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Abstract
Annotating a genome is a challenging endeavor, which aims to describe not only the protein-
coding and non-coding gene catalogues, but also other functional elements involved in gene
expression regulation, maintenance of genome integrity and genome transmission across genera-
tions. Recent technical developments have greatly improved the annotation process by providing
large-scale assessments of transcription, translation, chromatin status and tri-dimensional con-
formation etc. . . Genome-wide maps of various biochemical activities can thus be readily obtained.
However, biochemical activity is not synonymous with biological function and many active gen-
omic elements may in fact be dispensable. Genome editing techniques allow for more direct tests
of biological functions, but are still costly, time-consuming, and largely limited to phenotypes
that can be observed in the laboratory. In this context, evolutionary approaches, which can
identify genomic regions under purifying selection to preserve existing functions, or under posit-
ive selection following the acquisition of new biological roles, are an important asset for functional
genome annotation. While evolutionary analyses cannot determine precise biological functions,
they can be used to test for functionality at multiple levels, by assessing selective pressures on
primary DNA or RNA sequences, on secondary RNA structures, transcription levels or patterns,
transcription factor binding sites etc. . . Here, I review the proven and potential contributions of
phylogenomic approaches to genome annotation, focusing on how these methods can be combined
with insights from molecular biology and genetics to provide a comprehensive image of functional
genomic landscapes.

How to cite: Anamaria Necsulea (2020). Phylogenomics and Genome Annotation. In Scorna-
vacca, C., Delsuc, F., and Galtier, N., editors, Phylogenetics in the Genomic Era, chapter No. 4.1,
pp. 4.1:1–4.1:26. No commercial publisher | Authors open access book. The book is freely avail-
able at https://hal.inria.fr/PGE.

1 Introduction

Understanding how complex biological functions are encoded in the DNA is a fundamental
goal of genetics. An important step towards attaining this goal is the process of genome
annotation, which aims to describe the localization, structure, biochemical activities and
(ideally) biological roles of the functional elements present in a genome.

The scope of genome annotation has expanded in recent years. When the first complete
DNA sequences of cellular organisms were obtained (Fleischmann et al., 1995), annotating a
genome was largely synonymous with describing its catalogue of protein-coding genes. This
endeavor is challenging in itself, as demonstrated by the fact that, almost twenty years after
the initial publication of the human genome sequence (Lander et al., 2001), the number of
protein-coding genes present in our genome has yet to reach a stable estimate (Pertea et al.,
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4.1:2 Phylogenomics and Genome Annotation

2018b). For eukaryotes, annotating protein-coding genes is complicated by the presence of
complex exon-intron structures and of multiple isoforms for each gene. Expectedly, alternative
transcript annotations are even less stable than known gene repertoires, as thousands of new
isoforms are added at each genome annotation release for human or mouse (Harrow et al.,
2012). Thus, annotating the complete protein-coding gene repertoire is in itself an ambitious
aim.

More recently, describing non-coding RNA genes has become an important part of the
genome annotation process. Some categories of non-coding RNAs, such as ribosomal or
transfer RNAs, which have essential roles in translating messenger RNAs (mRNAs) into
proteins, have been extensively studied and are thus generally well annotated in most species
(Abe et al., 2014). Other classes of non-coding RNAs are more elusive. These include both
small RNAs (such as miRNAs, which regulate gene expression at the post-transcriptional
and translational level (He and Hannon, 2004), or piRNAs, which are thought to protect the
germline from transposable element invasion (Weick and Miska, 2014)) and large RNAs (such
as long non-coding RNAs, which were proposed to act in a multitude of biological processes
[Guttman et al. 2009]). In vertebrates, the number of annotated non-coding RNA genes
has increased exponentially in the past few years, thanks to the development of sensitive
transcriptome sequencing techniques (Wang et al., 2009). For example, the human genome
may harbor as many as 60,000 long non-coding RNA (lncRNA) genes (Iyer et al., 2015;
Pertea et al., 2018a), which vastly surpasses the number of known protein-coding genes.

Efforts to chart the functional components of a genome now go even beyond establishing
a complete protein-coding and non-coding gene list. In addition to gene repertoires, com-
prehensive genome annotation projects aim to survey elements that are important for gene
expression regulation, for the maintenance of genome integrity, genome transmission across
generations, etc. . . Such integrative functional annotation projects are in progress for the
human and mouse genomes (Carninci et al., 2005; ENCODE Project Consortium et al., 2007),
as well as for other model organisms (modENCODE Consortium et al., 2010; Gerstein et al.,
2010). These aspects of genome annotation were made possible by technological advances
that enabled large-scale surveys of various biochemical activities, such as enhancer activity
(Visel et al., 2009), transcription factor binding (Robertson et al., 2007) or initiation of DNA
replication (Cadoret et al., 2008).

Regardless of the class of genomic element that is annotated, either genic or non-genic,
biological function is far more difficult to assess than biochemical activity (see Chapter 4.2
[Robinson-Rechavi 2020]). Indeed, numerous genomic elements are biochemically active
but functionally dispensable (Graur et al., 2015). For example, transcriptional activity is
often observed for pseudogenes, long after the loss of biological functions (Nakamura et al.,
2009). A direct test for functionality is to examine the phenotypes and fitness of individuals
in which specific elements are inactivated through genetic manipulations. Until recently,
genetic manipulation techniques could only be applied to a few targeted genomic loci at a
time and were exclusively used with laboratory-grown model organisms or to cell cultures
(Hérault et al., 1998; Hockemeyer et al., 2011; Barde et al., 2011). With the development
of CRISPR/Cas-based gene editing techniques (Jinek et al., 2012), these approaches have
become more broadly applicable, leading to functional surveys encompassing thousands of loci
at a time (Shalem et al., 2014; Sanjana et al., 2016). However, at the moment these techniques
are still costly, time-consuming and largely restricted to phenotypes that can be observed in
the laboratory. In this context, evolutionary studies can bring important insights into the
functionality of diverse genomic elements. While precise biological functions generally cannot
be predicted through evolutionary analyses, they are useful tools for predicting genome



A.Necsulea 4.1:3

functionality, by revealing elements that have been under purifying selection to preserve
existing biological roles, or under positive selection following the acquisition of new functions.

Here, I review the contributions of large-scale evolutionary genomic (or phylogenomic)
approaches to genome annotation. Focusing on eukaryotes, I will present several aspects of
genome annotation, such as delineating the protein-coding and non-coding gene repertoires,
describing gene expression regulatory elements and identifying other functional genomic
elements or structures. I will present the molecular biology and genetic techniques that
are nowadays frequently employed to generate data for genome annotation, as well as the
evolutionary approaches that can be used to bring insights into the functionality of various
genetic elements. I will thus endeavor to show how these methods can be combined to provide
a comprehensive image of functional genomic landscapes.

2 Annotating protein-coding and non-coding gene repertoires

Undoubtedly the most important step of the genome annotation process is to characterize
gene repertoires. This is a complex procedure, which can be roughly divided into four steps:
describing gene models, predicting broad functional categories of genes (e.g., protein-coding
and non-coding genes), inferring gene functionality and annotating putative gene functions.
Here, I will discuss how phylogenomic approaches can contribute to these four gene annotation
steps.

2.1 Gene model description
Describing gene models in eukaryotes is a challenging task, which involves identifying
transcribed regions, transcription start and end sites, exon-intron structures and alternative
splicing variants. Gene model prediction can be performed either ab initio, using species-
specific data and predictive methods, or through homology-based approaches, which use
gene and protein information from closely-related species to predict genes in the species of
interest. Ab initio methods are evidently required for organisms where genome sequences
for closely-related species are lacking. Conversely, homology-based predictions are beneficial
when data from closely-related species is abundant, and were notably used to annotate
primate genomes (Chimpanzee Sequencing and Analysis Consortium, 2005; Rhesus Macaque
Genome Sequencing and Analysis Consortium et al., 2007).

For ab initio gene model prediction, transcriptome sequencing has become an invaluable
tool. In its many forms, transcriptome sequencing has long benefited genome annotation
efforts, even before next-generation sequencing techniques became available. For example,
analyses of expressed sequence tags (ESTs) helped compile the initial catalogue of human
genes (Lander et al., 2001), and Cap Analysis of Gene Expression (CAGE) sequencing
data were used to annotate mouse gene promoters (Carninci et al., 2005). More recently,
massively parallel transcriptome sequencing methods (commonly termed RNA-seq), have
become an indispensable aspect of the genome annotation process. Compared to previous
transcriptomics assays, RNA-seq offers increased sequencing depth and thus higher transcript
detection sensitivity, even for moderately expressed genes (Wang et al., 2009). To improve
detection sensitivity even at low expression levels, RNA-seq can be used in combination with
RT-PCR amplification (Howald et al., 2012) or with capture on tiling arrays (Clark et al.,
2015; Bussotti et al., 2016), which considerably increases the sequencing depth for targeted
transcripts or genomic regions. Several computational methods were developed to assemble
transcript sequences from RNA-seq data, either using a genome sequence as a reference
(Trapnell et al., 2010; Pertea et al., 2015) or entirely de novo (Grabherr et al., 2011). The
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application of transcriptome sequencing to genome annotation has revealed many forms of
transcriptome complexity. These include the presence of numerous transcript variants for
protein-coding genes, generated through canonical mechanisms such as alternative splicing,
use of alternative transcription initiation or termination sites, read-through transcription
or trans-splicing (ENCODE Project Consortium et al., 2007; Gerstein et al., 2007). These
in-depth genome annotation studies also established that transcription is pervasive outside
of protein-coding genes (ENCODE Project Consortium et al., 2007). In particular, in-depth
transcriptome and chromatin accessibility surveys revealed that mammalian genomes contain
tens of thousands of long non-coding RNAs (Guttman et al., 2009; Khalil et al., 2009; Iyer
et al., 2015; Pertea et al., 2018b).

Homology-based gene model prediction approaches are of particular importance for
non-model species, when other sources of data are insufficient. The quality of a genome
annotation largely depends on the quality and quantity of transcriptomic and proteomic
data available for that species (Mudge and Harrow, 2016). For widely-studied species
such as human, mouse, fruitfly or nematode, extensive resources (including full-length or
partial cDNA sequences, RNA-seq and proteomics data) have accumulated over time and
are available as input for genome annotation (Mudge and Harrow, 2016). However, this is an
exception rather than the rule, and for many species experimental data are scarce. In this
case, homology-based annotation methods can be applied, with relative facility. The most
frequently used gene model prediction software, including Augustus (Stanke et al., 2006),
Gnomon (Souvorov et al., 2010), Exonerate (Slater and Birney, 2005) and GeneWise (Birney
et al., 2004), can use as input protein and RNA sequences from closely related species. In
the simplest implementations, the genome is scanned to identify local alignments between
protein-sequences and nucleotide sequence translations. This is for example done in the
Ensembl annotation pipeline (Zerbino et al., 2018), in which pairwise alignments between
reference protein sequences and translated nucleotide sequences are generated and exploited
to predict gene structures, with Exonerate (Slater and Birney, 2005) and GeneWise (Birney
et al., 2004). The efficiency of this approach depends on the degree of sequence conservation
between the proteins used as reference and the ones encoded in the target genome. To
identify more divergent proteins, an extension of Augustus (Keller et al., 2011) uses multiple
sequence alignments to construct protein conservation profiles and to identify blocks of
ungapped, highly-conserved sequences. Predicted gene structures in the target genome are
then compared with the resulting sequence conservation profiles, and are assigned higher
confidence scores if they match the amino acid composition profiles of conserved alignment
blocks.

Homology-based prediction methods can also be insightful for annotating non-coding
RNA genes. For lncRNAs, which are generally weakly expressed, defining gene models with
standard RNA-seq data is often not sufficient, as the low read coverage can result in gene
model fragmentation (Howald et al., 2012). In these cases, for comparative analyses of
lncRNAs across closely-related species, it can be beneficial to project annotations from one
species to another, based on primary sequence similarity (Washietl et al., 2014; Necsulea et al.,
2014). This method has obvious disadvantages, as it cannot correctly analyze homologous
lncRNA loci that have diverged in terms of exon/intron structures, nor can it predict loci
where transcription is species-specific (Hezroni et al., 2015). Homology-based annotation
approaches, for protein-coding genes, non-coding RNAs or other types of functional genomic
elements, all share these limitations, and it is important to complement these methods with
species-specific “omics” data. Nevertheless, they provide a valuable starting point on which
more comprehensive genome annotation resources can be built.
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2.2 Gene classification

A second important step in the genome annotation process, after gene model description,
is to provide a broad classification of the resulting loci into protein-coding and non-coding
genes. This step is more difficult than it can seem at first sight, mainly because lncRNAs are
structurally very similar to protein-coding mRNAs (Derrien et al., 2012).

To categorize genes as protein-coding or non-coding, direct proteome assays are an evident
path. However, proteomics technologies, although in continuous progress (Richards et al.,
2015), are still far from the throughput observed for RNA-seq. Large-scale investigations of
the proteome based on mass spectrometry have only recently become available for humans
(Kim et al., 2014; Wilhelm et al., 2014), and are still lacking for most other species. Recent
studies were able to detect and quantify peptides for approximately 84% of annotated protein-
coding genes, but generally lacked power to detect known alternative protein isoforms (Kim
et al., 2014; Wilhelm et al., 2014). In the absence of high-throughput proteome sequencing,
an alternative avenue towards large-scale investigations of the proteome (or at least of the
translatome) is provided by the development of ribosome profiling (Ingolia et al., 2009). This
technique isolates and sequences RNA molecules that are bound by poly-ribosome complexes,
which are thus likely actively translated (Ingolia et al., 2009). While more accessible than
mass spectrometry, this technique is nevertheless considerably more complex than classical
RNA-seq, and very little data has been generated so far. Thus, experimental data that could
help distinguish between protein-coding and non-coding RNA genes are not readily available.
Instead, computational methods, many of which are based on the patterns of sequence
evolution, have been developed to determine the protein-coding potential of newly-annotated
transcripts.

It is interesting to note that the first long non-coding RNA ever identified in mammals,
namely the H19 lncRNA, was defined as such using an evolutionary approach (Brannan et al.,
1990). Sequence analyses of the mouse transcript revealed the presence of several small open
reading frames (ORFs). However, comparisons with the human homolog showed that none
of these open reading frames were conserved during evolution, indicating that the locus did
not encode a functional protein (Brannan et al., 1990). Indeed, the mere presence of ORFs
is not a reliable indicator that an eukaryotic sequence is protein-coding, given that such
stretches can appear by chance in long RNA molecules (Clamp et al., 2007). In contrast,
their conservation during evolution, through negative selection that prevents the fixation of
ORF-disrupting mutations, is a strong predictor of the presence of a constrained protein-
coding sequence. The idea of exploiting the patterns of sequence evolution to predict the
protein-coding potential of genomic sequences was later implemented into two computational
methods that aimed to detect bona fide protein-coding genes in yeast and fruitfly genomes:
the reading frame conservation (RFC) method (Kellis et al., 2004) and the codon substitution
frequency (CSF) method (Lin et al., 2007). The RFC method assesses the presence of
ORF-disrupting insertions and deletions in a multiple sequence alignment between the target
species and other “informant” species (Kellis et al., 2004). The CSF method (Figure 1)
analyzes the proportion of synonymous and non-synonymous single-nucleotide substitutions
between the target and informant species, in all possible reading frames (Lin et al., 2007).
Given that it relies on the presence of insertions and deletions, which are less frequent than
point mutations, the RFC approach strongly depends on the degree of sequence conservation
between the target and informant species (Lin et al., 2008). In contrast, the CSF method
has high sensitivity and specificity values, although it may propose wrong classifications
for protein-coding sequences that are subject to positive selection (Lin et al., 2008, 2011).
This approach was used to distinguish protein-coding and non-coding regions in the first

PGE
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Figure 1 The codon substitution frequency (CSF) score exploits the pattern of nucleotide
substitutions in a multiple species alignment to predict protein-coding regions. A) Genomic
localization and exon-intron structure for mouse Chic1, Tsx, Tsix and Xist genes. The rectangles
represent the exons and the arrows represent the direction of transcription. B) The codon substitution
frequency (CSF) score variation in the same genomic region. Positive CSF scores, which indicate the
presence of protein-coding regions under purifying selection to preserve protein sequences, mainly
co-localize with Chic1 annotated protein-coding exons. Another annotated protein-coding gene, Tsx,
does not show any positive scores. Negative CSF scores are observed elsewhere, including on the
exons of long non-coding RNAs Xist and Tsix. Whole-genome CSF data were taken from a previous
publication (Necsulea et al., 2014); recently, whole-genome PhyloCSF data have become available
(Mudge et al., 2019).

large-scale investigations of lncRNAs (Guttman et al., 2009; Khalil et al., 2009) and later
in the first large-scale evolutionary analyses of lncRNA across vertebrates (Necsulea et al.,
2014). Although its efficiency is higher for longer sequences, if sufficient “informants” are
included in the analysis (including both distant and closely related species with respect to
the species of interest), the CSF method can also detect short protein-coding regions. This
approach can thus be applied to scan protein-coding regions in the whole genome, with a
sliding window approach (Figure 1, Mudge et al., 2019).

Expectedly, gene classifications as protein-coding or non-coding obtained with biochemical
or evolutionary approaches do not always agree. Notably, ribosome profiling studies revealed
that numerous lncRNAs annotated with evolutionary approaches are in fact actively translated
(Ingolia et al., 2014), and mass spectrometry assays were able to detect peptide sequences
stemming from hundreds of lncRNAs (Kim et al., 2014). While some of this inconsistency
could simply be attributed to imperfect sensitivity and specificity of the classification methods,
the presence of ribosome footprints on lncRNA sequences is not itself evidence that these
transcripts are translated into functional proteins. In fact, the ribosome occupancy profile
is strikingly different between genuine protein-coding mRNAs and lncRNAs: while a sharp
ribosome release at the stop codon and a strong reading frame preference is observed for the
former, the profiles are much more uniform along lncRNA sequences, indicating that these
transcripts are simply scanned by ribosomes, but likely do not generate functional proteins
(Guttman et al., 2013).

Another intriguing cause of disagreement between the phylogenomic and biochemical
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classification methods is the evolutionary history of the genes (see Chapter 4.2 [Robinson-
Rechavi 2020]). Indeed, the RFC and CSF methods both rely on the pattern of sequence
evolution, which can be assessed within varying evolutionary time frames, depending on the
phylogenetic relatedness of the analyzed species. However, the functional category of the gene
may itself evolve over time. For example, protein-coding genes may become pseudogenized,
and potentially resurrected into functional lncRNAs, as is famously the case for Xist (Duret
et al., 2006), as well as for other conserved lncRNAs (Hezroni et al., 2017). Conversely,
lncRNAs may transform into protein-coding genes by acquiring functional ORFs (McLysaght
and Hurst, 2016). This evolutionary plasticity highlights the importance of combining
phylogenomic and biochemical approaches to determine the protein-coding potential of newly
annotated transcripts, which may reveal insights into the evolutionary processes that lead to
new gene origination (McLysaght and Hurst, 2016).

2.3 Gene functionality
The staggering complexity of the human transcriptome (Pertea et al., 2018b; Iyer et al., 2015;
Carninci et al., 2005) raises the question of its functionality. Many of the transcripts discovered
with high-throughput transcriptome sequencing data, whether alternative isoforms of protein-
coding genes, read-through transcripts that join neighboring genes and in particular long non-
coding RNAs, may in fact be functionally dispensible, representing so-called “transcriptional
noise” (Ponjavic et al., 2007). Experimental methods that directly address functionality
typically rely on genetic manipulations that inactivate or over-express specific transcripts,
followed by phenotypic evaluations. Although these methods have recently become more
accessible, applicable to large numbers of loci (Shalem et al., 2014; Joung et al., 2017) and to
a wider range of organisms (Mazo-Vargas et al., 2017), they are still costly, time-consuming
and largely restricted to phenotypes that can be observed in the laboratory. In this context,
phylogenomic approaches are extremely valuable, as they can provide solid predictions of
biological functionality (Haerty and Ponting, 2014).

The ongoing search for lncRNA functionality is a good illustration of the usefulness of
phylogenomic methods in this context. Indeed, in the absence of large-scale experimental
data for this category of genes, the functionality of lncRNAs has often been investigated
with evolutionary approaches. One such study compared the rates and patterns of sequence
evolution between mammalian long non-coding RNAs and ancient transposable element
insertions, which are likely neutrally-evolving (Ponjavic et al., 2007). This study revealed
slightly, but significantly lower rates of evolution for lncRNAs than for ancient repeats,
indicating the presence of purifying selection for at least a subset of lncRNAs (Ponjavic et al.,
2007). These conclusions were confirmed by subsequent studies, which consistently showed
that mammalian lncRNAs are more conserved than expected by chance, but that they display
modest levels of primary sequence conservation compared to protein-coding genes (Guttman
et al., 2009; Washietl et al., 2014; Necsulea et al., 2014; Marques and Ponting, 2009; Kutter
et al., 2012; Haerty and Ponting, 2013; Wiberg et al., 2015). These studies assessed either
long-term selective constraints, for example by analyzing PhastCons scores determined from
whole-genome alignments of placental mammals or vertebrates (Figure 2), or short-term
sequence evolution, contrasting single-nucleotide polymorphisms within populations and
sequence divergence between closely related species (Haerty and Ponting, 2013; Wiberg et al.,
2015).

In contrast, in fruitfly, lncRNAs are under strong purifying selection (Haerty and Ponting,
2013; Young et al., 2012). These observations are in agreement with the “transcriptional
noise” hypothesis, and the differences between mammals and fruitfly likely reflect the reduced
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Figure 2 Sequence conservation patterns around functional elements in the mouse genome. A)
Sequence conservation (PhastCons score (Siepel et al., 2005), computed on a whole-genome alignment
of mouse and 59 other vertebrate species) variation around the Shh gene, in the mouse genome. The
amount of sequence conservation reaches maximum values in Shh exons, but also in neighboring
intergenic regions, potentially including regulatory elements. B) Average sequence conservation
profile in protein-coding and lncRNA gene structures: transcription start sites, splice sites and
transcription end sites. C) Average sequence conservation profiles around mouse transcriptional
enhancers (Yue et al., 2014) from different tissues. D) Average sequence conservation profiles around
mouse replication origins (Cayrou et al., 2015). B-D) The average sequence conservation profiles
were based on the PhastCons score, computed on a whole-genome alignment of mouse and 39 other
placental mammal species (Siepel et al., 2005). PhastCons scores were downloaded from the UCSC
Genome Browser (Casper et al., 2018).

efficiency of natural selection in the former, due to low effective population sizes (Haerty and
Ponting, 2013).
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However, alternative hypotheses were proposed to explain the low levels of sequence
constraint observed for mammalian lncRNAs without dismissing their potential functionality.
A plausible hypothesis posits that lncRNA functions may be achieved by short sequence
motifs, which may for example mediate their binding to genomic regions or protein sequences
(Hezroni et al., 2015). This would explain why levels of evolutionary conservation, when
computed on the entire length of lncRNAs, are only slighty above neutral expectations
(Ponjavic et al., 2007). Interestingly, analyses of human lncRNAs revealed that almost all
sequence constraint is indeed concentrated in very short sequence motifs, but that these small
constrained regions are in fact splicing regulatory elements (Figure 2; Schüler et al., 2014;
Haerty and Ponting, 2015). Purifying selection on sequences needed to achieve correct splicing
of multi-exonic lncRNA loci could indeed be indicative of transcript functionality. However,
a recent experimental investigation showed that splicing of lncRNA loci can influence the
expression of neighboring genes (Engreitz et al., 2016). Thus, the presence of selection on
lncRNA splicing motifs does not necessarily prove that lncRNA transcripts are themselves
biologically functional.

Another hypothesis that could explain the weak levels of lncRNA conservation is that
selective pressures may act on secondary RNA structures, rather than on primary transcript
sequences (Kapusta and Feschotte, 2014). This hypothesis can be directly tested, for example
by contrasting the degree of RNA secondary structure conservation with the degree of primary
sequence conservation, using RNA structures predicted with thermodynamic modeling and
multiple sequence alignments (Washietl et al., 2005). Using this principle, genome-wide
scans for conserved RNA secondary structures consistently confirmed selective pressures on
miRNA, tRNA and rRNA structures (Figure 3), but revealed only limited such constraint
within long non-coding RNA loci (Pedersen et al., 2006; Parker et al., 2011; Seemann et al.,
2017).

Overall, there is increasing evidence that lncRNA functionality often does not reside in
the RNA molecule encoded by the locus, but in the presence of additional regulatory elements
that affect neighboring gene expression patterns (Latos et al., 2012; Engreitz et al., 2016;
Amândio et al., 2016). Experimental studies of lncRNA functions must be carefully designed
to address these strong confounding effects (Bassett et al., 2014). Likewise, phylogenomic
studies of lncRNA functionality need to be adapted to account for additional targets of
selective pressures (Haerty and Ponting, 2014).

2.4 Gene function
Even when gene models (i.e., gene localization, exon-intron structure and alternative iso-
forms) can be predicted based on species-specific experimental data, gene functions are still
overwhelmingly inferred based on homology. Indeed, experimental investigations of protein or
RNA functions are lagging well behind the vast amounts of transcripts and proteins predicted
from next-generation sequencing data. Functional annotations are thus commonly transferred
across species based on homology relationships, with the underlying assumption that gene
functions are generally conserved during evolution (see Chapter 4.2 [Robinson-Rechavi 2020]).
As for homology-based gene model predictions, the efficacy and reliability of the transfer
of functional annotations across species is dependent on the degree of sequence divergence
between the reference sequences and the target genome to be annotated. Computational
methods that can predict homologous gene families in the presence of high degrees of sequence
divergence are thus of great interest (Vilella et al., 2009). Another important challenge is to
correctly identify gene duplication events, and to predict the functional characteristics of
the resulting gene copies. Indeed, gene duplication is believed to be an important driver of

PGE
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Figure 3 Identification of conserved RNA structures using the pattern of sequence evolution
(Seemann et al., 2017). A) Genomic position and exon-intron structure for lncRNA gene MIR503-HG
and miRNA genes MIR503 and MIR424, in the human genome. The rectangles represent the exons
and the arrows represent the direction of transcription. B) Sequence conservation profile (PhastCons
score [Siepel et al. 2005], computed on a whole-genome alignment of human and 99 other vertebrate
genomes), on the same genomic region. PhastCons scores were provided by the UCSC Genome
Browser (Casper et al., 2018). C) Sequence alignment and predicted consensus RNA structure in
the MIR503 region. D) Resulting conserved RNA structure for MIR503.

functional innovation, as the initially redundant gene copies can accumulate mutations that
lead to sub-functionalization or to neo-functionalization (Conant and Wolfe, 2008). For both
homologous and paralogous genes, the likelihood of functional conservation decreases with
increasing divergence time (Studer and Robinson-Rechavi, 2009). The relationship between
the extent of sequence (or structure) divergence and functional divergence cannot be readily
defined, and it likely varies among functional categories of genes (Tian and Skolnick, 2003).
Thus, cross-species projections of gene functions need to be interpreted with great caution.

Homology-based gene model annotation and functional assignment methods have been
applied to both protein-coding and non-coding genes. However, these approaches are
significantly more successful for the former than for the latter, as non-coding RNA sequences
are generally much less conserved than protein sequences. Among non-coding RNA classes,
lncRNAs in particular evolve very rapidly (Figure 2; Washietl et al., 2014; Necsulea et al.,
2014). This is well illustrated by the fact that lncRNA annotation efforts based on gene
model projections across species could identify only approximately 2,000 lncRNAs conserved
in placental mammals (Washietl et al., 2014; Necsulea et al., 2014). These studies predicted
conserved lncRNAs based on primary sequence conservation and required species-specific
transcription evidence to confirm the activity of the lncRNA loci in other species (Washietl
et al., 2014; Necsulea et al., 2014). Here again, additional methodological developments
are needed to exploit the specific patterns of lncRNA evolution, such as the presence of
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short stretches of conserved regions within larger, overall divergent sequences (Hezroni et al.,
2015). Transfer of functional annotations across species is particularly problematic for long
non-coding RNAs, for which experimental data on biological functions are scarce even in
model organisms. In this context, comparative transcriptomics analysis across species can
provide crude functional assignments, for example by identifying evolutionarily conserved
co-expression relationships between lncRNAs and protein-coding genes, which may indicate
functional associations (Stuart et al., 2003; Necsulea et al., 2014).

3 Annotating non-genic functional elements with phylogenomic
approaches

Eukaryotic genomes harbor numerous functional non-genic elements. These include non-
coding sequences that regulate gene expression, such as transcriptional enhancers (Banerji
et al., 1981) or silencers (Busturia et al., 1997), splicing regulatory elements (Lee and
Rio, 2015), but also origins of DNA replication (Benbow et al., 1992), insulators that
organize chromatin architecture in the nucleus (Van Bortle and Corces, 2012), recombination
hotspots (Smith, 1994), etc. . . Some categories of non-coding functional elements can be now
be identified with dedicated experimental assays, such as chromatin immunoprecipitation
and sequencing (ChIP-seq) techniques that identify genomic sequences bound by specific
proteins or by modified histones (Robertson et al., 2007; Visel et al., 2009), or nascent DNA
strand sequencing to pinpoint origins of replication (Cadoret et al., 2008; Cayrou et al.,
2015). However, by construction these techniques use the presence of biochemical activity
to predict biological function, although the two concepts are far from being synonymous
(Graur et al., 2013). Indeed, numerous biochemically active genomic elements are altogether
dispensable from a biological point of view, either because most cellular mechanisms (including
transcription, protein-DNA binding, etc. . . ) are error-prone, or because of functional
redundancy with other genomic elements (Graur et al., 2013). Additional data are thus
needed to ascertain biological functionality, and phylogenomic approaches are again a valuable
asset in this context.

Perhaps the most striking example of how phylogenomic approaches can be used to
annotate functional non-coding elements is the discovery of ultra-conserved sequences (Duret
et al., 1993; Bejerano et al., 2004). These elements were first identified through comparative
analyses of nucleotide sequences across distant vertebrate species, which revealed the presence
of regions with unexpectedly high degrees of conservation (more than 70% sequence similarity
for species that diverged at least 300 million years ago, Duret et al., 1993). This pioneering
study, which predates the genomic era, was later confirmed through genome-wide scans, which
identified thousands of ultra-conserved elements outside of protein-coding genes in vertebrates
and in other metazoan genomes (Bejerano et al., 2004; Siepel et al., 2005). Importantly, the
low rate of sequence evolution in these regions is not due to overlap with mutational cold-spots.
On the contrary, analyses of within-species polymorphism and between-species divergence
rates showed that these elements are subject to intense purifying selective pressures (Katzman
et al., 2007), which further underscores their functional relevance. In vivo experimental assays
showed that a great proportion of ultraconserved elements have transcriptional enhancer
capacity in the mouse embryo (Pennacchio et al., 2006), thus confirming the regulatory roles
proposed upon their initial discovery (Duret et al., 1993). Some of these elements may also
belong to non-coding RNA loci (Kern et al., 2015).

It is important to stress that phylogenomic approaches that focus on signatures of
strong evolutionary conservation cannot discover all types of functional non-coding elements.
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For example, the extreme levels of sequence conservation observed for some embryonic
transcriptional enhancers are not observed in all tissues and developmental stages: heart
enhancers show much weaker levels of sequence conservation than brain enhancers (Blow
et al., 2010), and enhancers active in adult brain are much less conserved than those active in
embryonic brain (Figure 2). Other functional genomic elements, such as origins of replication,
also display increased sequence conservation compared to the genomic background (Figure
2, Cadoret et al., 2008). However, much of the sequence conservation observed within
experimentally predicted origins of DNA replication in the human genome stems from their
overlap with transcriptional promoters (Cadoret et al., 2008).

In addition to overlooking genomic elements that are under weak purifying selection, which
are difficult to distinguish from the neutrally evolving genomic background, phylogenomic
scans may also bypass functional elements that evolve rapidly due to positive selection.
Dedicated computational methods were developed to identify genomic regions that evolve
faster than expected under a neutral regime (Pollard et al., 2010). However, an accelerated
rate of sequence evolution, which is the main signal used to predict the footprints of adaptation
in non-coding regions, is by no means synonymous with positive selection. Biased gene
conversion, a non-adaptive mechanism that promotes the fixation of specific alleles in highly
recombining regions, frequently leads to accelerated sequence evolution, thereby confounding
positive selection scans (Duret and Galtier, 2009; Ratnakumar et al., 2010).

Phylogenomic approaches that aim to predict functional non-genic elements will likely
further be improved by the increasing numbers of complete genome sequences, including
population genomics datasets that enable investigations of DNA sequence variations within
and between populations (1000 Genomes Project Consortium et al., 2015), in addition to
between-species sequence divergence. Moreover, important efforts have been made to generate
combined genome and transcriptome population datasets, such as Geuvadis (Lappalainen
et al., 2013) or GTEX (GTEx Consortium, 2015). Joint analyses of genome and transcriptome
variations within populations have already been used to predict putative regulatory variants,
that is, polymorphisms that are statistically associated with expression level variations
between individuals (Lappalainen et al., 2013; GTEx Consortium, 2015). Combined with
between-species genome and transcriptome comparative analyses, these approaches could
bring insights into the selective pressures that act on gene expression levels (Gilad et al.,
2006; Romero et al., 2012), and thereby help annotate non-coding RNA transcripts whose
expression patterns are constrained, rather than their RNA sequences (Latos et al., 2012).

4 Combining molecular biology, genetics and evolutionary biology to
annotate functional genomic elements

We have never been this close to truly uncovering the functional landscapes of the genomes. In
the past decade, technological innovations have enabled us not only to investigate biochemical
activities (such as transcription, translation or transcription factor binding) at a genome-
wide level, but also to perform large-scale experimental assessments of biological functions
through genetic manipulations (Jinek et al., 2012; Sanjana et al., 2016; Joung et al., 2017).
The contributions of molecular biology and genetics methodologies to functional genome
annotation are thus indisputable. However, even in this technology-dominated context,
phylogenomic approaches are still an invaluable tool for the discovery and annotation of
functional genomic elements.

Phylogenomic methods, such as genome-wide scans for regions under purifying or positive
selection, can be used in combination with molecular biology assays and genetic manipulations
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to obtain thorough functional characterizations for specific genomic elements. First of all, very
often, genetic manipulation studies use the presence of evolutionary sequence conservation to
prioritize elements for further experiments (Sauvageau et al., 2013). Moreover, evolutionary
analyses can also provide information into the facet of a locus that is most likely the target
of natural selection, and which should thus be perturbed through genetic manipulations to
test for biological function. For example, for long non-coding RNAs the highest degrees of
sequence conservation were observed on promoter regions and splicing regulatory elements
(Figure 2, Guttman et al., 2009; Ponjavic et al., 2007; Schüler et al., 2014; Haerty and
Ponting, 2015). Genetic manipulations later showed that the presence of transcription and
splicing at multiple lncRNA loci affected neighboring gene expression, while the production
of a specific RNA sequence was dispensable (Engreitz et al., 2016). Thus, the functional
elements in lncRNA loci could be correctly predicted with an evolutionary approach.

While most phylogenomic studies can bring insights into the functionality of a given
locus (that is, on its effect on the overall fitness of the organism), rather than on its specific
biological functions, in some cases evolutionary studies can go even beyond and predict the
mode of action or the phenotype in which a genomic element is involved. For example,
genome-wide scans for evolutionarily conserved RNA secondary structures have uncovered
thousands of genomic regions that are transcribed into structured non-coding RNAs, such as
miRNAs, tRNAs or rRNAs (Pedersen et al., 2006; Parker et al., 2011; Seemann et al., 2017).
Interestingly, while most phylogenomic scans for functional elements relie on the presence
of evolutionary conservation, evolutionary losses of genes and other genomic elements can
also bring insights into genomic functions. An elegant evolutionary approach aiming to
discover genes and regulatory elements that are involved in specific phenotypes is the recently
proposed “forward genomics” method, which analyzes phylogenies in which the same specific
trait (e.g. the ability to synthesize vitamin C) was lost multiple times independently (Hiller
et al., 2012). Genomic regions that were needed only to achieve the specific function under
study are likely to accumulate substitutions in the lineages that have lost it, due to relaxation
of purifying selection pressures. This approach can successfully predict genes and non-genic
functional elements that are specifically associated with a given trait, if sufficient independent
trait losses can be analyzed (Hiller et al., 2012). Althouh this methodology clearly has
limitations, not least of which is the pervasive presence of pleiotropy in vertebrate genomes,
it is an exciting use of phylogenomics for functional genome annotation, which bridges the
gap between genome and phenotypes.

So far, phylogenomic methods have been successfully used to predict gene localization
and structure, expression regulatory elements, conserved RNA secondary structures, as well
as to distinguish between coding and non-coding transcribed regions. As molecular biology
and genetic technologies continue to progress, bringing us closer to understanding genomic
functions, the field of evolutionary genomics must also continue to develop and to propose
new methods to assess selective pressures that act on newly discovered classes of functional
elements. We can thus hope to make sense of the intricate functional architecture of our
genomes, in the light of evolution (Haerty and Ponting, 2014).
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