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Abstract
In the last decade, we witnessed the ascent of reconciliations as an important tool to model
and study the evolution of gene families. Reconciliations model discordance between gene trees
and species trees caused by gene-level processes: duplications, losses and transfers of genes,
Incomplete Lineage Sorting among others can be combined to generate a panoply of different
models. In this review article, we give an overview of this vast topic by skimming over the
different models and methods that have been proposed, and presenting some of their applications
in phylogenomics. We also present the pros and cons of these methods and give some directions
for future research that we are convinced will enhance their efficiency and use.

How to cite: Bastien Boussau and Celine Scornavacca (2020). Reconciling Gene trees with
Species Trees. In Scornavacca, C., Delsuc, F., and Galtier, N., editors, Phylogenetics in the
Genomic Era, chapter No. 3.2, pp. 3.2:1–3.2:23. No commercial publisher | Authors open access
book. The book is freely available at https://hal.inria.fr/PGE.

1 Gene trees differ from species trees

When studying genome evolution in a set of species, it is often necessary to study the
evolution of individual genes that are found across all or most of the species of interest.
Assuming genome sequences are available and have been annotated, the first step of such an
analysis is to define gene families. Those gene families group together homologous sequences,
which are likely to have evolved from a common ancestral sequence. In some cases, there
will be exactly one gene per species, in others, some species will be missing the gene, or
some species will have more than one copy of the gene. Families with one gene copy per
species are typically combined to reconstruct species trees. They can also be subjected to
individual phylogenetic analyses, whose steps typically involve aligning the sequences and
reconstructing their phylogeny, called a gene tree.

When such an analysis is performed, one often observes that many of the reconstructed
gene trees do not agree with the (supposedly known) species tree. Here it is important to
agree on what is meant by “agreement” between a gene alignment and a reference tree. The
measure of disagreement should not be simply topological: a gene tree can differ from the
species tree, but not significantly so. To conclude that a gene alignment really rejects a
particular tree, a statistical test needs to be performed. Significant gene tree/species tree
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3.2:2 Reconciling Gene Trees with Species Trees

discordances can have two main causes: either they reflect inferential errors or model mis-
specification, or are due to evolutionary events that have led to truly different topologies
between individual gene trees and the species tree.

1.1 Conflicts caused by errors and model inadequacy
Problems can arise at each step of a typical phylogenetic pipeline (see Chapter 2.1 [Simion
et al. 2020]). First of all, the sequences themselves can be erroneous: for instance contam-
ination is an issue whose importance has often been underestimated (Simion et al., 2018),
and assembly errors are common too. Second, errors can occur during the construction of
gene families. It is indeed easy for clustering methods for homology detection to miss a
gene if its sequence has diverged a lot compared to the threshold that the user has chosen.
Similarly, a gene that contains several protein domains1 may be incorrectly assigned to a
gene family with which it shares one of its domains, but not the others. In both cases, gene
trees reconstructed from gene families where such clustering errors have occurred will likely
be different from the species tree. One should work towards avoiding such mistakes, for in-
stance by incorporating models of domain fusion/fission during the clustering and alignment
steps. Once gene families have been defined, users typically want to extract families of ortho-
logous genes (see Chapter 2.4 [Fernández et al. 2020]), i.e. remove paralogous (=generated
by duplication) and xenologous (=generated by transfer) gene copies. However, orthology
relationships can be incorrectly inferred, in which case the analysis will be conducted on a
group of sequences containing paralogs or xenologs; this may lead to cases as the ones depic-
ted in Figures 2 and 3. Even when orthology is correctly inferred, errors can creep in at the
next step, when the sequences are aligned, which may lead to phylogenetic reconstruction
errors (see Chapter 2.2 [Ranwez and Chantret 2020]). Finally, our models of sequence evol-
ution are simplistic and for instance very rarely account for dependencies between sites, and
heterogeneities of the process across lineages or across sites. Such limitations can introduce
errors during phylogenetic reconstruction. For all these reasons, we may observe a high
level of discrepancy even in gene families where lateral gene transfers/duplications/losses
and reticulate evolution (see Section 1.2) are rare or inexistant. For instance, in birds the
amount of discord between gene trees was massive (Jarvis et al., 2015), and similarly in
mammals (Scornavacca and Galtier, 2017). In such cases, it is often argued (e.g. in Song
et al. 2012; Chapter 3.3 [Rannala et al. 2020]), that a large portion of this incongruence is
due to incomplete lineage sorting (ILS, see Figure 4 and the associated section). However,
in mammals, using simulations and back-of-the-envelope computations, Scornavacca and
Galtier (2017) showed that ILS can only explain a small portion of the incongruence present
in the data, see Figure 1. Additionally, in the bird phylogenomic data set, the amount of
conflict between trees is larger when the trees are built from exon sequences than when the
trees are built from intron sequences, even when the alignment size is taken into account.
This result suggests that much incongruence is due to lack of information in the sequences,
because exons are typically shorter and more constrained than introns.

1.2 Conflicts caused by biological processes
In this section, we briefly review the biological processes that can generate a gene tree
different from the species tree (for more detailed reviews, see Maddison, 1997; Szöllősi et al.,

1 Protein domains are conserved parts of a given protein sequence that have the characteristics to be
able to evolve and exist independently of the rest of the protein chain.
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Figure 1 High levels of incongruence present in the OrthoMaM database. Dots correspond to
the proportion of parsimoniously-misleading sites for various ancestral nodes in the mammalian
phylogeny, and the horizontal line shows the maximal expected percentage of ILS-induced incon-
gruence. Reproduction of Figure 4 in Scornavacca and Galtier (2017), see corresponding paper for
more details.

2015). To ease the reading, in our examples we will focus on evolutionary scenarios that
generate gene families with exactly one gene per species. However, several of these processes
can change copy numbers in a genome, and we will point this out in the description below
when relevant.

1.2.1 Gene duplication and gene loss
Gene duplication creates a new copy of a gene, at a different locus in the genome. When
gene duplication is followed by gene losses, this may result in a gene tree differing from
the species tree even when every extant species ends up with exactly one gene copy. For
example, Figure 2(a) depicts a species tree (bold lines) inside of which the evolutionary
history of a gene (grey lines) is drawn: first, a speciation happens in R, then the gene is
duplicated in the branch leading to U followed by speciations in U and V . This scenario
gives rise to seven different genes2 a1, a2, b1, b2, c1, c2, d. Now, if a2, b1, c2 are lost, a1, b2, c1, d

may be wrongly identified as orthologs, leading to the tree in Figure 2(b), whose topology
differs from that of the species tree (black lines in Figure 2(a)).

1.2.2 Gene transfer, gene conversion
Differences in the topologies of a species tree and a gene tree can be caused by a combination
of horizontal gene transfer and gene loss, as shown in Figure 3(a): the copy of the gene
present in the ancestral species labelled by V is lost in the species labelled by a and it is
replaced by a copy transferred from the species labelled by d. This gives rise to the topology
in Figure 3(b), again conflicting with the topology of the species tree.

2 In the examples of this chapter, we will use the following notation: gene names are associated to small-
case letters, possibly subscripted by a number, and species names to capital letters, where genes belong
to the species that is associated to the same letter.

PGE



3.2:4 Reconciling Gene Trees with Species Trees
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Figure 2 (a) A species tree (bold lines) along with a gene history (grey lines) involving speci-
ations, a gene duplication and gene losses (copies a2, b1 and c2 are lost). (b) The gene tree that
may be reconstructed from the data issued from the gene history in (a).
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Figure 3 (a) A species tree (bold lines) along with a gene history (grey lines) involving spe-
ciations, a gene transfer and a gene loss. (b) The tree that may be reconstructed from a gene
alignement resulting from the gene history depicted in (a) or the one depicted in (c). (c) A species
network (bold lines) along with a gene history (grey lines) involving a reticulation event.

Most methods assume that a gene transfer adds a new gene copy into the recipient
genome. Some documented mechanisms of genetic exchange between genomes, however,
involve replacement transfer, i.e., cases when the transferred gene is copied onto an existing
homologous copy in the recipient genome by gene conversion. Such an event could result in
the topology of Figure 3(b) without the need of any loss event: the recipient genome both
gains the transferred copy and loses the resident copy at the same time. In such a case,
classical models of gene transfer would typically reconstruct two events when a single one
actually occurred (but see Suchard, 2005; Hasic and Tannier, 2017a, for exceptions). Of
note, such replacement transfer events, which rely on sequence homology, are only expected
to happen between closely related species.

1.2.3 Hybridization
The topology in Figure 3(b) can also be obtained by a scenario involving hybridization,
whereby the genome of a descendant lineage is some type of fusion of the genomes of two
parental lineages (see Figure 3(c)). Hybridization is increasingly recognized as having an
key role in the evolution of some plants and animals, for example in wheat (Glémin et al.,
2019) or yeasts (Morales and Dujon, 2012). In this case, the copy of the gene labelled
by a is inherited from the ancestral species labelled by V ; no copy is inherited from U .
Such processes result in dozens to thousands of replacement transfers, occurring through
homologous recombination. Because they occur on such different scales and because in some
cases hybridization can be associated with a duplication of the genetic material, replacement
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transfers and hybridization have classically been modelled differently (Huson et al., 2010;
Szöllősi et al., 2015).

1.2.4 Incomplete lineage sorting
Another possible source of conflict between species trees and gene trees is ILS (see Figure
4; Chapters 3.3 and 3.4 [Rannala et al. 2020; Bryant and Hahn 2020]).

c1c2c3c4

(a) (b)

U

V

b1b2b3b4a1a2a3a4 c2b3a2

Figure 4 (a) A species tree (bold lines) along with the coalescent history of gene variants a2, b3

and c2 (grey lines), descended from alleles present in the common ancestral population U . (b) The
gene tree that may be reconstructed from the data issued from the coalescent history depicted in
(a).

In this figure, each population contains 4 individuals, each individual is represented
with a dot whose color corresponds to a particular allelic form at a given locus, i.e. the
black allele and the grey allele. The starting population contains a single allele. First, a
mutation leads to a new grey allele at this locus, then a first speciation takes place in U ,
rapidly followed by a second one in V . As the black and grey alleles still co-exist in V , both
alleles still have a chance to be fixed in B and C, so we can obtain the gene tree in Figure
4(b). It is important to realize that such a scenario is entirely neutral: there is no need
to assume differences in fitness between the grey and black alleles for such an incongruence
to occur. In fact, incomplete lineage sorting can occur whenever speciations occur closely
enough that polymorphisms are not entirely “sorted out” between two speciations. Two
parameters control the likelihood of such a scenario: first, how fast successive speciations
occur. Second, how large the effective population sizes are: in populations with large effective
sizes, there will be more polymorphism that stay longer in the population, and therefore
more opportunities for ILS.

1.3 Better models to improve gene trees
Discordance between gene trees and species tree, therefore, can result from a variety of
processes in combination, and it is often difficult to pinpoint one major cause. One can use
better alignment tools and methods to detect contamination and reduce the amount of errors.
Other factors can be addressed by improved models of sequence or gene family evolution.
For instance, models of sequence evolution that incorporate heterogeneity between sites
typically do better than models that treat all sites homogeneously (Lartillot and Philippe,
2004; Wang et al., 2018). Similarly, models that account for the across-lineage variation in

PGE



3.2:6 Reconciling Gene Trees with Species Trees

the substitution process should be able to perform better than the most usual models when
data show substantial compositional heterogeneity (Boussau and Gouy, 2006; Heaps et al.,
2014). Therefore, in practice, efforts should be made to use the most appropriate models of
sequence evolution. In this review, we choose to focus on another approach to improve the
accuracy of gene and species trees: gene tree-species tree (GTST) models. These models
formally describe how a gene family evolves along a species tree and are the focus of the
next section.

2 Gene tree-species tree (GTST) models

GTST models describe the evolution of gene trees along species trees, by placing gene
duplication (D), transfer (T), loss (L) and conversion (C) events along the gene tree and
ILS events along the species tree.

These models can be used in a variety of settings. Historically, people have been using
these models in the reconciliation setting: the input typically consists of a gene tree and a
species tree, and we look for the best scenario that embeds the gene tree inside the species
tree, as shown in the figures of the previous section. The aim here may be to estimate the
parameters of a given probabilistic GTST model (for instance, the rates of duplication and
loss, or population genetic parameters of a model of ILS) or to map events onto the phylogeny
(e.g., where the duplications and transfers are placed in the gene history). But these models
can also be used to estimate gene trees. In this case, the input is the species tree and data
from the genes of interest (e.g. a distribution of gene trees previously reconstructed from
the genes, or the gene sequences themselves) and we use an algorithm to look for the gene
trees giving the best reconciliation according to some scoring function. The hope is that
using a species tree in addition to sequence information will result in an improved estimate
of gene trees.

We shall start, after a short digression on parsimony and probabilistic approaches for
GTST models (Section 2.1), by reviewing GTST models in the reconciliation setting (Sec-
tion 2.2) and their extension to account for unsampled species (Section 2.3) and scenario
uncertainty (Section 2.4). Finally, we will show how these models can be used to improve
the accuracy of gene trees (Section 2.5).

2.1 Parsimony vs probabilistic models
Parsimony approaches have first been used for phylogenetic inference based on morphological
or sequence data. Given a set of possible events and a cost for each of them, these methods
aim at returning a solution that minimizes a cost function. For phylogenetic inference
based only on sequence alignments, the cost function to minimize is usually the sum of the
individual costs of events of substitution required to explain the evolution of the sequences
along a particular tree topology. For GTST models in the reconciliation setting, the cost
function would be the sum of individual costs of events of gene family evolution (typically
duplications, losses, transfers or ILS) required to explain the evolution of a gene tree along
a particular species tree. In both cases, the costs associated to the events have to be fixed
by the user and cannot be estimated.

Probabilistic methods rely on a different type of cost function. Events are associated
no longer to costs but to rates, which can be used to compute the probability of various
evolutionary scenarios. For example, given rates for all the events considered, probabilistic
GTST models in the gene tree-estimation setting (see Section 2.5) enable computing the
likelihood of a gene tree, which is proportional to the probability of the gene tree given the
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species tree; the posterior probability of a gene tree can be computed by combining the
likelihood with prior probability distributions on parameter values. With such probabil-
istic models, it is possible to estimate the parameters by identifying those maximizing the
likelihood of a gene tree. Alternatively, one can integrate over the parameter distribution
through Bayesian approaches, and generate the posterior probability of the gene trees and
associated parameter values.

2.2 The reconciliation setting
The first and possibly best-known GTST model is the DL model:

I Definition 1. Given a rooted gene tree G and a rooted species tree S whose species contain
the genes in G, the evolution of G along S is subject to the following constraints:
1. Speciations are the only possible events shaping species histories;
2. Speciation, duplication (D) and loss (L) are the possible events shaping gene histories;
3. Each speciation in G happens at a speciation in S;
4. L events in G are supposed to happen just after a speciation in S;
5. Each speciation and D event in G gives birth to exactly two genes;
6. The evolution of G along S goes forward in time;
7. Each contemporary gene is a leaf of G and is associated to the corresponding species of

S in which this gene is collected.

See the Supplementary Material of Jacox et al. (2016) for a formal and mathematical
definition of the model. A DL reconciliation is a plunging of G in S respecting Def. 1. This
plunging can be formalised as a function that maps each node of G onto an ordered sequence
of nodes of S.

If we are in the MP framework, we will seek the scenario minimizing the cost δ × |D|
+ λ × |L|, where δ and |D|, and λ and |L|, are respectively the cost and number of events
in the scenario for duplications and losses. For this simple model, the best scenario is the
Last Common Ancestor (LCA) mapping which can be found in linear time in |G| (Chauve
and El-Mabrouk, 2009). In the ML or Bayesian framework, we will compute probabilities
of scenarios described via birth-death processes (birth at speciation and duplication events
and death at gene losses); in some cases, we may be interested in searching for the scenario
with the highest probabilities, in others we can integrate over all scenarios to compute
the probability that a given gene tree has evolved along a particular species tree, without
explicitly specifying a particular scenario.

This simple model can be made more complex by considering other events shaping the
gene history, for example gene transfer. When incorporating gene transfer, Point 2 of Def. 1
becomes:
2. Speciation, duplication (D), loss (L) and transfers (T ) between sampled/unsampled

species are the possible events shaping gene histories;
We call this model, the DTL model. Because transfers necessarily occur between contempor-
aneous species, transfers to older species are forbidden. However, when some species have
not been sampled, it is possible to infer transfers from an ancient donor to a more recent
recipient, even if the two species did not live at the same time. This is because a gene may
have been transferred to species that are unrepresented in the sample under consideration.
If a gene gets transferred to an unrepresented species, stays there for some time, then gets
transferred into a lineage ancestral to a sampled species, it will look like a single transfer oc-
curred between two represented lineages that did not live at the same time. This translates
as follows:

PGE



3.2:8 Reconciling Gene Trees with Species Trees

8. Each T event happens between two coexisting species if transfers are allowed only
between sampled species and their ancestors; otherwise, the donor simply has to be
older than the recipient.

X
T

Y

Z

Figure 5 An example of a time-inconsistent scenario: we cannot have node X older than node
T and at the same time T older than X.

Now, because of Point 8 of Def. 1, each transfer implies a time constraint between a pair of
nodes that may contradict the time constraints implied by other transfers. Computationally,
the time constraints implied by gene transfers introduce additional complexity in ensuring
Point 6 of Def. 1. Scenarios violating this point are called time-inconsistent and can be
obtained within a single gene family, especially if it contains several gene copies. An example
of a time inconsistent scenario that can be obtained by this latter approach is given in Figure
5. Avoiding time-inconsistent scenarios while preserving optimality is an NP-hard problem
(Tofigh et al., 2011), even in the case where we have to reconcile a single binary gene tree with
a binary species tree. (Interestingly, one can even make use of time-inconsistent scenarios
across gene families to date a species tree, see Section 3.7).

To address this difficulty, two approaches have been used. Either reconciliation is per-
formed against an undated species tree, and one can just hope that time inconsistencies
will be rare. Or reconciliation is performed against a dated species tree: all scenarios are
therefore consistent with the ages of the nodes of the species tree.

The model can be made even more complex by adding gene conversion (Hasic and
Tannier, 2017a), allowing ILS (Vernot et al., 2008; Chan et al., 2017), and accepting un-
rooted/non binary species and gene trees as input (Górecki and Tiuryn, 2007; Lafond et al.,
2016, for instance).

2.3 Transfers to and from the dead
Many models only consider events between branches that have led to extant genes or species.
However, much of the past diversity has left no descendant nowadays, and our sampling is
necessarily incomplete. For those two reasons, it is likely that a large proportion of the
transfers we detect have occurred with a species that has left no descendant among the
leaves of our data set. When interpreting reconciled gene histories, it is important to keep
this in mind, as this can lead to mistakes. In particular, although transfers necessarily occur
between contemporaneous species, the fact that many species have not been sampled means
that many donor species will be found on older branches than the sampled recipient species.
An example is shown in Figure 6.

Accounting for unsampled species during inference with gene transfer can be done both
in a parsimony and a probabilistic framework. In both frameworks, one has to make sure
that transfers from a donor on an old branch of the tree can be received by recipients on
any branch that is of the same age or more recent than the donor. In the probabilistic
framework, one can then model unrepresented species. To this end, an additional modelling



B. Boussau and C. Scornavacca 3.2:9

C B A
c1

(a)

E D
b1 a1f1 e1 d1
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Figure 6 (a) An evolutionary scenario for a gene involving a transfer from the unsampled (or
extinct) taxon D. Since D is not present, the transfer is inferred to come from the ancestor of f1

and e1, see (b).

layer describing the total number of species living through time must be developed. Szöllősi
et al. (2013b) assumed that species evolved according to a Moran model: the number of spe-
cies vastly outnumbered the extant sampled species but was constant through time. Other
models that would allow variations in the number of species through time could be designed.
Overall, with this additional layer, GTST models acquire an additional hierarchical level:
sequences evolve along gene trees, which evolve with species trees, which are a subsample of
an evolving population of species.

In a parsimony model, things are easier. For example, transfers to and from the dead
are modelled in ecceTERA as follows: a “dummy” species is added to the species tree,
and duplications, losses and transfers to it are free of cost, while transfers from it cost as
ordinary transfers. The rational behind this choice is the following: the “dummy” species
models all unsampled species thus it can duplicate and loose genes to mimic the number of
unsampled species we need; transfers to the “dummy” species are free because they cannot
be distinguished from undetected speciation events (undetected because the species became
extinct/has not been sampled), while transfers from it are actual transfers.

2.4 Accounting for scenario uncertainty
Whether inference is performed in a parsimony or probabilistic framework, there are cases
where several scenarios are nearly equally good descriptors of the evolution of a particular
gene tree given a species tree. This would typically occur in a parsimony framework when
several scenarios have the same total cost, but this can also occur in a probabilistic framework
when several scenarios have very similar likelihoods or probabilities. In such cases, it is
important that the reconciliation method returns more than a single scenario, so that the
user is fully aware of the uncertainty associated to the inferred events. To put it differently:
if a method always returns a single scenario, a user cannot tell if a particular event is
necessary to explain a gene tree given a species tree, or if it is just one possible event out
of many similarly likely events. If a single scenario is output, a user may well over-interpret
an event that is highly uncertain. Another reason for returning several scenarios is depicted
in Figure 7: one may be able to choose the preferred scenario among the returned ones
using external information, in our example the reconciliation of a neighboring gene family
suggesting a single transfer that involved both genes.

This is why almost all reconciliation tools nowadays have opted to show the uncertainty
in the scenarios, either providing a measure of support for each event or a posterior distri-
bution of scenarios.

PGE
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  C B A
 c1

(a)

E D
 d1 e1 b1 a1

  C B A
 c2

(b)

E D
 d2 e2 b2

  C B A
 c2

E D
 d2 e2 b2

Figure 7 Two sets of reconciliations for two different gene families containing respectively the
genes a1, b1, c1, d1, e1 and b2, c2, d2, e2. (a) A scenario for the first family involving a transfer and a
loss. (b) Two different scenarios for the second family; the first invokes a transfer and a loss, the
second a duplication and four losses. These two scenarios can have the same cost for some vectors of
parameters, e.g. if transfers cost four and duplications and losses one, but the first scenario implies
a single transfer event that would have moved both genes at the same time.

2.5 Taking into account gene tree uncertainty and improving gene tree
accuracy

Beyond uncertainty in the scenario explaining a gene tree given a species tree, there can be
huge uncertainty in the gene tree itself. For this reason, it is common practice when inferring
gene trees to compute branch support values, for instance through bootstrap (MP, ML),
approximations of the bootstrap (ML), or by displaying posterior probabilities on branches
(PP). For single gene trees, these support values can be quite low, which shows that there
is a lot of uncertainty about the gene tree topology, and which forces interpretations to take
branch support into account. Similarly, when inferring gene trees using GTST models, it is
very important to take this uncertainty into account.

The two approaches that have been used to take this uncertainty into account in GTST
programs are detailed below. In both cases, the program needs a species tree. Then, either
the program uses gene sequences to output a distribution of gene trees, or the program
takes as input a pre-existing distribution of gene trees, that it will alter and then output.
Gene tree estimation based on GTST models can be seen as an effort to come up with an
estimation of gene trees that balances between the information provided by the species tree
and the information provided by sequence alignments. Hence, there is a choice to be made
as to the weights associated to each of these two sources of information: a large weight on
the species tree will cause all gene trees to resemble the species tree, while a large weight
on sequence information will result in the same trees as obtained using PhyML, RAxML,
IQtree, etc, all approaches that only rely on sequence information.

2.5.1 Approaches that take gene sequences as input
Those approaches require using a model of sequence evolution jointly with a GTST model.
In a parsimony framework, this requires coming up with a meaningful choice of weights that
balances the cost of a substitution with the cost of a duplication, loss, transfer or ILS. In a
probabilistic framework, this means that both the parameters of the model of sequence evol-
ution and the parameters of the model of gene family evolution have to be estimated. This
creates a challenging problem, because the gene tree also has to be estimated. In addition,
computing the likelihood of a gene tree according to an alignment is computationally costly,
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which makes these methods time-consuming. An example of this approach is the software
jPrIME-DLRS (Sjöstrand et al., 2012). Very recently, two new tools have been proposed for
this task: Treerecs (Comte et al., 2019) and GeneRax (Morel et al., 2020), under the DL
and DTL model respectively.

2.5.2 Approaches that take gene tree distributions as input
To simplify the inferential problem, several programs rely on input sets of gene trees which
have been pre-computed from an alignment of gene sequences. Such sets can be obtained
with bootstrap replicates, or thanks to Bayesian inference, in which case the set of trees
approximates a probabilistic distribution on gene trees. Typically, such a distribution would
be obtained with software for Bayesian gene tree reconstruction, such as MrBayes (Ronquist
and Huelsenbeck, 2003), PhyloBayes (Lartillot et al., 2013) and Beast (Suchard et al., 2018).
Based on such a set of trees, programs can search for the tree minimizing the cost or
maximizing its probability according to a GTST model, or can sample trees according to
their probabilities. Relying on a set of trees necessarily comes with a trade-off between
accuracy and computational efficiency. If the tree distribution were infinite in size, all the
information present in the alignment and exploitable by the model of sequence evolution
would be enclosed in the tree distribution, and this approach would be entirely equivalent
to the approach described in Section 2.5.1. Of course, the tree distribution has to have a
finite size, and therefore cannot describe all the information present in the alignment. The
larger the size of the tree distribution, the more accurate the inference will be, but it will
also be more costly. In practice, authors have found good trade-offs between accuracy and
speed (Edwards et al., 2007; Szöllősi et al., 2013a; Scornavacca et al., 2014), relying notably
on the amalgamation idea.

Amalgamation, initially proposed in the parsimony framework by David and Alm (2011)
and later formalised and extended to the probabilistic framework (Scornavacca et al., 2014;
Szöllősi et al., 2013a), exploits the following ideas. First, a distribution G of trees induces a
distribution of subtrees, which are obtained by cutting the complete trees on each of their
internal branches. Second, given a distribution of subtrees, one can mix and match (am-
algamate) subtrees with non-overlapping sets of tips to re-create complete trees. Third,
provided one computes a few count statistics on the subtrees, it is even possible during this
amalgamation step to recapitulate with high accuracy the frequency with which a particular
complete tree has been observed in the tree distribution G, i.e. its conditional clade probabil-
ity (CCP). See Figure 8 for an example of amalgamation. Further, this amalgamation trick
can also be used to compute the probability of a complete tree that is not present in the
input distribution, but can be obtained by amalgamating subtrees found in distinct input
trees (Höhna and Drummond, 2011; Larget, 2013). Amalgamation is used in some GTST
implementations to integrate over the topological uncertainty associated with the limited
information contained in an alignment. Through a single pass of a dynamic programming
algorithm, one can integrate over all this uncertainty, either in a parsimony (Scornavacca
et al., 2014) or in a probabilistic framework (Szöllősi et al., 2013a).

A note on “overfitting” or shrinkage risk

As pointed out earlier, when using reconciliation to estimate gene trees under a parsimony
framework, a reconciled gene tree is a barycentric estimate between a gene tree based on the
sequences alone, and a gene tree based on the minimization of the number of e.g. D, T, L
events. It can be difficult to place the barycenter. When the reconstructed gene trees tend
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Figure 8 An example of application of the amalgamation principle in the parsimony frame-
work and under the DL model. In (a,b) are presented the trees of our initial distribution, the
first present 80 times and the second 20. In (c,d) are depicted the two trees that are not in the
initial distribution but can be obtained via amalgamation of the trees in (a,b). The numbers
next to the internal nodes show the occurrence of the corresponding clades in the initial distri-
bution. Suppose that our species tree is the tree in (c) and δ, λ and w are respectively the cost
of a duplication, the cost of a loss and the weight of the contribution of the sequence alignment
to the cost. If the scoring function used is the one presented by Scornavacca et al. (2014), then
the costs of the four trees are respectively (a) δ + 3λ + w × (2log(80/100) + 2log(100/100)), (b)
δ+ 3λ+w × (2log(20/100) + 2log(100/100)), (c) w × (log(80/100) + log(20/100) + 2log(100/100))
and (d) 2δ + 6λ + w × (log(20/100) + log(80/100) + 2log(100/100)). (The terms in grey quantify
the cost of deviating from the phylogeny preferred by the sequence alignment alone, while the ones
in black are the reconciliation cost, which quantify the deviation of the gene tree from the species
tree). Under some sets of weights, trees in (c) and (d) will have good scores even though they have
never been observed in the input alignment.

to become too similar to the species tree, some authors have said that we are ”overfitting”
the species tree3. One could wonder whether the methods described in Section 2.5 suffer
from overfitting since they deviate from the signal contained in the sequence alignment to
embrace that of the species tree. In practice, Figure 2(a) of Scornavacca et al. (2014) shows
that, for most of the existing methods, this is not the case. Also, if needed, users can choose
a relative weight of the sequence component with respect to the reconciliation component
of the joint score to avoid excessive shrinkage.

For the list of reconciliation tools in the parsimony framework, see Table 1 by Jacox

3 Actually, using the statistical jargon, it is probably more correct to say that the method “shrinks”
the estimate of the gene trees too much, because then each gene tree is “shrunk” to look like the
species tree. After all, in regression, overfitting is used to describe a different phenomenon: when a
line is drawn that passes through every single point instead of defining a central tendency, which is
very similar to a situation where every single gene tree is allowed to have its own tree with its own
idiosyncratic topology and parameters.
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et al. (2016). This table is only slightly outdated. RANGER-DTL v.2.0 now permits taking
as input unrooted and non-binary trees, Mowgli now accounts for ecological traits and
ecceTERA for non-binary trees and for ILS, and EUCALYPT provides support values. For
a list of published reconciliation tools in the probabilistic framework, see Figure 5 of Szöllősi
et al. (2015).

3 Current/future directions

In this section, we will list several lines of research that may help spread the usage of
reconciliation tools.

3.1 Mixing parsimony and probabilistic approaches
The major advantage of probabilistic models is that they allow estimating parameters in a
proper statistical framework. Maximum likelihood is most appropriate when data is abund-
ant, in which case the maximum of the function is well defined and the parameter values have
small confidence intervals. When data is scarce, Bayesian methods –relying on integration–
are more robust, because they attempt to integrate over all the uncertainty surrounding
parameter values. The two approaches differ in their speed: Maximum Likelihood is usu-
ally faster than Bayesian integration. But both are typically much slower than parsimony
approaches, which have no parameter to optimize (see Table 1).

ecceTERA ALE_ML ALE_MCMC
MIN 0.01 0.03 0.03
Q1 0.19 12.40 90.75

MEDIAN 0.25 16.41 126.96
Q3 0.32 23.58 184.80

MAX 1.10 520.41 941.39

Table 1 Running times in seconds for three different methods –ecceTERA (Jacox et al., 2016),
ALE_ML (Szöllősi et al., 2013a) and ALE_MCMC (Szöllősi and Boussau, 2018), respectively a
parsimony, ML and Bayesian method– on a dataset of 1099 homologous gene families present in 36
cyanobacterial genomes (the mean number of genes per family in the dataset is 36.66, the largest
family has 114 genes and the smallest 21 genes, see Szöllősi et al., 2013a, for more details).

Although parsimony and probabilistic approaches differ in their treatment of the para-
meters, they share important similarities in the algorithms used to compute the cost func-
tions. In both cases, the algorithms often involve dynamic programming performed during
tree traversals. In the field of gene tree reconstruction based on gene sequences only, many
efficient algorithms combine probabilistic and parsimony approaches to benefit from their
distinct qualities. Probabilistic models are used to operate in a sound statistical framework,
which offers guarantees about the inference. Parsimony is used to speed up the algorithms
and provide pretty good solutions fast. For instance, RAxML relies on parsimony to gen-
erate starting trees (Stamatakis, 2006), and MrBayes 3.2 has a “parsimony-biased” SPR
move (Ronquist et al., 2012). So far, reconciliation methods have not completely merged
the parsimony and likelihood frameworks, but we believe there would be much opportunity
for doing so. As described above for approaches that rely on sequence information only,
new algorithms could be developed that would benefit from the speed of the parsimony
cost function to more efficiently optimize or integrate a probabilistic cost function, i.e. the
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likelihood or posterior probability of a gene tree. Alternatively, one could use algorithms
such as importance sampling, where one samples parameter values from a quick-to-compute
distribution, computes the probability of those parameter values using a more complex dis-
tribution, and finally applies some simple reweighing of the initial distribution to obtain an
unbiased sample from the more complex distribution. More specifically for GTST models,
one could sample gene trees from a GTST parsimony model, compute their probability ac-
cording to a sophisticated probabilistic model while sampling values of the parameters of
the probabilistic model that were not present in the parsimony model, and finally reweigh
the initial sample to obtain a sample of gene trees according to the sophisticated probab-
ilistic model. For such a solution to be useful, sampling from the parsimony model should
produce gene trees that have good probabilities, and the sampling of the parameters of the
probabilistic model should not be computationally too costly.

3.2 Using reconciliation to estimate species trees
GTST models have also been used to score species trees. When combined with an algorithm
that explores species tree topologies, this allows sampling species trees or finding the best
species tree according to a particular GTST model based on a large number of gene families
from the genomes of interest. Such an approach therefore potentially relies on a huge
amount of data, and can bypass the need to identify families of orthologous genes, since D,
T, L models can handle families with more than one gene copy per species (i.e. homologous
genes). When the focus is on the species tree, it can be unnecessary to obtain individual gene
family reconciliation scenarios. In fact, it becomes desirable to integrate over all possible
reconciliation scenarios between the gene family and the species tree, and obtain a probability
or a score that such a gene family would have evolved along a given species tree, irrespective
of what particular events were involved, and on which branches they occurred. Such a
probability or score is easy to compute using dynamic programming algorithms, which can
integrate over or maximize a score or probability without any change to their structure. This
approach has for instance been used in PHYLDOG (Boussau et al., 2013). Alternatively, in
MCMC algorithms that sample parameters from probabilistic models, integration over all
reconciliation scenarios can also be performed by sampling different scenarios at each step
of the MCMC. The choice between these two methodologies would come down to which is
most efficient to run, since they are equally difficult to implement. To speed up species
tree inference in an ML framework, Ullah et al. (2015) have proposed a two-step algorithm
whereby a set of candidate species trees built from families of orthologous genes is evaluated
according to a DL probabilistic model. An approach combining fast parsimony methods
with probabilistic inference as discussed in the previous section could also be a valuable
option here.

3.3 Gene conversion vs gene transfer
As pointed out in the first section, gene conversion is not modelled well by most models of
gene transfer, because it is a type of replacement transfer. To the exception of the model
by Suchard (2005), all the models of transfer consider that a gene transfer adds a copy of
a gene to a recipient genome. In those models, gene conversion has to be modelled by two
events, a gene transfer and a gene loss. Gene families in which events of gene conversion
have occurred will therefore have very unlikely scenarios according to most models of gene
transfer, as they will require twice the number of events that actually occurred. In such
cases, the barycentric estimation of the gene tree could be off: the GTST model will push
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too much towards gene trees that resemble the species tree, because any difference costs
twice as much as it should. For this reason, modelling accurately gene families with events
of gene conversion would require developing a new model. Such a development is difficult:
replacement transfers or gene conversions introduce dependencies between otherwise inde-
pendent branches of the species tree, which breaks dynamic programming algorithms, the
workhorses of all GTST methods. The model of replacement transfer (Suchard, 2005) uses a
different type of algorithm, but is extremely limited in the size of the data sets it can handle.
Short of developing a better model of gene conversion, users of GTST methods have two
options. First, they could try to mitigate the impact of such a model misspecification by
tweaking the parameters controlling the penalty or the probability of transfers and losses.
By making transfers and losses cost less, or be more probable, scenarios involving gene con-
versions will be less unlikely. Second, they could use network methods, which are typically
designed to describe cases of hybridization or genome-wide reticulation (see section 3.6).
This solution requires setting parameters of reticulation, which are usually estimated using
genome-wide data and will not be well estimated using a single gene family.

Very recent advances on modelling gene conversion as a single event in the parsimony
framework (Hasic and Tannier, 2017a,b) give us hope that gene conversion will be soon
better modelled by reconciliation methods.

3.4 Reconciliation of all processes together
It would be very convenient to have a method that can handle all the processes that make
gene trees differ from species trees. Such a method could identify which processes are at work
in a particular gene family, on particular branches of the species tree. Duplications, transfers
and losses have already been merged together, both in parsimony and in probabilistic models
(Szöllősi et al., 2013a; Scornavacca et al., 2014; Sjöstrand et al., 2014, among others); the
same holds for combining DL with incomplete lineage sorting (Rasmussen and Kellis, 2012;
Wu et al., 2014, even though with some simplistic assumptions on how gene duplication
and ILS interact). These latter models add an extra hierarchical layer on top of typical DL
models: sequences evolve along a gene tree, which evolves according to a coalescent process
along a locus tree, which evolves according to a birth-death process along the species tree.
This model could be extended to account for gene transfers as well. In the parsimony
framework, similar efforts have been attempted, the most complete model being the one of
(Chan et al., 2017), combining DTL with incomplete lineage sorting (this method does also
oversimplified assumptions on the interaction between duplication and ILS).

As evoked in Section 3.3, so far no model has combined replacement transfers with typical
models of DTL, because the classical dynamic programming algorithms cannot be used when
replacement transfers are included.

3.5 Reconciliation of several loci together
Gene trees can be reconstructed one by one using GTST models. When probabilistic models
are used, this typically involves estimating parameters of the GTST models, such as the rates
of various events. This can be difficult on single gene families, where the amount of inform-
ation is necessarily limited. In such cases, rates can be mis-estimated, and reconciliation
scenarios can be wrong. To improve rate estimation, information could be gathered across
gene families, by performing joint estimation of the rates. This would reduce stochastic
errors, but could result in over-shrinkage effects, where outlier loci with atypical parameter
values would be constrained to share the parameter values estimated on other gene families.

PGE
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A balance between gene-based and genome-based estimation of the rates could be obtained
by borrowing ideas from models of rate heterogeneity across sites (Yang, 1994). Such models
estimate an average rate of evolution across all sites, but allow variation around the average
by estimating an additional variance parameter. There could be additional variance para-
meters to account for variation in the rates of D, T, L or incomplete lineage sorting across
gene families.
Moreover, some events of gene family evolution affect more than one gene family at a time.
For instance, duplication, transfer and loss events can affect a segment of the genome that
contains several genes. To identify such events it is desirable to analyse several gene families
jointly and reconstruct joint scenarios. This, however, is difficult to do. First, events af-
fecting segments of the genome may involve different numbers of genes in different lineages
of the species tree. Therefore either an arbitrary choice is made on the number of jointly
analyzed genes, or one has to come up with a method that will find the appropriate number
for each branch, or assume that co-evolving genes co-evolve throughout their history. A
method that identifies co-evolving genes per branch and that uses this information to recon-
struct their history would be difficult to design as it would need to consider a vast number
of possibilities. Chan et al. (2013) adopted a two-step approach: first, gene families were
reconciled individually, and then probabilities that two gene families co-evolved over their
entire history were computed based on the individual evolutionary scenarios. This approach
was able to recover co-evolving genes in a simulation.

Second, genomes do not remain collinear throughout their evolution: two genes could be
neighbors in one genome, but far from each other in another. Therefore either one focuses on
the few genes whose relative positions have remained constant throughout their evolution,
or one has to use a model of how genes move across the genome. The latter approach has
been used in a series of papers that describe models using synteny information to reconstruct
ancestral genome structures (Bérard et al., 2012; Patterson et al., 2013; Semeria et al., 2015)
that are described in more depths in Chapter 2.5 (Tannier et al. 2020). These methods
take as input a (dated) species tree4, a set of reconciled gene trees and the set of extant
adjacencies. The output is a set of ancestral adjacencies that, combined, give the ancestral
genome structures. Their underlying model permits the creation and the loss of adjacencies
and looks for an adjacency history that is compatible with the given reconciled gene trees
and minimizes the number of adjacency creations and adjacency losses. Obviously, it would
be interesting to reconcile the gene trees and, at the same time, minimize adjacency creations
and losses, but the problem seems to be very complex and it has been conjectured to be
NP-hard. To this day, the complexity of this problem is still open, even if the proof for
a related problem presented in a very recent paper (Delabre et al., 2018) could shed some
light.

Third, the space of all possible events then increases: for instance, in addition to D, T, L
of single gene events, one needs to include events of D, T, L of at least pairs of genes. Very
recently, methods to take into account duplications and losses of several genes at once (the
so-called segmental duplications and losses) have been proposed in the parsimony framework
(Delabre et al., 2018; Dondi et al., 2018). Overall, the development of models that consider
the coevolution of several genes at a time is quite complicated and results in algorithms of
high complexity.

4 The species tree needs to be dated only in Patterson et al. (2013).
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3.6 Reconciliation with a species network
When the species phylogeny includes reticulation events such as hybridizations, we talk
about species networks. Species network inference will not be reviewed in this book but we
refer to the excellent recent reviews of Degnan (2018) and Elworth et al. (2019). Here we only
aim at highlighting the similarities between some of the approaches to infer networks and
the reconciliation methods presented in this chapter. For example, the MDC (Minimizing
Deep Coalescence, e.g. Yu et al., 2011), is implicitly based on a reconciliation model in a
parsimony framework permitting speciation and ILS at the gene level, and speciation and
hybridization at the species level. In more details, gene trees evolve inside the network via
speciations (hybrid or not)–giving a set of possible trees associated to the network– and
a given gene tree can be reconciled with each of these trees via speciation and ILS. The
best reconciliation w.r.t. the network is then the most parsimonious one over all possible
scenarios and trees inside the network. The same rationale underlies similar methods in the
probabilistic framework (e.g. Yu et al., 2014; Zhang et al., 2017). These latter models are
very time consuming. Other models explicitly extended the reconciliation model to species
networks, e.g. To and Scornavacca (2015) for the DL model and Scornavacca et al. (2017)
for the DTL model. These methods do not take ILS into account yet. Roughly speaking,
they consist in replacing Point 1 of the model described in Section 2.2 with:
1. Speciations and hybridizations are the only possible events shaping species histories;
These explicit models are extremely scalable but also very recent and they have yet to prove
their worth.

3.7 Improved dating with reconciliation
Dating a species phylogeny is a difficult endeavour that usually involves using fossil calibra-
tions with relaxed clock models of the rate of sequence evolution. Although much work has
been devoted to such inferences, dating a tree remains difficult because disentangling rate
and time is fundamentally very hard. Basically, one needs to estimate a rate and a length of
time per branch, all this based on an estimate of their product, the branch length. One pos-
sibility to improve the inference of dated phylogenies would be to include other events than
just events of substitution. In particular, reconciliations notably allow identifying events
of D, T, L and placing them on branches of the species phylogeny. One could use these
estimated numbers of events on each branch of the phylogeny to better disentangle branch
length and rates of evolution, because time will affect in a similar way events of substitution
and D, T, L events, while the rates of those events may be partially uncorrelated. By using
more events, one could thus better estimate dated phylogenies.

Another approach to improve dating based on reconciliations is to use individual transfer
events on their own. Transfer events necessarily occur between contemporaneous species.
Given that species sampling is necessarily incomplete, transfers can only indicate that the
ancestor of a donor species is necessarily older than the descendant of a recipient species
(see Figure 5). Yet, such an information tells us something on the relative age of two
nodes in the species tree, and the detection of a transfer event can be translated into a
time constraint between nodes of a phylogeny if the donor and a recipient can be identified.
When a set of transfers is detected by interpreting the phylogenetic discordance between a
gene tree and a species tree, the set of all deduced time constraints can be used to rank
the species tree, i.e. order totally its internal nodes. Several genes can give contradicting
information that needs to be sorted out (Chauve et al., 2017); still, it seems that transfers
can be successful in providing insights into the timing of diversification of clades across the
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tree of life (Davín et al., 2018). Combining this transfer-based information with relaxed
clock models of sequence evolution and with fossil calibration could result in much more
accurate dates for the tree of life, even in taxa/epochs where the fossil record is scant.

3.8 RecPhyloXML and reconciliation visualisation
Recently, a common effort of a consortium of researchers involved in reconciliation-related
software development resulted in the introduction of an integrative and flexible format to
describe reconciliations (Duchemin et al., 2018). The format is based on grammars extending
the PhyloXML format, which is aimed at representing annotated trees in XML. Roughly,
in RecPhyloXML the species tree and the reconciled gene tree are described in PhyloXML.
Then, each node of the reconciled gene tree is associated to a set of nodes of the species
tree via tags that specify the type of event (duplication, transfer, etc), the support and
geographical annotations, for instance.

We are confident that RecPhyloXML will ease the development of generic software per-
mitting to visualise and compare reconciliations, such as Sylvix (Chevenet et al., 2015)
and the web interface http://phylariane.univ-lyon1.fr/recphyloxml/recphylovisu.
In turn, this will help the spread of the usage of the reconciliation tools tremendously. The
practitioners will not need anymore to spend hours trying to understand the different out-
puts of different reconciliation tools; they will be able to easily compare them and choose
the best software for their data.

3.9 Impact of reconciliation on other steps of the phylogenomic
pipeline

We have seen that GTST models can improve gene tree inference. It is known that using
better guide trees, e.g. phylogenetic trees guiding how pairwise alignments are combined to
obtain a multiple alignment, improves alignment inference (Liu et al., 2009). Therefore it
seems likely that using a species tree with a GTST model could improve alignment inference,
though not for all instances (see Chapter 2.3 [Ranwez and Delsuc 2020]). Similarly, clustering
gene sequences into homologous gene families could benefit from the information coming
from the species tree. Clustering methods typically rely on fixed thresholds to include a
sequence into a cluster: if a sequence is similar enough to one or several sequences of a
cluster, it is included in the cluster, if not, it is excluded. The reliance on such a fixed
threshold could be relaxed with some knowledge of the structure of the species tree and of
its branch lengths. For instance, one could normalize scores or adapt the threshold to the
phylogenetic distance between the considered species as has been done by Emms and Kelly
(2015). One could go even further by using reconciliations with models of gene duplication,
transfer and loss. Such models would penalize families that are represented in a patchy way
in the species phylogeny, in particular in clades where transfer rates are low. Indeed, patchy
families would require large numbers of duplications and losses, which would be associated
to a low reconciliation score. If we use the species tree for the clustering step, one could
develop an iterative approach where a first clustering is used to generate a species tree,
which is then used to re-cluster the genes, taking into account the species tree.

4 Conclusion

Several reconciliation methods have been developed these past few years. These allow in-
ferring better gene trees and quantifying the impact of gene-level processes on genome evol-

http://phylariane.univ-lyon1.fr/recphyloxml/recphylovisu
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ution. Progress remains to be made to integrate more processes together (e.g. DTL with
ILS, hybridization and gene conversion for multiple genes) in a single inferential method,
to allow for correlations between gene histories, and to speed up methods for species tree
inference. But reconciliation methods can already contribute to a better understanding of
many processes of molecular evolution, and could improve the accuracy of several steps of
our phylogenomic pipelines.
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