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Abstract
The reconstruction of the chromosomal organization of ancient genomes has many applications
in comparative and evolutionary genomics. Here we propose a novel, methodological, use for
these predicted ancestral syntenies, directly focused on phylogenomics. It is a way to assess the
accuracy of gene trees and species trees. We use a method that reconstructs, from gene trees
and extant gene orders, ancestral adjacencies, i.e. the immediate neighborhood between pairs
of genes, independently for each pair. This independence allows to split the computations into
many independent problems that can each be solved exactly using efficient algorithms, but might
result in sets of ancestral adjacencies that are incompatible with the expected linear or circular
structure of chromosomes. We show here that this drawback can actually be turned into a useful
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feature. We show on simulated data that the degree of linearity of the reconstructed ancestral
gene orders is well correlated to the accuracy of the input gene trees. Moreover, a localized error
in the species trees results in a burst of non linearity of ancestral genomes at the wrong node. We
eventually show that integrated phylogenomic methods expectedly lead to better linearity scores
than methods based on gene alignments only. Allowing a method to output an unrealistic result,
but proving that the expected output is closer to realistic when the input is closer to correct, we
thus provide an original validation protocol for standard evolutionary studies.

How to cite: Eric Tannier, Adelme Bazin, Adrián A. Davín, Laurent Guéguen, Sèverine Bérard,
and Cédric Chauve (2020). Ancestral Genome Organization as a Diagnosis Tool for Phylogen-
omics. In Scornavacca, C., Delsuc, F., and Galtier, N., editors, Phylogenetics in the Genomic
Era, chapter No. 2.5, pp. 2.5:2–2.5:19. No commercial publisher | Authors open access book. The
book is freely available at https://hal.inria.fr/PGE.

Supplement Material https://github.com/sberard/SAGe

1 Introduction

Rearrangements of gene organization along chromosomes were discovered long before the
molecular structure of DNA (Sturtevant, 1921). The comparison of genetic maps or polytene
chromosomes were seen in the first half of the XXth century as a promising approach to
reconstruct evolutionary relationships or ancestral configurations (Babcock and Navashin,
1930; Dobzhansky and Sturtevant, 1938), and advance the knowledge on extant and extinct
biodiversity. This later motivated the development of genetics, cytogenetics, or bioinformatics
techniques aimed at detecting “structural” mutations of chromosomes (Timoshevskiy et al.,
2013). The definition of what is a structural mutation largely depends on the observation
technique used to detect them. It can consider every mutation involving several contiguous
nucleotides (starting with small indels, micro-satellites or micro-inversions), or be limited to
very large-scale mutations that affect gene content and orders, such as large inversions or
chromosomal translocations (that can be detected by genetics or cytogenetics techniques).
As genes are often taken as evolutionary units by bioinformatics and phylogenomics methods,
genome rearrangements are usually limited to structural mutations whose breakpoints are
located in non-coding regions and that change the organisation of genes along the genome.

Rearrangements have an important role in several evolutionary processes such as adapt-
ation, speciation, sex differentiation, polyploidization (Fuller et al., 2018; Lemaitre et al.,
2009). Knowing ancestral configurations can thus inform on conserved structures, functional
gene clusters (Abrouk et al., 2010), as well as on patterns and processes of the history of
wild or domestic biodiversity (Murat et al., 2012).

1.1 Ancestral gene order reconstruction methods
The reconstruction of ancient genome organization has been called paleogenomics, a term
shared with ancient genome sequencing (Pont et al., 2019).

Over the last 25 years, there has been an intense research activity in developing computa-
tional methods for the reconstruction of ancestral gene orders, that we reviewed extensively
by Anselmetti et al. (2018b). We distinguish two main families of methods: chromosome
based methods and adjacency based methods.

https://hal.inria.fr/PGE
https://github.com/sberard/SAGe
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Chromosome based methods take as input a species phylogeny, the gene orders of extant
species in this phylogeny, and a genome rearrangement evolutionary model. Their aim is
to infer ancestral gene orders and evolutionary scenarios along the branches of the species
phylogeny. Ancestral orders and scenarios can be given a score (parsimony, likelihood)
according to the model, and methods can optimize or sample according to this score.

Such methods are natural extensions to gene orders of ancestral sequence reconstruction
methods, reviewed for example by Groussin et al. (2016); Joy et al. (2016). However, unlike
ancestral sequence reconstruction, ancestral gene order reconstruction is computationally
intractable for almost all genome rearrangement models. Indeed, even if gene scale evolution
events as duplication and loss are ignored, and if there are only 3 species in the species tree,
the parsimony problem is NP-complete (see Tannier et al., 2009; Kovác, 2014, and references
there). If duplications are allowed, even the problem of computing the pairwise distance
between two gene orders is NP-complete (e.g. see Blin et al., 2007; Angibaud et al., 2009).

To skirt this computational challenge, adjacency based methods model the evolution
of the physical link between two consecutive genes only, called adjacencies, instead of full
chromosomes. In this framework, ancestral adjacencies are reconstructed along the species
phylogeny from the pattern of presence/absence of extant adjacencies, using a model allowing
gains and losses of adjacencies. The set of inferred ancestral adjacencies for a specific ancestral
species then forms an adjacency graph whose vertices are the ancestral genes and edges the
ancestral gene adjacencies. A side effect of inferring ancestral adjacencies using such an
approach that considers the evolution of each adjacency independently from the others is
that the adjacency graph may not have the expected structure of a chromosome, that is,
a collection of paths and cycles. In order to present a structure compatible with a set of
chromosomes, or at least scaffolds, some methods select a subset of the inferred ancestral
adjacencies which form a collection of paths and/or cycles. Computationally more tractable,
adjacency based approaches can handle unequal gene content and gene duplication, gain and
loss, and several methods have been developed that allow ancestral gene orders to contain
duplicated genes (Ma et al., 2008; Rajaraman and Ma, 2016; Zhou et al., 2017).

Here, we consider again such methods, but from another point of view: we make the
hypothesis that syntenic conflicts might be caused by errors in the earlier steps of the whole
pipeline, especially the construction of the reconciled gene trees (see Chapter 3.2 [Boussau
and Scornavacca 2020]). This hypothesis has been considered in several studies (Boussau
et al., 2013; Peres and Crollius, 2015; Duchemin et al., 2017; Anselmetti et al., 2018a; Zerbino
et al., 2018), but never assessed through experiments. In this paper, we provide a first
proof of principle that indeed syntenic conflict in reconstructed ancestral gene orders can be
correlated to errors in earlier steps of a phylogenomics pipeline.

1.2 Impact of errors on the linearity of reconstructed genomes
As described above, ancestral gene orders are typically obtained at the end of a multi-
step sequential phylogenomics pipeline starting with genome assemblies and leading to the
inference of ancestral gene adjacencies, which link consecutive genes in ancestral chromosomes,
and ultimately ancestral gene orders. Intermediate steps include gene annotation (Chapter
4.1 [Necsulea 2020]), gene clustering into gene families (Chapter 2.4 [Fernández et al. 2020]),
multiple sequence alignment of genes within families (Chapter 2.2 [Ranwez and Chantret
2020]), gene tree and species tree reconstruction (Chapters 1.2 and 1.4 [Stamatakis and Kozlov
2020; Lartillot 2020]) and gene tree reconciliation (Chapter 3.2 [Boussau and Scornavacca
2020]). Each step in such pipelines is susceptible to introduce errors that can propagate
further in the pipeline. For example, the effect of errors in multiple alignments for species

PGE
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tree reconstructions has been explored by Philippe et al. (2017), and the effect or errors
in gene tree for reconciliations has been investigated by Hahn (2007). The effect of model
choice has recently been investigated by Hoff et al. (2016); Yang and Zhu (2018), as well as
the effect of the phylogenetic software choice (Zhou et al., 2018). And even bugs in many
standard software can blur the results (Czech et al., 2017). Along these lines of research, we
propose to investigate the effect of errors in gene trees and species trees on the linearity (or
more precisely non-linearity) observed in ancestral gene adjacencies, and propose to use the
latter to correct phylogenetic trees.

The notion of linearity is related to the arrangement of genes along chromosomes as
defined by ancestral gene adjacencies. In this work we assume that a genome is composed of a
set of linear and/or circular molecules carrying genes – chromosomes, organelles, plasmids, . . . –
with genes totally ordered along each molecule. This implies that a correct adjacency graph,
representing an actual gene order, whether it is extant or ancestral, is a collection of paths
and/or cycles. This is an approximation as it is common in extant genomes that genes
overlap, or are included one in an other, or that the definition of their limits lack precision
due to alternative splicing for example. Nevertheless, a vast majority of genes in cellular
organisms can be totally ordered along chromosomes. Given this assumption, the hypothesis
we investigate is the following: the amount of non-linearity observed in ancestral adjacency
graphs is correlated to the level of errors made by earlier steps of the pipeline leading to
these graphs, in particular to the amount of errors in gene trees. We are not claiming that
these errors are the only possible source of non linearity. Indeed our ancestral adjacency
reconstruction method can make mistakes itself; in particular it is a parsimony method, as
such unable to cope with convergent or reverse evolution. However we expect that, if we are
provided with real species tree, gene families and gene trees and if gene order has evolved
without much convergent evolution, then reconstructing ancestral adjacencies should result
in few false positive adjacencies and the resulting ancestral adjacency graphs should be close
to linear, i.e. most ancestral genes should have at most two neighbors.

The idea of a correlation between the extent of non linearity in ancestral adjacency
graphs and the distance to an ideal situation was first introduced by Bérard et al. (2012)
to compare two sets of gene trees, and has been used in several works to compare gene
trees (Boussau et al., 2013; Patterson et al., 2013; Peres and Crollius, 2015; Duchemin et al.,
2017; Anselmetti et al., 2018a) or species trees (Anselmetti et al., 2018a). However, there is
so far no systematic study providing a proof of principle. In particular the hypothesis that a
better linearity implies that the input gene trees are more accurate has never been assessed.
This is what we propose to do. We use simulations of species tree, gene trees, gene sequences
and gene orders in two situations, one where gene families evolve by speciation, duplication
and loss and one where gene families evolve by speciation, duplication, loss and horizontal
gene transfer (HGT). We then perturb the gene trees and species tree in order to measure
the effect of the introduced errors on the linearity of ancestral adjacency graphs.

In our first set of experiments, we observe a very strong correlation between the amount
of noise introduced in the gene trees and, on one hand, the number of inferred structural
mutations of genomes, and on the other hand, the non-linearity of the ancestral adjacency
graphs. This tends to confirm our hypothesis and suggests that predicted ancestral genomes
could be used to assess the quality of phylogenomics data and could thus provide an important
signal to correct gene trees. Indeed, while predicted ancestral genomic features, such as gene
content, can always be explained by – possibly highly non-parsimonious and unrealistic –
evolutionary scenarios, the non linearity of gene order can not be justified in any way. So we
provide an additional, original, quality measure. In a second set of experiments, we observe
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that with moderately perturbed gene trees, a local error in the species tree correlates with
a burst of non linearity precisely in the ancestral genomes close to the erroneous branch.
This burst is very localized and could be used to give a hint on erroneous parts of species
phylogenies. Finally, in a third set of experiments, we reproduce gene tree construction
pipelines starting from sequence data; our results suggest, based on the linearity score,
that integrated phylogenomics methods, including gene tree species tree reconciliation, lead
to more accurate results than gene tree reconstruction methods based only on multiple
alignments.

2 Methods

Our experiments are based on the analysis of simulated data, providing a clear ground truth
on the evolution of a set of gene orders. We first describe these simulations, then the analyses
performed on the simulated data.

2.1 Simulations
We used Zombi (Davín et al., 2019) to perform simulations. This program constructs artificial
species tree, gene trees evolving along this species tree, extant and ancestral gene orders
evolving through genome rearrangements, and gene DNA sequences. Genomes evolve by
duplication of one or several genes, losses, horizontal gene transfer, and inversions of segments
of several genes. Duplications are tandem or not, according to a parameter, and transfers
either replace a homologous gene or consists of an insertion at a random place in the genome.
Zombi is interesting for our purpose because it mixes gene based events and genome based
events. Moreover it is the only available software which is able to take into account extinct
or unsampled species when performing HGTs.

The set of parameters is fully available in the supplementary material of this paper. We
simulated one species tree with 151 leaves, 26 of them being extant species, the others being
extinct or unsampled species. The ancestral gene order at the root of the tree is composed of
a single circular chromosome of 1, 000 genes, with no in-paralogs. From there we simulated
two datasets:

Dataset 1: gene families evolved through speciation, gene duplication and gene loss;
Dataset 2: gene families evolved through a more comprehensive model including speciation,
gene duplication, gene loss and horizontal gene transfer.

For each dataset, we obtained from Zombi the true gene tree for each gene family, together
with the gene orders of all extant and ancestral species and the DNA sequence of all genes.

2.2 Correlating non-linearity of adjacency graphs and errors in gene
trees

In this first experiment, we introduced errors in gene trees and species tree and measured
how this impacts a non-linearity score recorded in the adjacency graphs of the ancestral
species. An overview of the whole process is depicted on Figure 1.

2.2.1 Introducing errors in gene trees
For each dataset, we introduced various levels of errors in the true gene trees by applying
random local perturbations using Nearest Neighbor Interchanges (NNI) on gene tree branches
uniformly at random. The level of noise was controlled by the number of NNI performed,

PGE
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Figure 1 Overview of the simulation/perturbation/reconstruction process and dependencies. We
use Zombi to simulate species trees, gene trees, gene orders and gene sequences. We apply some
perturbations to gene trees. Then we use DeCoStar to reconcile gene trees (it uses the ecceTERA
package) and to construct ancestral adjacencies.

chosen from a Poisson distribution with parameter λ ∈ {0.25, 0.5, 1, 2, 3, 5, 7, 10, 20, 30, 50}.
It follows that we obtained 12 sets of gene trees (the true trees and 11 sets of perturbed
trees) for each starting dataset.

For each set of perturbed gene trees we recorded the mean Robinson-Foulds (RF) distance
to the true trees. Figure 2 plots the RF distance growing with λ, showing that in this
parameter range, there is no saturation of gene tree perturbation, but that the RF distance,
more than λ itself, can capture the amount of distortion.

2.2.2 Introducing noise in the species tree
We also looked at the impact of errors in the species tree. To do so, we perturbed the
species tree by manually performing a single NNI at an arbitrary branch; we denote by S
the true species tree and S1 the perturbed species tree. Both trees were tested with true and
perturbed gene trees.
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Figure 2 Mean Robinson-Foulds distance as a function of the value of λ.

2.2.3 Reconstructing ancestral gene adjacencies with DeCoStar
DeCoStar (Duchemin et al., 2017) takes as input extant gene orders, gene trees and a species
tree. Gene trees are reconciled with the provided species tree using ecceTERA (Jacox et al.,
2016), an exact dynamic programming algorithm computing a parsimonious reconciliation.
Then ancestral adjacencies are reconstructed for each ancestral species. The principle for
this reconstruction is that first extant adjacencies are clustered into families, according to
the homology of the corresponding gene extremities. Then for each family of adjacencies,
ancestral adjacencies are constructed also with an exact dynamic programming procedure
minimizing the cost of gains and breakages of adjacencies; we used default costs for adjacency
gain and break (3 and 1).

We added to the program DeCoStar a novel feature, described here for the first time, aimed
at handling gene losses without artificially increasing the parsimony cost of an adjacency
evolutionary scenario, which is important regarding the linearity score we describe later.
This feature consists in iterating the DeCoStar program several times, modifying the costs of
creating adjacencies in function of the previous iteration. More precisely, if in the solution
computed by the algorithm at iteration i the loss of a gene A, located between two genes B
and C, is inferred, then at iteration i+ 1 the gain of an adjacency between genes B and C is
free, i.e. it does not increase the cost of the evolutionary scenario for the adjacency family
containing B and C. This is generalized to any set of consecutive genes located between
B and C, being lost concomitantly at iteration i. It can have a significant impact on the
linearity score in the case of convergent losses of genes. As we focus on linearity we use this
“loss aware” option with two iterations (i = 2) in all our experiments.

For each run of DeCoStar, we recorded the number of gene duplications, gene losses and
HGTs, as well as the number of gains and breaks of adjacencies.

2.2.4 Non-linearity score
Each run of DeCoStar results in a set of ancestral gene adjacencies. Under the hypothesis
that perfect data and a moderate amount of non parsimonious structural evolution will
result in linear ancestral genomes, we expect that each gene is the extremity of exactly two
adjacencies2. In other words it has degree 2, where the degree, noted deg(g) for a gene g, is
the number of adjacencies using g as an extremity. Thus we define the non-linearity score as
the distance from this expectation. For a given ancestral species, the non-linearity score is

2 This is true for circular chromosomes, and in particular for our current experiments with Zombi. In
general chromosomes may be linear and the genes at their extremities are expected to be involved
in only one adjacency. However their number is so low compared to a standard gene set that this
expectation can be used in practice as well for linear chromosomes

PGE
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the sum of |deg(g)− 2| over all vertices g of its ancestral adjacency graph. The non-linearity
score for a given experiment is then the sum of the non-linearity scores over all ancestral
species.

2.3 Reconstructing gene trees
In our third experiment, for both datasets we reconstructed gene trees for all gene families
from the simulated gene sequences, using IQ-TREE (Nguyen et al., 2015) with bootstrap
supports on all branches. For Dataset 1 we corrected the IQ-TREE trees with Treerecs (Comte
et al., 2020). For Dataset 2 we additionally constructed a sample of gene trees from the
sequences using MrBayes (Ronquist et al., 2012) and used the amalgamation option of
ecceTERA (Jacox et al., 2016) to construct a single reconciled gene tree from the MrBayes
sample, that is, one reconciled gene tree per gene family.

The rationale behind these choices of methodologies is that for gene families evolving
under the duplication/loss model (Dataset 1) there are fast methods to obtain reconciled
gene trees from IQ-TREE trees, able to correct branch supports, such as Treerecs. For gene
families evolving also with HGTs (Dataset 2), where the same problem is NP-complete, we
used the amalgamation principle, in a reconciliation framework considering HGTs, which
requires to compute a sample of gene trees from a posterior probability.

3 Results

First, we discuss in details our main observation that the non-linearity score is highly
correlated with the level of noise introduced in the gene trees. In a second set of experiments,
we consider an erroneous species tree and we show that again the non-linearity score increases
around the erroneous branch of the species tree, suggesting it could be used to point at
species phylogeny errors. Last we consider gene trees reconstructed from sequence data,
instead of true gene trees perturbed by random NNIs, and show that reconstruction methods
accounting for gene evolution events perform better in terms of non-linearity scores than
traditional phylogenetics methods.

3.1 The distance to true trees is highly correlated with the
non-linearity score

3.1.1 Overview
Our first result is illustrated in Figure 3: in the two datasets, the non-linearity score grows
almost linearly with the mean RF distance between the perturbed gene trees and true trees.

Figure 3 actually represents three scores: the reconciliation score (cost of gene family
evolutionary events: gene duplications, gene losses, HGTs), the DeCoStar score (cost of
adjacency gains and breakages) and the non-linearity score (see Section 2). We present these
three scores, despite the fact that our main interest is in the linearity score, in order to give
a broader picture of the impact of noise in the input data on the result of phylogenomic
algorithms. In particular, it is interesting to observe that the three scores grow almost
linearly with the mean RF between the perturbed gene trees and the true gene trees.

3.1.2 Gene content
An interesting observation is that the reconciliation score grows much faster in Dataset 1 than
in Dataset 2. As reconciliation defines the gene content of ancestral species, and it was shown
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Figure 3 Non-linearity score (red +), DeCoStar score (blue x) and reconciliation score (green
circle) as a function of the mean Robinson-Foulds distance between the perturbed gene trees and
the true gene trees.

by Hahn (2007) that in a duplication/loss model, errors in gene trees result in an unrealistic
gene content of ancestral species, especially for higher nodes of the species phylogeny, we
were interested in recording the gene content of ancestral species in both datasets (Figure 4).
A somewhat surprising observation is that the patterns of observed gene content deduced
from the reconciliations are very different: in Dataset 1, as expected, more ancient ancestral
species accumulate genes due to how the parsimonious reconciliation algorithm copes with
errors in gene trees, while in Dataset 2, the converse happens, as ancestral species closer to
the root of the species phylogeny have less genes, although the variation is less strong than
in Dataset 1.

Figure 4 Gene content of ancestral species, in function of the degree of perturbation in gene
trees. For Dataset 1 (Left) and Dataset 2 (Right). We see an opposite behavior of DL models (Left)
and DTL models (right) with respect to gene content. On one side gene content increases with
perturbation, on the other it decreases. In both cases gene content is altered proportionally to the
amount of perturbation.

3.1.3 Non-linearity score
We now refine the analysis of the non-linearity score by considering the non-linearity score
specific to each internal node of the species tree. We first focus on Dataset 1 and, for the sake

PGE
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of clarity, we consider only the rates of errors in gene trees of λ ∈ {0.25, 0.5, 1} (Figure 5), as
they illustrate well the general trend observed for all levels of noise.

(a) (b)

(c) (d)

Figure 5 Non-linearity score for Dataset 1 with the true species tree S, with the true gene trees
(a), and with λ having value 0.25 (b), 0.5 (c) and 1 (d). The radius of the disks at the internal nodes
are proportional to the non-linearity scores. Red branches are the ones that are perturbed (see next
section).

The main observation from Figure 5 is that there is a general trend that the non-linearity
score increases toward higher nodes of the species tree. It is also interesting to notice that
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even with a low level of noise, some lower internal node, such as the roots of cherries (subtrees
composed of two leaves) show a non-zero non-linearity score. This suggests that few errors
in gene trees are sufficient to create conflicting ancestral adjacencies.

When considering Dataset 2, the effect is rather different, with the root node capturing
most of the non-linearity score (Figure 6).

Figure 6 Non-linearity score for Dataset 2, with λ having value 0.25 (Left), 0.5 (Middle) and 1
(Right). The radius of the disks at the internal nodes are proportional to the non-linearity scores.
The red branches should be ignored.

Figure 7 below provides another illustration of the difference in terms of non-linearity
score variation, as we can observe a much lower magnitude of the score in Dataset 2, as well
as a lesser variation compared to Dataset 1.

3.1.4 Discussion

Regarding the interpretation of our observations, an important element is the applicability
toward correcting erroneous gene trees. The work described by Hahn (2007) was already a
first result toward our hypothesis that scores of phylogenomic algorithms can be correlated
to errors in data. Our experiments allow us to go one step further. Indeed, while largely
inflated ancestral genomes can be highly unrealistic, one can always consider that there is a
non-zero probability that they are correct. A similar remark could apply to the DeCoStar
algorithm, that considers individual adjacencies outside of their wider genomic context:
adjacency evolutionary scenarios involving a high number of gains and/or breaks could be
seen as unrealistic, but not impossible. On the contrary, under the assumptions we outlined
in Introduction, a non-zero non-linearity score without false positives ancestral adjacencies is
impossible, as genes are linearly or circularly arranged along chromosomes. So if methods
are developed with the aim to correct gene trees guided by the reduction of some score, the
non-linearity score is a good candidate since its ideal value is known – the closer to zero, the
better the gene trees.

PGE
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Figure 7 Distribution of the non-linearity score of ancestral species, as a function of the perturb-
ation on gene trees. On the left pannel, for the experiment with only duplications and losses, and
on the right pannel, for duplications, transfers and losses. The two pannels have the same scale, in
order to illustrate the effect of transfers, in the presence of which the perturbations have a lower
effect.

3.2 Non-linearity point at erroneous branches of the species trees
When considering the species tree S1 differing from the true species tree by a single NNI,
the results we obtained in terms of the correlation of the scores of the different steps of our
pipeline (reconciliation, DeCoStar, non-linearity) with the level of noise in the gene trees
were similar to the ones described above (Figure 8).

Figure 8 Non-linearity score (red +), DeCoStar score (blue x) and reconciliation score (green
circle) as a function of mean Robinson-Foulds distance of perturbed gene trees to true gene trees,
with a perturbed species tree.

Moreover, similar to the phenomenon observed when using the true gene trees for Dataset 1,
we can observe in Figure 9 that the non-linearity score is greatly inflated around the branch
where the NNI was performed, compared to the neighbouring nodes, especially with lower
levels of errors in gene trees (λ ∈ {0.25, 0.5}). This suggests that the non-linearity score can
also capture an important signal regarding the accuracy of the species tree.

Next, for Dataset 1 and the true gene trees, we can make two interesting observations by
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(a) (b)

(c) (d)

Figure 9 Non-linearity score for Dataset 1 and the species tree S1, with the true gene trees (a)
and with λ having value 0.25 (b), 0.5 (c) and 1 (d). The radius of the disks at the internal nodes are
proportional to the non-linearity scores. The branch that has undergone the NNI is shown in red.

comparing the level of non-linearity at each node of the true species tree S, Figure 5(a), and
the modified one S1 (one NNI away), Figure 9(a). First, our assumption that with perfect
data from the ground truth (gene families, gene trees, species tree), ancestral adjacency
graphs are almost linear, is confirmed. Second, when considering the experiment with the
species tree S1, we can observe a much higher level of conflict, at the branch where the NNI
was done, and at its parent.

Last, on Figure 10 we present the same information for the dataset where gene trees

PGE
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evolved with HGT (Dataset 2). We can observe a similar trend of a level of conflict increasing
in higher nodes in the species tree and a strong impact of the NNI performed onto S to
obtain S1, in terms of conflict around the NNI branch.

Figure 10 Non-linearity score for Dataset 2 with species tree S1, with λ having value 0.25 (Left),
0.5 (Middle) and 1 (Right)

Note that these linearity scores are obtained with an error in the species tree uncorrelated
with potential errors in gene trees. This is an unrealistic assumption because we can expect
that the cause of errors in a species tree are seen as well in the gene trees, or even come
from correlated errors in the gene trees. Further tests are needed to control for this effect.
Nonetheless some previous observations on Drosophila showed that the linearity score was the
highest precisely at the most debated node (Semeria et al., 2015), or in Anopheles that the
linearity score was lower with a species phylogeny agreeing with the gene trees (Anselmetti
et al., 2018b). There is an agreeing body of arguments showing that the linearity score is a
promising proxy for species phylogeny.

3.3 Phylogenomic methods to reconstruct gene trees
Finally we compared two ways of constructing gene tree sets, in terms of statistics discussed
in the previous sections. First we reconstructed gene trees, using IQ-TREE, from multiple
sequence alignments of the gene families simulated with Zombi. Next we used integrated
phylogenomic methods including the principle of reconciliation to reconstruct gene trees (see
Chapter 3.2 [Boussau and Scornavacca 2020]). We refer to Section 2.3 for a description of
the methods used with each dataset.

Figure 11 shows the ancestral gene content (number of ancestral genes by species)
distribution and the linearity of ancestral genomes, according to different sets of gene trees
(true trees, IQ-TREE trees and trees reconstructed with a reconciliation method).

As in our previous experiments, we can observe that the behavior is different in the
duplication/loss (Dataset 1) and duplication/loss/HGT (Dataset 2) cases. For Dataset 1, the
gene content is unrealistically higher with IQ-TREE trees, confirming the remark by Hahn
(2007) discussed above that errors in gene trees could affect the gene content of ancestral
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Figure 11 (Left) Distribution of extant (black) and ancestral (other colors) gene contents,
computed with true trees (green), IQ-TREE (blue) and Treerecs (red). (Right) Frequency of degrees
(number of neighbors) of ancestral genes. (Top) Dataset 1 (with duplications and no transfer), the
number of ancestral genes is vastly overestimated and the linearity is lowered if trees are computed
from sequences only (IQ-TREE). Both are improved by the reconciliation method. (Bottom) Dataset
2 (with transfers and duplications), the number of ancestral genes is underestimated and the linearity
is slightly lowered if trees are computed from sequences only (IQ-TREE). Both are improved by the
reconciliation methods.

species. The linearity is almost the same for true trees and reconciled trees, and much worse
for IQ-TREE trees. This confirms the intuition present in several former papers (Boussau
et al., 2013; Anselmetti et al., 2018b) that the linearity and gene content could serve as
an indicator of the quality of gene trees. For Dataset 2 the results are similar but present
significant and interesting differences. First, contrary to Dataset 1, gene content is lower
for low quality trees, instead of higher. The linearity differences, if present, are much less
marked. It seems that the possibility of HGTs in the reconciliation methods can “correct”
the errors in gene tree topologies and gives nonetheless almost correct gene numbers and
ancestral genome linearity, which, if true, would be an interesting case of robustness of a
pipeline to errors in preliminary steps.
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4 Conclusion

The present work was motivated by the observation, in previous works from our group,
that our efforts to improve species trees or gene tree sets had effects on the linearity of
ancestral genomes. We thus formulated the hypothesis that the non-linearity would be a
good indicator of the quality of the input data, especially gene trees. In order to explore this
hypothesis, we designed a set of experiments on simulated data where the level of noise in
the considered trees (gene trees and species tree) is controlled. This allowed us to test our
starting hypothesis, and we indeed observe that there is a strong correlation between the
non-linearity score and the level of noise. As discussed above, this observation could have
practical applications, where non-linear structures in the adjacency graphs of ancestral gene
orders could provide starting points to correct gene trees or the species tree.

From a methodological point of view, our general idea can be described as follows. Facing
a computationally intractable problem (reconstructing ancestral gene orders in a parsimony
framework), one can relax some biological constraints (here the fact that chromosomes
are linear or circular gene orders) in order to gain computational tractability; then the
inconsistencies observed in the obtained solution with regard to the relaxed biological
constraints open a window toward improving the input data. A few examples exist of this
kind of serendipitous approaches. For example, one can think to horizontal gene transfers:
biology would impose time-consistency on reconstructed transfers, however the problem of
inferring time-consistent transfers is NP-hard (Hallett et al., 2004). Finding transfers while
allowing them to be time-inconsistent can be solved polynomial in polynomial time (Jacox
et al., 2016; Bansal et al., 2018). And, as shown by Chauve et al. (2017), it seems that,
similarly to the way we interpret the non-linearity of ancestral gene orders, the level of time
inconsistency is correlated with the quality of the input data.

Our work is limited to this proof of principle. We devised experiments only within a
small range of parameters, that were chosen to show the possibility of using linearity as
diagnosis and its limits. We do not cover all biological conditions. In particular the effect of
errors in alignments, gene clustering or annotations have not been investigated, and can be
the object of future work.
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