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Satellite transmissions can suffer from high channel impairments, especially on the link between a satellite and a
mobile end user. To cope with these errors, physical and link-layer reliability schemes have been introduced at the
price of an increased end-to-end delay seen by the transport layer [for example, Transmission Control Protocol
(TCP)]. By default, the TCP enables delayed acknowledgment (DelAck) that might increase the end-to-end delay
when performing over satellite link-layer recovery schemes. As a matter of fact, even if this option enables decreasing
the feedback path load and the stack processing overhead, it might be counterproductive in a satellite context.
This motivates the present paper, which aims to quantify the impact of such a TCP option in the context of
low Earth orbit satellite constellations. Several simulation measurements are performed with two well-deployed
TCP variants, and it is shown that DelAck should be disabled when used over link-layer Hybrid Automatic Repeat
Request schemes, particularly when these schemes enable reordering the buffer.

I. Introduction

OW earth orbit (LEO) satellite constellations allow us to cope
with digital fracture by providing Internet access to isolated or
rural areas. The delays of LEO constellations are in the same order of
magnitude as terrestrial links that authorize the use of a transmission
control protocol (TCP) as a transport protocol without deploying
Proxy Enhanced Proxy (PEP) systems [1]. Moreover, the new
satellite constellations,Z have a broadband goal, in which part of
the TCP is expected to be significant [2] but the high channel
constraints, mostly on land mobile satellite (LMS) channels [3], may
induce challenges for end to end protocols.
Reliability mechanisms have been introduced on the LMS channel
[4 6] to counteract the high potential error rate on this link. One
of the most efficient is the Hybrid Automatic Repeat Request
(HARQ), which combines forward error correcting coding and link
layer retransmission. In our evaluations, such a mechanism is
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deployed between the last satellite on the route and the ground
receiver. We select, in this paper, the type II HARQ, which is
commonly deployed over the physical layer. The HARQ can
retransmit data on the LMS channel, causing higher end to end delay
and jitter that directly impact on the TCP. This may result in a
decrease of the throughput of the TCP. To improve TCP performance,
alow layer reordering mechanism is proposed [7] to mitigate the jitter
caused by the HARQ. However, this buffer might increase the end to

end delay, which is unfortunately high due to the path length and the
possible HARQ retransmissions. At the transport layer, delayed
acknowledgments (DelAcks) [8] are also introduced to improve TCP
performance, but they mostly consider terrestrial communication
links. This mechanism is now activated by default over each TCP
stack. DelAck reduces the number of acknowledgments sent by the
TCP receiver, making some packets acknowledged later. Although
this scheme decreases the number of acknowledgments, and thus the
feedback path load, it also increases end to end performance. In
particular, DelAck decreases the CPU load [9] as the number of
acknowledgments processed decreases, explaining why this option is
activated by default. In short, these reliability mechanisms exhibit a
tradeoft between reliability and delay. However, when deployed at
different layers, their conjoint use can lead to counterproductive
effects that need to be investigated and are tackled throughout
this paper.

This paper assesses whether the TCP DelAck option improves
TCP performance when used conjointly with layer two reliability
mechanisms, in the context of mobile users of LEO constellations.
We found only a few studies investigating the impact of DelAck.
Chen et al. [10] studied the impact of DelAck on a TCP over wireless
links and showed that their impact on TCP performance depended on
1) the topology used, and 2) the path length. They concluded that
activating DelAck did not always improve the TCP throughput.
In the context of satellite systems, Wood et al. [11] also raised some
concerns about the use of such a mechanism. As losses on satellite
constellations might be due to transmission errors on the LMS
channel and not to congestion, such particular loss patterns and their
corresponding recovery mechanisms might have an impact on the
consistency of using DelAcks. All these reasons motivate the present
study, which aims at investigating this default TCP option and filling



the gap by explaining the rationale in using or not using this
mechanism over LEO systems.

We present, in the following, the scenario used. We first describe
the satellite environment; then, we introduce the low layer reliability
mechanisms used to deal with the high channel impairments on this
environment; and then, we introduce the TCP versions chosen and the
DelAck option. We study the impact of DelAck on TCP performance
in our scenario in Sec. I, and then we explain the results obtained
in Sec. IV.

II. Scenario

This section presents the satellite scenario, how we simulate the
satellite environment, and the different schemes that are considered
throughout this paper: the reliability mechanisms on the LMS
channel to deal with the high error rate, and the transport protocol.

A. Satellite Environment

We have chosen Network Simulator 2 (hereafter referred to as
ns 2) to simulate the satellite environment, which is composed of 66
LEO satellites, at an altitude of 800 km, ensuring a global coverage of
any point on Earth at any time. Due to the movement of the satellite
and route changes, the transmission delay varies from 70 to 90 ms
within the satellite constellation. Moreover, except on the LMS
forward link, we consider a path error free, as shown in Fig. 1,
between the sender and the last satellite. Finally, messages are sent
from the server to the mobile receiver through a satellite constellation
representing the existing satellite constellations already deployed.

B. Hybrid Automatic Repeat Request

We previously explained that HARQ schemes are used to mitigate
link layer impairments on the LMS channel. These schemes aim to
compensate the high error rate characterizing such a channel by
benefiting from both automatic repeat request and forward
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Fig. 1 Model for a satellite constellation (BW, Bandwidth; NACK,
Negative Acknowledgment).
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error correction (FEC) coding, as well as optimizing the usage of
the LMS channel. There are two main types of HARQs:

1) Type IHARQ, which is also named Chased Combining, occurs
when a retransmission is needed and the sending node again sends the
same message as in the first transmission, which is composed of the
message and redundancy bits.

2) Type THARQ, which is also named Incremental Redundancy,
occurs when the information bits are only sent at the first sending,
with some redundancy bits. When a retransmission is asked, the
sender sends more redundancy bits that are different from the bits
sent in previous transmissions. Thus, each reception of additional
data will add more redundancy bits to help decode the message.

‘We present in this paragraph the basic principle of the version used
in our simulations, which is adaptive HARQ [12]. This version is an
improvement of type I HARQ, and it uses the mutual information to
compute at each reception if a packet can be decoded and, if not, how
many additional redundancy bit are needed. This optimizes the use of
the LMS channel capacity by sending only the desired number of bits.
This version allows up to three retransmissions in case of erased
packets. The principle detailed in Fig. 2a is as follows: the receiver
side of the HARQ link stores the bits received while a packet has
not been decoded. Each time useful or redundancy bits are received,
the module computes whether enough data have been received
to decode the packet. If not, a Negative ACK (NACK) is sent to the
HARQ sender, asking for more redundancy bits. Transmissions
and decoding times take between 10 ms (no retransmission of
redundancy bits) and 70 ms (three retransmissions), depending on
the channel quality. If the packet cannot be decoded after three
retransmissions, it is dropped.

Asmentioned in Sec. I, solutions have been proposed to improve
the performance of the communication by mitigating the jitter
caused by the HARQ. Due to the varying decoding times by the
HARQ, packets are delivered out of order by this module to
the upper layers. The TCP stores these out of order packets, but this
generates a lot of retransmissions that lower TCP performance and
should be avoided. The reordering mechanism proposed in Ref. [7]
allows the packets to be reordered at the link layer and then
delivered in order to the upper layers. This solution shows
better results in terms of TCP performance. Thus, upper layers
(particularly the transport layer) receive ordered packets that lead to
better performance. The cost of this mechanism is an additional
delay that needs to be below the TCP timeout value. An overview of
this mechanism, including both the HARQ and the link layer
reordering mechanism, is given in Fig. 2b.

Concerning the buffer sizes, the buffers used to store packets
being decoded by the HARQ (waiting for additional redundancy
bits) and to reorder them have been designed to always handle all the
packets being processed. Thus, we never have overflow in these
buffers.
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b) Description of HARQ with the reordering mechanism

Fig. 2 Description of the low layer mechanisms.



Finally, we reused the LMS channel details used in Ref. [12]
to characterize the LMS channel: 1) modulation Quadrature phase
shift keying; 2) mother FEC code, with Consultative Committee for
Space Data Systems turbocodes of 1/6; and 3) a codeword
length of 53,520 bits (data bits = 8920 bits).

In the following, we study the impact of DelAcks with and
without this link layer reordering mechanism, and we assess whether
enabling DelAcks is mandatory in both cases.

C. Version of TCP and Parameters

We experiment with both TCP NewReno and CUBIC in our
simulations, which are presented in section V of [13] as
recommended TCP variants. The TCP is, today, the major Internet
transport protocol, and it has been shown to provide reasonable
performance over LEO constellations [11,14] without requiring
specific PEP optimization mechanisms. TCP NewReno features
basic reliability functionalities of most TCP variants and is used
here as a reference protocol in our simulations. We also consider
CUBIC [15] because of the following:

1) It is enabled by default in GNU/Linux and macOS systems
(since 10.9).

2) It performs better than TCP NewReno over long delay links [6].

The CUBIC congestion window is growing faster than the TCP
NewReno window in order to reach the optimal value faster. It has
been designed to improve the scalability of the TCP over fast and
long distance networks.

DelAcks can combine two in order packets if, and only if, they are
received within a fixed time window [16]. A timer is started when a
first packet is received; if another packet is received before the timer
expires, asingle cumulative acknowledgmentis sent for both packets.
If the timer expires, the TCP acknowledges only the packet received,
and it resets the timer. If the TCP receives an out of order packet, an
ACK is instantly sent for this packet, allowing the TCP to adapt
its congestion window.

D. Simulation Scenario

To ease the simulation and make it faster, we performed
simulations with only three nodes to represent the sender, the last
satellite on the message route, and the receiver. The satellite
constellation was simulated by varying the delays between the nodes.
We used SaVvi [17] to get the parameters of the previously described

- CUBIC + DelAck

- CUBIC + no DelAck

-8 TCP NewReno + DelAck
- TCP NewReno + no DelAck

Goodput(kbr/s)
588588

é !') 1l0 1I1 1|2 1|3
SNR(dB)
Fig. 3 Impact of DelAck on end-to-end goodput.
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LEO satellite constellation; then, we played a first simulation to get
the evolution of the delays between the sender and the last satellite, as
well as between the last satellite and the ground receiver. Then all
ns 2 simulations were played using the three nodes and the temporal
traces generated.

The simulations are run with a LMS channel [18,19] between the
last satellite and the ground gateway in anintermediate tree shadowed
environment. The HARQ is always activated in our simulations.
We also vary the quality of this channel by setting a reference signal
to noise ratio (SNR) ranging from 7 to 13 dB. During the simulations,
the link quality changes over time around this SNR reference value.
Each simulation lasts 600 s, with one single TCP flow performing.

III. Study of the Impact of DelAck

To analyze the impact of DelAck, we report values of the TCP
retransmission timeout (RTO) and TCP duplicate acknowledgment
(DUPACK), which are essential metrics used by the TCP to recover
lost packets. Basically, RTO is a timeout to trigger retransmissions
when no acknowledgments have been received after a given period,
whereas DUPACK detects a loss in the middle of aflow transmission.
These mechanisms allow the receiver to inform the sender that a
packet is missing and trigger retransmission of this packet as soon as
possible. These congestion events lower the sending rate of the TCP.

In this section and the following, the values of the RTO timeout
events, DUPACK, and spurious retransmission (unnecessary
retransmission of TCP segments that are delayed and not lost) have
been normalized by the number of packets sent in order to have
comparable results in the different graphs and tables.

We observe, as shown in Figs. 3 and 4, that we have a low goodput,
whatever the value of the SNR; whereas we could expect a goodput of
40 Mb/s in the case of an error free network. On the other hand, the
values of the DUPACK and spurious retransmissions remain high,
and they do not decrease when the channel quality improves, as we
could expect. This is mainly due to out of order packets arriving
too late and, as a consequence, being interpreted by the TCP as a
congestion event, which results in spurious retransmissions and
congestion window halving.

Some packets cannot be decoded after three retransmissions
by the HARQ and are dropped. This proportion of packets ranges
from 4% with SNR = 7 to less than 0.5% with SNR = 13. As we
could expect, the proportion of packets not recovered by the HARQ
decreases when the channel quality improves.

A. Impact of DelAck Without Reordering Mechanism

The default value of DelAck on GNU/Linux systems depends on
the system architecture, but it is often around 40 ms. This is also the
default value in ns 2 that we kept in our simulations. As shown in
Figs. 3 and 4, we observe that DelAck significantly improves TCP
performance when using TCP NewReno; the goodput has increased;
and the number of RTO timeout events, DUPACK, and spurious
retransmissions has decreased. However, DelAck has no impact on

% TCP NewReno + no DelAck % TCP NewReno + no DelAck - TCP NewReno + no DelAck
& TCP NewReno + DelAck - CUBIC + no DelAck -+ CUBIC + no DelAck
% CUBIC + no DelAck @ CUBIC + DelAck % CUBIC + DelAck
° @ CUBIC + DelAck “® TCP NewReno + DelAck ” -® TCP NewReno + DelAck
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a) Impact on RTO timeout events

b) Impact on DUPACK events

¢) Impact on spurious retransmissions

Fig. 4 Impact of DelAck on TCP performance.



CUBIC goodput, even if we observe a diminution of the number of
DUPACK and spurious retransmissions. This shows that there is
another mechanism, linked to DelAck and the topology studied in this
paper, which counteracts the diminution of DUPACK, RTO timeout
events, and spurious retransmissions, especially when using CUBIC.
An explanation for this bad performance is provided in Sec. IV.

B. Impact of DelAck with the Link-Layer Reordering Mechanism

As seen in Fig. 5, when the link layer reordering mechanism is
enabled, activating DelAck greatly decreases TCP performance,
more particularly when using CUBIC, where the goodput fall is
significant for high values of the SNR. This behavior can be observed
for both TCP NewReno and CUBIC.

This points out the need to understand why the activation of
DelAck decreases TCP goodput in this scenario; explications are
given on Sec. IV.

C. Impact with Other TCP Protocols

Although we only presented detailed results with TCP NewReno
and CUBIC, we also experimented without reordering mechanisms
using other TCP protocols such as TCP Hybla, which is a TCP version
designed for geostationary orbit satellite links [20]. Its performance on
long delay links makes TCP Hybla a good candidate to study, anditcan
bring additional results in our scenario. We observe a strong decrease
of the goodput when DelAck is activated. The fall can be up to 40%
with this protocol, leading to the conclusion that DelAcks should be
disabled when using TCP Hybla over a LEO satellite constellation.

However, despite this performance drop when enabling DelAck,
TCP Hybla still performs better goodput than TCP NewReno or
CUBIC. With DelAck, TCP Hybla goodput is always higher than
850 kb /s, whereas TCP NewReno and CUBIC cannot achieve
goodputs higher than 650 kb/s. Without DelAck, the goodput
with TCP Hybla ranges from 1141 kb/s (SNR=7) to
1764 kb/s (SNR = 13).

IV. Analysis

The TCP congestion window is generally updated when an
acknowledgment is received, during the slow start or fast recovery
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a) With TCP NewReno

phase; the use of DelAck slows down this growth because of the
reduced number of acknowledgments, as observed in Ref. [11]. The
evolution of the congestion window with and without DelAck is
shown in Fig. 6. Each curve is generated independently with one
single TCP flow between two nodes, without any loss, and without
the HARQ. This is just a simple case illustrating the impact of
DelAck on the congestion window evolution. Such pacing might
have benefits for congested networks by delaying the filling of the
buffer at the bottleneck and then allowing the flow to have a larger
congestion window [21]. However, in our scenario, we are placed
in a mostly uncongested network, meaning that losses are mainly
due to transmission errors. As a result, pacing only delays
transmissions and loss detection signals [22], resulting in a decrease
of the goodput.

In our context of LEO satellite communications, in which delays
are varying due to satellite movements, route changes, and
reliability mechanisms such as the HARQ, any TCP variant triggers
more retransmissions than on terrestrial networks. Moreover, the
TCP needs to recover packets lost due to errors on the LMS channel,
in addition to those lost due to congestion. All the solutions
previously listed cannot totally mitigate the effects brought by the
use of satellite constellations, and we still observe more slow start
and fast recovery phases than on terrestrial networks due to these
random losses [23].

We observe in Table 1 that CUBIC triggers more retransmissions
than TCP NewReno. CUBIC is more often in the slow start or fast
recovery phase, whereas DelAck delays the progressions of the
congestion window. Thus, the gain of performance for the TCP when
DelAck is activated is lower with CUBIC than with TCP
NewReno. This trend is also observed with TCP Hybla, in which the
number of retransmissions is higher than with TCP NewReno or
CUBIC due to the larger congestion window [20]. Thus, in our
scenario, when a transport layer protocol is aggressive (e.g., TCP
Hybla or CUBIC), enabling DelAck results in slower progression of
the congestion window and a reduced goodput; whereas enabling
DelAck for transport protocols with lower retransmission levels
(e.g., TCP NewReno) improves the goodput of the connection by
taking advantage of DelAck.

Concerning TCP performance when the link layer reordering

mechanism was present, activating DelAck increased the
—+ Reordering without DelAck
2500 /
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Fig. 5 Impact of DelAck on TCP performance with a link-layer reordering mechanism.
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Tablel Number of packets retransmitted during all the
simulation, when DelAck is activated

Number of retransmissions
SNR, dB TCP NewReno CUBIC TCP Hybla
7 1,068 1333 6,969
8 932 1,100 16,914
9 925 1,105 23,073
10 789 949 16,782
11 748 923 22,399
12 742 780 23,852
13 706 789 20,688

transmission delay, which also increased the probability of
TCP timeout. We measured that the waiting time between two
packets forming a DelAck was higherthan 10 ms in 10% of the cases.
This implied that the acknowledgment of the first packet of
DelAck was delayed by the same value. This waiting time was
significant due to the reordering mechanism, and we observed that
this additional delay was often proportional to the time needed to get
an additional HARQ transmission to decode a packet.

Furthermore, we observe a decrease of the value of RTO for both
TCP NewReno and CUBIC when DelAck is enabled, giving less
time to the packets to reach their destination, and increasing the
probability to trigger retransmissions due to timeout. We recall that
the RTO timer is regularly updated during the transmission, and
itis the sum of the Smoothed Round Trip Time (SRTT) and four times
the round trip time variaion (RTTVAR) [24]. The SRTT is the
exponential moving average of the round trip time (RTT), and the
RTTVAR is the exponential moving average of the absolute value of
the difference between the last RTT measured and the SRTT.
This algorithm is made to adapt the RTO to the RTT changes. Thus,
ifthe RTT has a high variation, the computed RTO is higherto handle
packets with a longer transmission delay and avoid spurious
retransmissions. On the other hand, if there is no RTT variation,
the RTO is smaller to detect, as soon as possible, a packet loss.
We observe in the simulations that the RTT variation is lower when
DelAck is activated. Thus, both the RTTVAR and RTO values
are lower.

This lower RTO value and the additional delay caused by DelAck,
added to the constellation transmission delay, the HARQ, and the
reordering mechanism, cause a higher number of retransmissions by
the RTO, as presented in Fig. 7. This high number of timeouts badly
impacts the performance of the TCP, decreasing its performance: it
lowers the congestion window and switches tothe slow start mode, in
which the growing of the congestion window is slower. The goodput
is finally highly impacted by the changes brought by DelAck.
However, thanks to the reordering mechanism, we have a lower
proportion of DUPACK, and TCP performance remains higher
than without the reordering mechanism, even if DelAck has a
counterproductive impact.
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Fig. 7 Impact of the activation of DelAck on the retransmission
ratio due to timeout when the reordering mechanism is present.

V. Conclusions

This paper assesses the impact of activating delayed acknowledg
ment (DelAck) on the behavior of different Transmission Control
Protocol (TCP) variants over low Earth orbit satellite constellations in
which link layer reliability schemes are considered. It is shown that
adding DelAck can have different impacts on TCP performance,
depending on the variant of the TCP used. It is recommended to
activate it when using TCP NewReno. However, with CUBIC, it can
decrease TCP performance in some cases, and the DelAck activation
is not mandatory. More generally, TCP variants that are more
aggressive and retransmit often, such as TCP Hybla, are negatively
impacted by DelAck, which should be disabled to improve
performance. There is also a need to carefully take into account the
presence of other link layer mechanisms aiming to improve TCP
performance with the HARQ; the use of DelAck conjointly with
them can be counterproductive by adding a delay to a network in
which the transmission delays are already high.
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