of similar molecular 314 

weights or under dilute mixture conditions, even in the presence of a heterogeneous reaction or adsorption 315 

phenomena at the wall. In any case, in situations where the heat/mass transfer analogy is not strictly valid, 316 

although the results reported in this paper do not allow a precise evaluation of the Sherwood number, they still 317 

provide a first insight about the optimal shape of helical tubes in mass transfer devices.    318 

 319 

3. Optimal packing density of helixes 320 

 321 

Helical pipes allow higher transfer efficiencies per unit surface than straight ones. However, they cannot be 322 

as densely packed as straight tubes. Thus, the transfer efficiency improvement they provide can be - at least 323 

partially - counterbalanced by their lower packing density. Therefore, in order to determine the overall 324 

volumetric transfer rate (i.e. heat/mass flux per unit volume) that helical pipes allow achieving, it is necessary to 325 

calculate their optimal packing density. To the authors’ best knowledge, no analytical solution for this problem 326 

has been published thus far in literature. Only Kaufhold et al. [26] have reported a correlation for estimating 327 

helixes packing density, however, as discussed in Section 4.5, their model is highly inaccurate.  328 

The ideal arrangement for non-overlapping straight tubes or cylinders is an - equilateral - triangular packing 329 

(also known as dense hexagonal lattice) (Figure 6a) where the distance between the axes of two neighboring 330 

cylinders equals their diameter. This configuration allows the straight tubes to best cover the available volume: it 331 

can been analytically shown that,  zR,D{|, the volume fraction they fill, equals �/,4	 sin)�/3*3 ≈ 90.7%. 332 

 333 

 334 

 335 

 336 

 337 

 338 
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 339 

(a) 

 
 

(b) 

 
 

Figure 6: Top view of: (a) ideally packed cylinders. (b) ideally packed helixes of ��∗  = 2.5 and �∗ � 1.25. The triangular 340 

(or dense hexagonal) lattice is illustrated by dashed lines. The black dots represent the axes of the helical or straight tubes. 341 

 342 

The CAD commercial software Autodesk Inventor Professional 2018 was used for determining the ideal 343 

packing of identical helixes under a triangular arrangement.	bD�� will denote the minimum achievable distance 344 

between two neighboring non-overlapping helixes (Figure 6b) and z�,D{|  the volume fraction occupied by these 345 

closely packed helixes. 346 bD�� was determined for more than 240 helix designs in the following range of geometric conditions: 1 F347 �∗ F 20 and 0.05 F ��∗ F 10. Given the periodicity of the lattice, only three helixes disposed on an equilateral 348 

triangular pattern were drawn using the CAD software. Their diameter, d, was arbitrarily taken as 1 mm. The 349 

distance separating these helixes was iteratively decreased until determining bD��  with an absolute tolerance of 350 

0.01 mm. As the lowest possible value for bD��  is the pipe diameter (situation that occurs in the case of straight 351 

pipes), i.e. 1 mm in the present case, thus, the maximum relative error on the computed bD�� values is about 1%.  352 

These results allowed calculating, bD��∗ �	bD��/� , the dimensionless minimum distance separating the 353 

closely packed helixes. Indeed, dimensionless analysis shows that bD��∗  is a functional relation of �∗and ��∗ . The 354 

CAD results were used to correlate bD��∗  as a function of these two geometric parameters. They are provided in 355 

an Excel sheet as supplementary material to this paper. 356 

For a given helix design, once the bD��∗  value is known, z�,D{|  can be easily calculated. Indeed, let’s 357 

consider a triangular prism of height equal to p, the pitch of the helix, and which base is the equilateral triangle 358 

that connects the axes of the three closely packed helixes. This volume encloses 1/6th of each of the three helices, 359 

which corresponds to the volume of half a helix. Thus, z�,D{|  equals to the half volume of a helix over the 360 

volume of the prism element: 361 

 362 

 z�,D{| � 12	�����|�����D � 12��"4 ��" � )2���*"12bD��" sin ��3� � � �	�1 � )2���∗ /�∗*"4	bD��∗� sin ��3�  Eq. 12 

 363 

4. Results and discussion 364 

 365 

4.1. CFD results 366 

 367 

In the following sections, the CFD results will be mainly presented in terms of Nusselt number and heat 368 

transfer enhancement. However, as discussed in Section 2.3, based on the heat/mass transfer analogy, these same 369 

results can be interpreted in terms of Sherwood number and mass transfer enhancement.   370 

As mentioned earlier, for each CFD simulation performed, the circumference-averaged Nu was calculated at 371 

different positions along the helical pipe length so as to determine its asymptotic value, ����. This value, divided 372 

by the Nusselt number in a straight pipe, ��R� = 3.657, represents the heat transfer enhancement allowed by a 373 

given helical pipe.  374 

Figure 7 shows contour plots of the ���� to ��R� ratio in the (��∗  , p*) space. These contours were obtained 375 

using a triangulation-based cubic interpolation of the CFD results. The geometric parameters for which 376 

simulations were performed are represented by black dots. It is worthy to note that, at these points, the values of 377 ���� (divided by ��R�) that are displayed on the contour plots are exactly the same than those provided by CFD. 378 

On the other hand, the results predicted between these points are generated by interpolation. Therefore, they may 379 

be expected to not be very accurate since they are quite sensitive to the interpolation scheme used. Indeed, as can 380 

be noticed from Figure 7, the contour plots exhibit some relatively irregular variations.  381 

 382 
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(a) 

 
 

(b) 

 
 

(c) 

 
 

 (d) 

 
 

Figure 7: Contour plots of the ���� to ��R� (respectively ���� to ��R�) ratio at: (a) Re = 400 and Pr (resp. Sc) = 1. (b) Re 384 

= 400 and Pr (resp. Sc) = 10. (c) Re = 2 000 and Pr (resp. Sc) = 1. (d) Re = 2 000 and Pr (resp. Sc) = 10. The black dots 385 

represent the geometric conditions for which CFD simulations have been performed. The contours are derived by 386 

interpolating these data.  387 

 388 

Nonetheless, these contours allow deriving several major conclusions: 389 

(1) HCHPs allow a great improvement of the heat transfer efficiency compared to straight tubes. Indeed, given 390 

their high curvatures (Figure 3), the flow in HCHPs undergoes strong centrifugal effects leading to intense Dean-391 

type vortices that greatly improve the heat transfer rates.  392 

(2) As Re increases, centrifugal forces become more intense, which further enhances the heat transfer efficiency. 393 

Hence, in the case where Pr = 1, for Re = 400, the maximal ���� achieved in HCHPs is about 3.5 times higher 394 

than in straight tubes (Figure 7a), and its gets nearly 8 times greater than ��R� for Re = 2 000 (Figure 7c). 395 

(3) ���� increases when Pr is increased. For example, under a Re of 2 000, the maximal ���� is about 8 times 396 

higher than in straight tubes for Pr = 1 (Figure 7c), and becomes more than 9 times greater than ��R� for Pr = 10 397 

(Figure 7d). 398 

(4) The geometric parameters for which ���� is maximal are not significantly affected by the Reynolds and 399 

Prandtl numbers values. However, when Re and/or Pr are increased, the value of ���� becomes more sensitive 400 

to the helix geometry.  401 

(5) For any given dimensionless pitch, p*, there exists an optimal dimensionless helix radius,	��∗ , at which ���� 402 

is maximal.	The ���� to ��R� ratio sharply decreases toward unity when ��∗  tends to zero as the helix geometry 403 

approaches that of a straight pipe. This ratio also decreases to unity when ��∗  tends to infinity as the helical pipe 404 

straightens (its curvature tends to zero as can be seen from Figure 3) and becomes locally similar to a straight 405 

tube. However, these effects are not always clearly noticeable from the contour plots of Figure 7 since 406 

simulations were performed in the range of 0.05 F ��∗ F 10 only. 407 

(6) For any given ��∗ , the ���� to ��R� ratio decreases when p* increases and tends towards unity at infinite p* as 408 

the helix design approaches a straight pipe, although this effect is not always noticeable in Figure 7 as no 409 

simulations were performed for p* values higher than 15.  410 

(7) Although ���� decreases when p* is increased, as can be seen from Figure 7, this effect is only significant in 411 

the case of HCHPs. Indeed, for relatively high ��∗  values, the curvature is not much sensitive to the value of p* 412 

(Figure 3). As only helical pipes with rather large ��∗  were investigated in the literature, most authors concluded 413 

that the helix pitch has no significant effect on ���� as can be noticed from the correlations reported in Table 1. 414 

Thus, it is obvious that these correlations cannot accurately predict the Nusselt number in HCHPs as detailed in 415 

Section 4.3. 416 
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 417 

4.2. Correlation for predicting Nusselt (and Sherwood) numbers in helical pipe laminar flows 418 

 419 

The CFD results revealed that, for given Re and Pr numbers, the ���� field in the (��∗  , p*) space (Figure 7) 420 

presents a single maximum (no local optima). And apart the particular case of straight pipes, for any helix 421 

geometry, ���� increases with increasing Re and Pr. 422 

Despite such a relatively regular behavior, finding a mathematical model that correctly fits the CFD data was 423 

extremely challenging and tedious. Indeed, ���� exhibits highly nonlinear variations, especially with respect to 424 

the geometric parameters. In fact, the ���� field undergoes steep variations in the HCHPs region, with highly 425 

non-uniform and anisotropic gradients, which magnitudes are very sensitive to the helix geometry. Moreover, the 426 

mathematical formulation should ensure that the model predicts that ���� = ��R� = 3.657 at all of the three 427 

asymptotic limits where the pipe curvature vanishes and the helix geometry tends toward that of a straight tube, 428 

i.e. when ��∗  tends to zero or infinity and when p* tends to infinity. Otherwise, the derived correlation cannot be 429 

reliably used in any model-based optimization for determining the optimal pipe design in heat/mass transfer 430 

devices.  431 

The development of the regression model for fitting the ���� data has been conducted by trial-and-error. The 432 

following complex expression has been found to provide the best fit of the CFD results: 433 

 434 

 ���� � 3.657 � �#	��� 	���	%&�� 	�c�)\y* 
Eqs. 13 

where: � � ���∗ A1 � A �∗2���∗��B
��B�1# 

 � � �'	%&�� 
 y � �7	��∗�� 	%&��� 

 435 

The present model includes 10 regression parameters denoted pi (i being an integer ranging from 1 to 10) 436 

which values were determined using an optimization procedure. The term 3.657 corresponds to the asymptotic 437 

Nusselt number in a straight tube, ��R� . The second right-hand side term in the mathematical model is 438 

formulated so as to be always positive, hence, the present correlation guarantees that the predicted ���� value 439 

remains greater (or equal) than ��R�. 440 

The term denoted A is analogous to the helix dimensionless curvature κ* (see Eq. 1), with the difference that 441 

p3 and p4 are treated as optimization variables instead of assigning their values to 1 and 2 respectively. The term 442 

A vanishes when ��∗  tends to zero or infinity or when �∗ tends to infinity, i.e. when the helical pipe geometry 443 

tends toward that of a straight one. Thus, the model correctly predicts that ���� � ��R� � 3.657 at these three 444 

limits.  445 

The mathematical expression presented in Equations 13 was used to correlate the CFD data. It should be 446 

recalled that, as mentioned in Section 2.2, these results were obtained in the following range of dimensionless 447 

parameters: 1.25 F �∗ F 15, 0.05 F ��∗ F 10, 10 F �� F 2	000 and 1 F %& F 10. The optimization problem 448 

was formulated as a minimization of the maximum relative difference between the model predictions and the 449 

numerical data. For a better accuracy, two sets of parameter values were calculated, the first one for Re ranging 450 

from 10 to 400, and the second one for Re between 400 and 2 000. The optimal sets of parameters pi are reported 451 

in Table 2. They were determined using a genetic algorithm and the results were further refined using a local 452 

optimizer, GRG2. An Excel sheet with the present correlation is available as supplementary material to this 453 

paper. 454 

 455 

Table 2: Optimal sets for the parameters of the correlation expressed by Equations 13. 456 

Validity range      10 F �� F 400 p1 p2 p3 p4 p5 

 3.73×10-2 3.81×10-1 9.50×10-1 2.64 9.38×10-1 

 p6 p7 p8 p9 p10 
 -7.09×10-2 5.71×10-1 6.43×10-2 -1.15 3.84×10-1 
      400 F �� F 2	000 p1 p2 p3 p4 p5 

 3.03×10-2 2.82×10-1 7.19×10-1 2.62 5.7×10-1 
 p6 p7 p8 p9 p10 
 -9.01×10-2 4.35×10-1 1.01×10-2 -3.13 -1.32×10-1 

 457 
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Figure 8 compares the correlation predictions and the present CFD results (represented by brown disks). It 458 

shows that the proposed correlation correctly fits the ���� data as most points are within an error margin of 15%. 459 

Indeed, the maximum relative difference between the numerical results and the correlation predictions is 460 

respectively 16.9% for Re below and 400 and 14.8% for Re above 400. 461 

 462 

 463 
Figure 8: Parity diagram of ����: CFD and experimental data versus correlation predictions. 464 

 465 

To check the robustness of the correlation, additional CFD simulations were performed for �∗ up to 60 and 466 ��∗  up to 20. Although the correlation was built upon CFD results acquired for �∗ F 15  and ��∗ F 10 , it 467 

successfully predicts these additional ����  data (represented by blue triangles in Figure 8) within an error 468 

margin below 15%. This predictive capacity of the present correlation is due to its mathematical formulation 469 

(Eqs. 13) which as discussed previously, guarantees correct results at the asymptotic limits where the helical pipe 470 

geometry tends toward that of a straight one, i.e. ensures results to be correctly bounded. Therefore, the present 471 

correlation is believed to lead to realistic and valid ���� values even beyond the range of geometric conditions 472 

investigated in this paper. 473 

Figure 9 shows the contour plots of the ���� to ��R� ratio that are calculated using the present correlation for 474 

Re values of 400 and 2 000 and Pr values of 1 and 10. A good agreement with Figure 7 is observed, although the 475 

model data are much smoother since they are not affected by interpolation approximations. The maximal values 476 

of ���� and the geometric parameters for which they occur are correctly estimated by the model, and the ���� 477 

variations with respect to the helix geometry, operating conditions and fluid properties are successfully 478 

predicted.  479 

 480 

(a) 

 
 

(b) 

 
 

(c)  (d) 



13 

 

 

 
 

 
 

Figure 9: Contour plots of the ���� to ��R� (respectively ���� to ��R�) ratio calculated using the present correlation (Eqs. 481 

13): (a) Re = 400 and Pr (resp. Sc) = 1. (b) Re = 400 and Pr (resp. Sc) = 10. (c) Re = 2 000 and Pr (resp. Sc) = 1. (d) Re = 2 482 

000 and Pr (resp. Sc) = 10. The contour plots at Re = 400 were generated using the set of parameters valid for 10 F �� F483 400 (Table 2).  484 

 485 

4.3. Comparison between the current and literature correlations 486 

 487 

In order to further assess the potentiality of the new correlation, its predictions are compared to that of 488 

literature correlations in Figures 10, 11 and 12. It is noteworthy that most available correlations (see Table 1) 489 

account for both flow and geometry effects via a single dimensionless parameter, the Dean number, which is 490 

defined as follows:  491 

 492 

 ��� � N�g� � �2�� � ��� 12��∗  Eq. 14 

 493 

However, this formulation leads to systematic errors in the HCHPs region. First, as shown in Figure 10 for 494 

the correlations of Dravid et al. [16] and Kalb and Seader [17], when ��∗  tends to zero, models based on ���  495 

predict an infinite Nusselt number instead of 3.657. Moreover, these correlations ignore the effects of the helix 496 

pitch on the achieved ����. Indeed, as reported in Table 1, so far, literature studies has only dealt with ‘classical 497 

helixes geometries’, i.e. helical designs with a relatively high ��∗ . For such geometries, the helix pitch has little 498 

effect on ���� values as can been noticed from Figures 7 and 9, which explains why this parameter has not been 499 

considered in most previous correlations. Nonetheless, since these correlations were derived by regressing 500 

experimental measurements acquired on non-highly curved helixes, they are expected to accurately predict ���� 501 

in such geometries. Therefore, the good agreement between the current correlation and the former ones at large 502 ��∗  values (Figure 9) validates the current CFD simulations and correlation for the case of classical helixes. 503 

 504 

 505 
Figure 10: ���� (respectively ����) versus ��∗  at two different �∗: comparison of different correlations. 506 

 507 

The correlation provided by Sheeba et al. [23] (Table 1) accounts for the helix pitch effects on the achieved 508 ����. However, it presents two major weaknesses. First, it leads to an infinite Nusselt number when ��∗  tends to 509 

zero (Figure 10), and second, it predicts a slight increase of ���� when the helix pitch is increased (Figure 11) 510 

contrary to what is obtained by CFD and observed experimentally in other studies (e.g. [30]).   511 

 512 



14 

 

 

 513 

 514 
Figure 11: ���� (respectively ����) versus �∗ at two different ��∗ : comparison between the present correlation and those of 515 

Moulin et al. [19] and Sheeba et al [23]. 516 

The correlation of Moulin et al. [19] (Table 1), built upon mass transfer experimental data, accounts for the 517 

helix geometry and operating conditions effects via a Dean number defined as follows: 518 

 519 

 ��9 � ��� �2
 � ����∗2 � ��� 12��∗ �1 � < �∗2���∗ >"� Eq. 15 

 520 

where �∗ is the dimensionless helix curvature. This definition of the Dean number is more appropriate than that 521 

presented in Eq. 14. In particular, ��9  vanishes at the three asymptotic limits for which the helix geometry 522 

approaches a straight pipe. This is why the correlation of Moulin et al. [19] correctly reproduces the shape of the 523 

curves showing ���� versus ��∗  (Figure 10) and captures the decrease of ���� when p* is increased (Figure 11). 524 

However, it also suffers from several drawbacks. Indeed, it leads to ���� equal zero instead of 3.657 at the limits 525 

at which the helix curvature vanishes, i.e. when ��∗  tends to zero (Figure 10) or infinity and when p* tends to 526 

infinity. More importantly, it largely overestimates the ���� value in HCHPs when Re is increased. As shown in 527 

Figure 12, the present model correctly captures the Re effects and is way more accurate than the correlation of 528 

Moulin et al. [19]. Note that the discontinuity in the actual correlation curves is due to the use of two different 529 

sets of parameter values depending on whether Re is higher or lower than 400 (Table 2).    530 

 531 

 532 
Figure 12: ���� (respectively ����) variation with Re for four different helixes at Pr (respectively Sc) = 10. 533 

 534 

4.4. Correlation and CFD data validation using experimental data from literature 535 

 536 

In addition to CFD results, for a more trustworthy validation, the correlation results were compared to the 537 

experimental data of Ghobadi and Muzychka [22] and Sheeba et al. [23]. Table 3 summarizes the geometric and 538 

operating conditions over which these measurements were obtained. It is noteworthy that even the experiments 539 

performed for a Re higher than 2 300 correspond to a laminar flow regime. Indeed, transition to turbulence is 540 

delayed in helical pipe flows due to the stabilizing effects of centrifugal forces [24, 31]. 541 

 542 

Table 3:	Ranges of geometric and operating conditions over which the literature experimental data were acquired and the 543 

present correlation was built. 544 

 545 
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Sheeba et al. 

[23] 

Ghobadi and 
Muzychka 

[22]: helical 
pipe 1 

Ghobadi and 
Muzychka 

[22]: helical 
pipe 2 

Ghobadi and 
Muzychka 

[22]: helical 
pipe 3 

Range of parameters investigated using CFD 
and upon which the present correlation was 

built 

      ��∗  29.8 6.1 12.1 24.2 [0.05 – 10] �∗ 6.1 nearly 1 nearly 1 nearly 1 [1.25 – 15] 
Pr [3 – 5] [5 – 8.5] [5 – 8.5] [5 – 8.5] [1 – 10] 
Re [940 – 3 200] [440 – 2 510] [960 – 2 530] [700 – 2 020] [10 – 2 000] 

 546 

The last column in Table 3 recalls the range of conditions over which the present CFD data were performed, 547 

and hence, upon which the current correlation was built. It can be noticed that most of the experimental results 548 

were acquired for conditions beyond the validity range of the present correlation. Nevertheless, as shown in 549 

Figures 8 and 13, an excellent agreement is obtained between the correlation and Sheeba et al. [23] results 550 

(represented by green squares) which were all predicted within an error margin of 9%. Figure 13 shows that the 551 

correlation correctly captures the effects of the Reynolds number. A good agreement is also obtained with the 552 

data of Ghobadi and Muzychka [22] (represented by red diamonds in Figure 8) as most of their experimental 553 

results are predicted with a relative error less than 25%. 554 

 555 

 556 
Figure 13: Comparison between the present correlation predictions and the experimental data of Sheeba and coworkers 557 

[23]. 558 

 559 

Differences between the correlation and the experimental results are due to several reasons, mainly the 560 

assumption of uniform fluid properties in CFD simulations, the accuracy of the current correlation and 561 

experimental errors. However, as can be noticed from Figure 8, the data of Ghobadi and Muzychka [22] are 562 

systematically overestimated by the current model. This is probably due to the experimental procedure they 563 

followed. Indeed, Ghobadi and Muzychka [22] placed their helical coil within a non-agitated water bath which 564 

temperature was maintained at 40 °C. For calculating the convective heat transfer coefficient and the Nusselt 565 

number, they assumed the wall temperature of their helical pipe to be equal to 40°C. However, in the absence of 566 

an efficient agitation, the wall temperature can significantly deviate from that of the water bath, especially 567 

because the heat transfer coefficient in the internal flow is large. This leads to an underestimation of the 568 

experimentally measured ���� and probably explains the systematic deviation between their measurements and 569 

the actual correlation predictions.   570 

 571 

4.5. Optimal packing density of helixes: results and correlation 572 

 573 

As noted in Section 3, the dimensionless distance between closely packed helixes, bD��∗ , was determined 574 

using a CAD software for different helixes geometries. Figure 14 shows the contour plot of the interpolated 575 

results. The lowest possible value for bD��∗  is 1, and is achieved with straight tubes, i.e. when ��∗  is zero or when 576 

p* tends to infinity.	bD��∗  obviously increases when ��∗  is increased as can be noticed from Figure 6 for example. 577 

When p* is increased, the spacing between the helixes turns enlarges. Hence, the helixes can be brought closer 578 

and imbricate, which leads to a decrease of bD��∗  (as can be noticed from Figure 15). 579 

 580 
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 581 
Figure 14: Contour plot of bD��∗ 	in the (��∗  , p*) space. The black dots represent the geometric conditions for which CAD 582 

results are acquired. 583 

 584 

To the authors’ knowledge, the only available correlation for determining bD��∗  or the helixes packing density 585 

is that reported in Kaufhold et al. [26]. However, the effects of the helix pitch are not taken into account in this 586 

correlation. Thus, it obviously lacks accuracy since bD��∗  can be very sensitive to p* value as can be noticed from 587 

Figure 14. Therefore, a regression model for bD��∗  is proposed in this paper. The following mathematical 588 

expression, constructed by trial-and-error, was found to provide the best fit of the CAD data: 589 

  590 

 bD��∗ � 1 � � �bj�	-�		�∗L2 
Eq. 16 

where: � � �#	��∗ � �" 

 � � �6	��∗ �� 
 y � �'	 ln)	��∗ 	* � �$	 

 591 

The present expression includes 6 regression parameters denoted ��	 (i being an integer ranging from 1 to 6) 592 

which values were determined using an optimization procedure in order to minimize the maximum relative 593 

difference between the correlation outputs and the CAD data. The hyperbolic tangent term is formulated so as to 594 

vanish when ��∗ 	tends to zero or when 	�∗ tends to infinity. Accordingly, the correlation correctly predicts that 595 bD��∗  equals one at these limits.  596 

The mathematical expression presented in Equations 16 was used to correlate the CAD data which were 597 

obtained in the following range of dimensionless parameters: 1 F �∗ F 20  and 0.05 F ��∗ F 10 . The 598 

optimization problem was solved using a genetic algorithm and the results were further refined using a local 599 

optimizer, GRG2. For a better accuracy, two correlations were derived, depending on whether ��∗  is lower or 600 

higher than 2 respectively. The optimal sets of the parameters pi are reported in Table 4. An Excel sheet where 601 

the present correlation is implemented is provided as supplementary material to this paper. 602 

 603 

Table 4: Optimal sets of the parameters of the correlation expressed by Equations 16. 604 

Validity range       0 F ��∗ F 2 p1 p2 p3 p4 p5 p6 

 1.88 -5.54×10-2 3.50 5.65×10-1 -1.65×10-2 -1.50 
       2 F ��∗ F 10 p1 p2 p3 p4 p5 p6 

 2.04 -3.65×10-1 4.44 0 1.35×10-1 -1.52 
 605 

An excellent agreement between the model and the CAD results is obtained (Figure 15) as their maximal 606 

relative difference is 2.80% for ��∗  below 2 and 4.30% for ��∗  above 2 respectively. To check the robustness of 607 

the correlation, additional bD��∗  computations (provided as supplementary material) were performed for �∗ up to 608 

1 000 and ��∗  up to 500. The model was able to predict all of these data with within a maximum error margin of 609 

4.5% which demonstrates its predictive capacity. 610 

 611 

 612 

 613 

 614 

 615 

 616 

(a) (b) 
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 617 

Figure 15: bD��∗  versus �∗ at (a)	��∗  = 0.2 and (b) ��∗  = 4: comparison between the CAD results and the present correlation 618 

(Equations 16).   619 

 620 

The contour plot of bD��∗  was calculated using the present model (Equations 16) and is given in Figure 16a. 621 

The current correlation along with Equation 12 were used to determine the helixes optimal packing density, 622 z�,D{| , in the (��∗  , p*) space. The contour plot of the z�,D{|  to zR,D{| ratio is given in Figure 16b.	zR,D{|  is 623 

the optimal packing density of straight tubes which approximately equals 90.7%.  624 

 625 

(a) 

 

(b) 

 
Figure 16: Contour plots in the (��∗  , p*) space of (a) bD��∗  and (b) of the z�,D{| to zR,D{| ratio as calculated using the 626 

present model (Equations 16).  627 

 628 

Figure 16b shows that the z�,D{|  to zR,D{|  ratio is always lower than unity as helixes cannot be as 629 

efficiently packed as straight tubes. However, it can be noticed that highly curved helixes allow considerably 630 

higher packing densities than classical ones, and thus, they provide much larger specific surface areas for 631 

heat/mass transfer. As HCHPs also lead to higher transfer efficiencies, they are by far more advantageous than 632 

classical ones in term of process intensification.   633 

Figure 16b also reveals that apart for very low ��∗ , when p* is increased, z�,D{|  first decreases to a minimum 634 

before starting to increase. This is explained by the fact that increasing the helix pitch engenders additional void 635 

between the helix turns on the one hand, and on the other hand, the larger space between the helix turns allows 636 

the different helixes to be brought closer together. However, at very low pitches, this additional spacing enables 637 

the helixes to slightly approach only but not to imbricate. Therefore, the overall volume fraction filled by the 638 

helixes decreases. Once a sufficient p* is reached, further increasing the helix pitch allow the helixes to better 639 

imbricate (Figure 15) which increases their optimal packing density.   640 

 641 

4.6. Overall intensification factor and potentiality of highly curved helical pipes designs  642 

 643 

As shown in the previous sections, HCHPs lead to great transfer efficiencies but cannot be as densely packed 644 

as straight tubes. These two aspects should be combined together for quantifying the volumetric transfer rate 645 

enhancement that these designs allow achieving when used in packed modules, i.e. for assessing the enabled unit 646 

volume reduction of reactors, heat exchangers or membrane contactors. Accordingly, the following 647 

intensification factor, �, is proposed:    648 

 649 

 � � ���∞	z�,Ebc���∞	z�,Ebc 			�&		� � ���
∞	z�,Ebc���∞	z�,Ebc  Eq. 17 

 650 

For a same tube diameter, it can be analytically shown that the z�,D{|  to zR,D{| ratio equals the ratio of the 651 

specific surface area of helical and straight pipes. For a same fluid, the ���� to ��R� (resp. ���� to ��R�) ratio is 652 
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equal to the ratio of the heat (resp. mass) transfer coefficients in helical and straight tubes respectively. Thus,	� 653 

physically represents the ratio of the heat/mass flux achieved in helical pipes to that achieved in straight ones. 654 

For example, an �  = 2 indicates that the use of HCHPs allows obtaining similar transfer performance than 655 

straight tubes while reducing the volume of the heat/mass transfer device by nearly a factor 2. This is true 656 

whenever the heat/mass transfer resistance in the internal fluid side is the one that limits the overall transfer rate. 657 

This situation is commonly encountered in heat exchangers. It also occurs in many mass transfer devices, e.g. 658 

fluid degassing in membrane contactors under vacuum operation and fluid dispensing systems based on 659 

vaporization (e.g. pure liquid on the shell side of a contactor).  660 

Figure 17 shows the contour plot of �  in the )��∗ , 	�∗* plane for different fluid properties and operating 661 

conditions. Note that different scales are used for each subfigure. Figures 17a and 17b reveal that, at very low 662 

Re, HCHPs allow a moderate improvement of the transfer rates only, while classical helixes perform even worse 663 

than straight tubes. The reason is that, at low Re, centrifugal effects are moderate and thus generate Dean 664 

vortices of low intensity. Therefore, the provided heat/mass transfer enhancement remains limited and barely 665 

compensates the effects of the decrease of the packing density.   666 

The intensification factor improves with increasing Re and Pr (resp. Sc) numbers. For Re = 2 000 for 667 

example, HCHPs achieve volumetric transfer rates nearly 6.5 times higher than straight tubes for Pr (resp. Sc) = 668 

1 (Figure 17c), and the intensification factor exceeds 8 for Pr (resp. Sc) = 10 (Figure 17d). These results 669 

demonstrate the huge potential of HCHPs for process intensification. 670 

 671 

(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 17: Contour plots of the intensification factor, ε, for: (a) Re = 10 and Pr (resp. Sc) = 1. (b) Re = 10 and Pr (resp. 672 

Sc) = 10. (c) Re = 2 000 and Pr (resp. Sc) = 1. (d) Re = 2 000 and Pr (resp. Sc) = 10.  673 

 674 

5. Conclusion and perspectives 675 

 676 

This paper focused on the heat/mass transfer enhancement in helical pipes, especially highly curved ones, 677 

under laminar flow conditions. Novel designs, offering huge potentialities for intensified mass and/or heat 678 

transfer performance have been identified: on the one hand, they generate intense Dean-type vortices, and on the 679 

other hand, they can be densely packed. The results demonstrate that highly curved helixes allow intensifying the 680 

volumetric transfer rate up to a factor 8, which should enable a massive unit volume reduction of reactors, heat 681 

exchangers and membrane contactors, as soon as the mass or heat transfer resistance is mostly located in the 682 

internal fluid (bore side). This situation is likely to occur in gas-liquid heat exchangers, catalytic reactors with 683 

large reaction rates, fluid degassing in membrane contactors under vacuum operation, or fluid dispensing 684 

systems based on vaporization (e.g. pure liquid on the shell side of a contactor).  685 

Future studies by the authors will concentrate on the following points: 686 

1- Experimental measurements of the heat/mass transfer efficiency in HCHPs (highly curved helical pipes) 687 

for a trustworthy validation of the present numerical results. Indeed, as explained in this paper, such data lack in 688 

the literature since HCHPs are difficult to manufacture using traditional manufacturing techniques. However, 689 
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nowadays, thanks to a witnessed progress in 3D-printing, the fabrication of such designs has become achievable 690 

[14]. 691 

2- The current paper showed that the heat/mass transfer efficiency in HCHPs considerably improves when 692 

the Prandtl/Schmidt number is increased. Therefore, it is worthwhile investigating the performance of these 693 

designs for fluids with higher Prandtl (e.g. oils) or Schmidt (e.g. liquids) numbers since enormous intensification 694 

factors may be expected [32]. 695 

3- Although intense Dean vortices in HCHPs lead to improved heat and mass transfer efficiencies compared 696 

to straight tubes, they also induce higher pressure drops and hence involve greater pumping costs. Therefore a 697 

multi-objective optimization is necessary to compare the benefits provided by HCHPs with the additional 698 

operating costs involved, and thus, assessing the potential of these designs. The correlations provided in this 699 

paper and in Abushammala et al. [14] allow determining the Nusselt/Schmidt number and the friction factor in 700 

helical pipes, and can thus be used as surrogates in this intended model-based optimization. 701 

 702 
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Nomenclature 707 

 708 bD�� Distance separating two closely packed helixes (m) 
CA Molar concentration of A (mol m-3) 
d Pipe diameter (m) 
D Mass diffusivity (m2 s-1) ���  Dean number following the definition of Eq. 14 (-) ��9 Dean number following the definition of Eq. 15 (-) 
h Heat transfer coefficient (W m-2 K-1) 
k Mass transfer coefficient (m s-1) 

Lth Length of the thermal entrance region (m) ET  Mass flow rate (kg s-1) jPQx Mass flux of component A (kg m-2 s-1) 
Nu Nusselt number (-) ���� Asymptotic Nusselt number in helical pipes (-) ��R� Asymptotic Nusselt number in straight pipes (-) 
p Helix pitch (m) 
P Pressure (Pa) 
Pr Prandtl number (-) �� Helix radius (m) 
Re Reynolds number (-) 
Sc Schmidt number (-) 
Sh Sherwood number (-) ���� Asymptotic Sherwood number in helical pipes (-) ��R� Asymptotic Sherwood number in straight pipes (-) 
T Temperature (K) HI,KL Mixing-cup temperature (K) H[ Temperature of the wall (K) �PQ Fluid velocity vector (m s-1) 
U Mean velocity of the primary flow (m s-1) mQ Bulk motion velocity (m s-1) 
V Volume (m3) 

 709 

Greek letters 710 i Thermal diffusivity (m2 s-1) 
 Radius of curvature of the pipe (m) 
ρ Density (kg m-3) 
ε Intensification factor (-) � Pipe curvature (m-1) 
λ Thermal conductivity (W m-1 K-1) 
μ Dynamic viscosity (Pa s) h Kinematic viscosity (m2 s-1) 
ρA Mass concentration of A (kg m-3) z�,D{|  Optimal packing density of helical pipes (-) zR,D{| Optimal packing density of straight pipes (-) 
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Z Heat flux (W) 
 711 

Superscripts 712 

* Designates a dimensionless number 
 713 

References  714 

[1] Alam T., Kim M. H., 2018. A comprehensive review on single phase heat transfer enhancement techniques in heat 715 

exchanger applications. Renewable and Sustainable Energy Reviews, 81, 813-839. 716 

[2] Ghidossi R., Veyret D., Moulin, P., 2006. Computational fluid dynamics applied to membranes: State of the art and 717 

opportunities. Chemical Engineering and Processing: Process Intensification, 45(6), 437-454. 718 

[3] Qiu L., Deng H., Sun J., Tao Z., Tian S., 2013. Pressure drop and heat transfer in rotating smooth square U-duct under 719 

high rotation numbers. International journal of heat and mass transfer, 66, 543-552. 720 

[4] Khosravi-Bizhaem H., Abbassi A., Ravan A. Z., 2019. Heat transfer enhancement and pressure drop by pulsating flow 721 

through helically coiled tube: An experimental study. Applied Thermal Engineering, 160, 114012. 722 

[5] Jaisankar S., Radhakrishnan T. K., Sheeba K. N., 2009. Experimental studies on heat transfer and friction factor 723 

characteristics of thermosyphon solar water heater system fitted with spacer at the trailing edge of twisted tapes. Applied 724 

Thermal Engineering, 29(5-6), 1224-1231. 725 

[6] Yakut K., Sahin B., Celik C., Alemdaroglu N., Kurnuc, A., 2005. Effects of tapes with double-sided delta-winglets on heat 726 

and vortex characteristics. Applied energy, 80(1), 77-95. 727 

[7] Ilyas M., Aydogan F., 2017. Steam generator performance improvements for integral small modular reactors. Nuclear 728 

Engineering and Technology, 49(8), 1669-1679. 729 

[8] Kong R., Deethayat T., Asanakham A., Kiatsiriroat T., 2018. Heat transfer phenomena on waste heat recovery of 730 

combustion stack gas with deionized water in helical coiled heat exchanger. Case studies in thermal engineering, 12, 731 

213-222. 732 

[9] Javadi H., Ajarostaghi S. S. M., Pourfallah M., Zaboli M., 2019. Performance analysis of helical ground heat exchangers 733 

with different configurations. Applied Thermal Engineering, 154, 24-36. 734 

[10] Abdel-Aziz M. H., Mansour I. A. S., Sedahmed, G. H., 2010. Study of the rate of liquid–solid mass transfer controlled 735 

processes in helical tubes under turbulent flow conditions. Chemical Engineering and Processing: Process 736 

Intensification, 49(7), 643-648. 737 

[11] Mendez D. L. M., Lemaitre C., Castel C., Ferrari M., Simonaire H., Favre E., 2017. Membrane contactors for process 738 

intensification of gas absorption into physical solvents: Impact of dean vortices. Journal of Membrane Science, 530, 20-739 

32. 740 

[12] Mansour M., Liu Z., Janiga G., Nigam K. D., Sundmacher K., Thévenin D., Zähringer, K., 2017. Numerical study of 741 

liquid-liquid mixing in helical pipes. Chemical Engineering Science, 172, 250-261. 742 

[13] Przybył S., Pierański P., 2001. Helical close packings of ideal ropes. The European Physical Journal E, 4(4), 445-449. 743 

[14] Abushammala O., Hreiz R., Lemaitre C., Favre É., 2019. Laminar flow friction factor in highly curved helical pipes: 744 

Numerical investigation, predictive correlation and experimental validation using a 3D-printed model. Chemical 745 

Engineering Science, 207, 1030-1039. 746 

[15] Schmidt E. F., 1967. Wärmeübergang und druckverlust in rohrschlangen. Chemie Ingenieur Technik, 39(13), 781-789. 747 

[in German] 748 

[16] Dravid A. N., Smith K. A., Merrill E. W., Brian P. L. T., 1971. Effect of secondary fluid motion on laminar flow heat 749 

transfer in helically coiled tubes. AIChE Journal, 17(5), 1114-1122. 750 

[17] Kalb C. E., Seader J. D., 1974. Fully developed viscous—flow heat transfer in curved circular tubes with uniform wall 751 

temperature. AIChE Journal, 20(2), 340-346. 752 

[18] Manlapaz R. L., Churchill, S. W., 1981. Fully developed laminar convection from a helical coil. Chemical Engineering 753 

Communications, 9(1-6), 185-200. 754 

[19] Moulin P., Rouch J. C., Serra C., Clifton M. J., Aptel P., 1996. Mass transfer improvement by secondary flows: Dean 755 

vortices in coiled tubular membranes. Journal of Membrane Science, 114(2), 235-244. 756 

[20] Yildiz, C., Biçer, Y., & Pehlivan, D., 1997. Heat transfer and pressure drop in a heat exchanger with a helical pipe 757 

containing inside springs. Energy conversion and management, 38(6), 619-624. 758 

[21] Xin R. C., Ebadian M. A., 1997. The effects of Prandtl numbers on local and average convective heat transfer 759 

characteristics in helical pipes. Journal of heat transfer, 119(3), 467-473. 760 

[22] Ghobadi M., Muzychka, Y. S., 2014. Fully developed heat transfer in mini scale coiled tubing for constant wall 761 

temperature. International Journal of Heat and Mass Transfer, 72, 87-97. 762 

[23] Sheeba A., Abhijith C.M., Prakash M.J., 2019. Experimental and numerical investigations on the heat transfer and flow 763 

characteristics of a helical coil heat exchanger. International Journal of Refrigeration, 99, pp.490-497. 764 

[24] Ghobadi M., Muzychka Y. S., 2016. A review of heat transfer and pressure drop correlations for laminar flow in curved 765 

circular ducts. Heat Transfer Engineering, 37(10), 815-839. 766 

[25] Sabelfeld M., Geißen S. U., 2019. Effect of helical structure on ozone mass transfer in a hollow fiber membrane 767 

contactor. Journal of membrane science, 574, 222-234. 768 

[26] Kaufhold D., Kopf F., Wolff C., Beutel S., Hilterhaus L., Hoffmann M., Beutel S., Hilterhaus L., Hoffmann M., Scheper 769 

T., Schlüter M., Liese, A., 2012. Generation of Dean vortices and enhancement of oxygen transfer rates in membrane 770 

contactors for different hollow fiber geometries. Journal of membrane science, 423, 342-347. 771 



21 

 

 

[27] Kreith F., Boehm R. F., Raithby G. D.,  Hollands, K. G.T., Suryanarayana N. V.,  Modest M. F.,  Carey V. P., Chen J. 772 

C., Lior N., Shah R. K., Bell K.J., Moffat R. J., Mills A. F., Bergles A. E., Swanson L. W., Antonetti V. W., Irvine T. F., 773 

Capobianchi M., 1999. Heat and Mass Transfer Handbook. CRC Press, Boca Raton, Florida, USA. 774 

[28] Saffari H., Moosavi R., Nouri N. M., Lin C. X., 2014. Prediction of hydrodynamic entrance length for single and two-775 

phase flow in helical coils. Chemical Engineering and Processing: Process Intensification, 86, 9-21. 776 

[29] Nusselt W., 1910. The dependence of the heat-transfer coefficient on tube length. Zeit. VDI, 54, 1154-1158. [in German] 777 

[30] Jamshidi N., Farhadi M., Ganji D. D., Sedighi, K., 2013. Experimental analysis of heat transfer enhancement in shell and 778 

helical tube heat exchangers. Applied thermal engineering, 51(1-2), 644-652. 779 

[31] De Amicis J., Cammi A., Colombo L. P., Colombo M., Ricotti M. E., 2014. Experimental and numerical study of the 780 

laminar flow in helically coiled pipes. Progress in Nuclear Energy, 76, 206-215. 781 

[32] Abushammala O., Hreiz R., Lemaitre C., Favre É., 2019. Maximizing Mass Transfer Using Highly Curved Helical 782 

Pipes: A CFD Investigation. 6th International Conference of Fluid Flow, Heat and Mass Transfer, Ottawa, Canada, June 783 

2019. 784 






