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—— Abstract

PhyloBayes is a software program for Bayesian phylogenetic reconstruction. Compared to
other programs, its main distinguishing feature is the implementation of the CAT model, which

accounts for fine-grained variation across sites in amino acid preferences using a Bayesian non-
parametric approach. This chapter provides a detailed step-by-step practical introduction to
phylogenetic analyses using PhyloBayes, using as an example a previously published dataset ad-
dressing the phylogenetic position of Microsporidia within eukaryotes. Through this historically
emblematic case of a long-branch attraction artifact, a complete analysis under site-homogeneous
and site-heterogeneous models is conducted and interpreted, thus providing an illustration of why
modeling pattern variation is so fundamental for reconstructing deep phylogenies.

How to cite: Nicolas Lartillot (2020). PhyloBayes: Bayesian Phylogenetics Using Site-heterogeneous
Models. In Scornavacca, C., Delsuc, F., and Galtier, N., editors, Phylogenetics in the Genomic
Era, chapter No. 1.5, pp. 1.5:1-1.5:16. No commercial publisher | Authors open access book. The
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1 Introduction

Since the realization, by Zuckerkandl and Pauling (1965), that DNA molecules represent
documents of the long-term evolutionary history of species, molecular phylogenetics has gone
a long way in progressively deciphering the detailed patterns of diversification across species
at all evolutionary scales. Accurately reconstructing the tree of life, however, has turned out
to be quite more challenging than anticipated, especially over deep evolutionary times. The
long-standing hesitations, over the last 50 years, concerning the position of Microsporidia in
the tree of eukaryotes (Brinkmann et al., 2005), or that of nematodes (Aguinaldo et al., 1997;
Philippe et al., 2005) and, more recently, ctenophores (Telford et al., 2016), in the metazoan
phylogeny, clearly illustrate the difficulty in firmly establishing a definitive picture of the
diversification patterns having occurred in the remote evolutionary past.

The first phylogenetic methods, based on distance or on maximum parsimony, have
quickly shown important methodological weaknesses and have progressively been replaced
by more principled model-based approaches, using either maximum likelihood or Bayesian
inference. Even with these probabilistic methods, however, are systematic errors in tree
reconstruction still a major plague (Philippe et al. 2011; Chapter 2.1 [Simion et al. 2020]).
One main reason is the difficult question of model adequacy: probabilistic approaches are
accurate only inasmuch as the underlying model of sequence evolution correctly describes
the true evolutionary process. In practice, models are obviously a much idealized description
of the true processes, which thus raises the question of which aspects of the evolutionary
process are critical and should be correctly captured, in order to mitigate the impact of
reconstruction errors.
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In this direction, variation among sites turns out to be a particularly important feature to
take into account. The simple models originally used in phylogenetics typically assume that
all sites evolve under the same process of nucleotide or amino acid substitutions. In the case
of amino acid sequence alignments, such models are typically implemented using so-called
empirical amino acid replacement matrices, such WAG (Whelan and Goldman, 2001) or LG
(Le and Gascuel, 2008). This, however, amounts to assuming that all sites should visit amino
acid states at the same relative frequencies. Yet in practice, there is much variation among
sites in substitution patterns (and in particular, in amino acid preferences). As it turns out
(and as will be explored in more detail below), explicitly accounting for this heterogeneity
across sites is crucial, in order to get more accurate tree reconstructions.

Owing to its complexity, pattern variation across sites is not a trivial aspect of the
evolutionary process to model adequately. This problem has motivated (and is still motivating)
the development of various approaches (Halpern and Bruno, 1998; Koshi and Goldstein,
1998; Lartillot and Philippe, 2004; Pagel and Meade, 2004; Wang et al., 2008; Le et al.,
2008; Quang et al., 2008; Wang et al., 2014, 2018; Susko et al., 2018; Dang and Kishino,
2019). In particular, the CAT model (Lartillot and Philippe, 2004), such as implemented
in PhyloBayes (Lartillot et al., 2013), relies on a Bayesian non-parametric approach based
on Dirichlet process priors (see Chapter 1.4 [Lartillot 2020] for an introduction on the
concepts of Bayesian inference, site-heterogeneity and non-parametric models). In this
chapter, a practical application using PhyloBayes is presented, showing how to use both
site-homogeneous and site-heterogeneous model, compare their results and evaluate their
goodness of fit. The results are then interpreted in the broader context of phylogenomic
analysis over broad evolutionary scales.

2 A practical example using PhyloBayes: Microsporidia

As a practical example of how to conduct a Bayesian phylogenetic analysis with PhyloBayes,
we consider here a phylogenomic dataset originally assembled by Brinkmann et al. (2005).
This dataset is a concatenation of 133 genes (24,000 aligned positions) for 40 taxa (34
eukaryotes and 6 Archaea). It represents an interesting case, for which the inferred position
of the fast-evolving Microsporidia in the phylogeny of eukaryotes turns out to be model-
dependent — and, more specifically, turns out to depend on whether or not site-specific amino
acid preferences are accounted for.

All analyses presented here have been conducted using PhyloBayes MPI, version 1.8. The
package can be obtained directly from github (https://github.com/bayesiancook/pbmpi).
The dataset is also available along with the current version of the program. In what follows,
we briefly recall the main points about program usage that are necessary to run through the
complete analysis on this particular dataset. For more information, see the manual (provided
in the package).

2.1 Running PhyloBayes under the CAT model

PhyloBayes is primarily intended for high-performance computing facilities operating under
linux or unix. The package contains a series of programs (pb_mpi, readpb_mpi, bpcomp,
tracecomp), all of which can be controlled using a command-line interface. Among them,
pb_mpi implements the Markov chain Monte Carlo sampler targeting the posterior distribution
over the parameters of the model chosen by the user. The MCMC sampler cycles over a
complex series of Monte Carlo updates (or moves) of the topology, the branch lengths or the
substitution model (including the Dirichlet process mixture), and saves the current model
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configuration after each cycle. The series of points saved during a run of pb_mpi defines a
chain. Each chain has a name, which is used as the base name for all files produced during
the run.

Running a chain using pb_mpi

To start our analysis, we run a first chain under the CAT-F81 model on the Microsporidia
dataset. This model, which combines uniform exchange rates across amino acid pairs
(Felsenstein, 1981, generalized to amino acid states) with site-specific amino acid equilibrium
frequency profiles from a Dirichlet process (the CAT model), was introduced by Lartillot
and Philippe (2004) and represents the best compromise between computational speed and
phylogenetic robustness. Runs under this model are much faster than under alternative
models, such as considered below. Therefore, it is generally useful to start with CAT-F81, so
as to get a first picture of the problem of interest, before launching computationally more
demanding analyses. To run the chain, we type the following command:

mpirun -np 32 pb_mpi -d microsporidia.ali -cat -f81 -dgam 4 catf8lmicrospol &

Here, we have started the analysis in direct mode. On a cluster operated by a job scheduling
system, one would instead need to write a script containing, among other information, the
command for running pb_mpi, and then send it to the queue.

In this command, the -np 32 option specifies the number of processes running in parallel
(this number should be at least 2). The -d option is for specifying the dataset. For the
model, we combine a Dirichlet process for site-specific equilbirium frequency profiles over
amino acids (the -cat option) with uniform (or Poisson) exchangeabilities (the -£81 option).
In addition, we allow for rate variation across sites, using a discretized gamma distribution
with 4 categories (-dgam 4). Finally, we give a name to the chain, here, catf81lmicrospol.
Before starting, the chain will output a summary of the model settings.

While the chain is running, a series of files will be produced. The most important are:

catf8lmicrospol.treelist: list of sampled trees (with branch lengths);

catf8lmicrospol.trace: the trace file, containing summary statistics (detailed below);

catf8imicrospol.chain: contains the parameter configurations visited during the run.
These files will be regularly updated (after each cycle). Note that the trace file contains one
line per point saved since the beginning of the run. Thus, the number of lines of the trace
file gives a direct indication of the current MCMC sample size. It is always good practice to
run at least two chains in parallel and compare the samples obtained under these several
independent runs. In the present case, we run four independent chains, which we name
catf8lmicrospol, 2, 3, and 4.

The chains will run as long as allowed. PhyloBayes implements a check-pointing system,
so that chains can be interrupted at any time (possibly because of a timeout on the cluster)
and then restarted. In the present case, on the machine where the example was conducted,
the four independent chains save one point about every 30 seconds, or 150 points per hour.
We let these chains run for 24 hours (~ 3500 points) before checking the results.

Checking convergence and mixing (bpcomp and tracecomp)

Convergence can be first visually assessed by plotting the summary statistics recorded in the
trace files as a function of number of iterations. Visual assessment can be conducted while
the chain is running. This can be done on the fly, directly from the command line interface,
using simple linux utilities such as gnuplot. Alternatively, the trace file of PhyloBayes is
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Figure 1 Traceplots for the CAT analyses, showing, as a function the number of points saved in
the tracefile, the log likelihood, the tree length, the number of occupied components and the mean
site entropy

compatible with the Tracer program (Rambaut et al., 2018). Visual assessment is essential,
in particular, for gettting a reliable estimate of the burn-in, i.e the number of points before
the chain has reached stationarity. In general, it is particularly important to visualize at
least the log likelihood (loglik, 4th column of the trace file), the total tree length (Length,
column 5), the number of occupied components of the mixture (Nmode, column 6) and the
mean site entropy (statent, column 7), which is a measure of the strength of site-specific
amino acid preferences. In the present case, after 24 hours, the four independent chains have
saved around 3500 points each. Visualization of the log likelihood and the summary statistics
(Figure 1) suggests that the chains have reached convergence after a burnin of 400 to 500
points. We set the burnin conservatively to 500.

After visual inspection, convergence and mixing can be assessed more quantitatively. This
can be done using the tracecomp program (for checking convergence of the parameters) and
the bpcomp program (for assessing convergence in tree space). Both use a similar syntax.
First, we inspect the trace files using tracecomp:

tracecomp -x 500 catf8lmicrol catf8lmicro2 catf8lmicro3 catf8lmicro4
or, more rapidly
tracecomp -x 500 catf8lmicro?.trace

which produces an output summarizing the estimated effective sample size and the discrep-
ancies among the four runs for each column of the trace file:

name effsize rel_diff
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loglik 101 0.302739
length 614 0.0754705
alpha 611 0.0914714
Nmode 245 0.177897
statent 257 0.126228
statalpha 631 0.317062
kappa 471 0.120433

The effective size (second colum, effsize) is an estimate of the effective number of inde-
pendent points produced by each run. As for the discrepancy (third column, rel_diff) it
measures, for each statistic of the trace file, the deviation among the four chains in the mean
value, normalized by the within-chain standard deviation of the statistic and averaged over
all pairs of runs. A discrepancy much less than 1 means that the error on the posterior mean
estimate for a given quantity is very small compared to the 95% credible interval. Here,
all effective sizes are greater than 100 (that is, each chain yields the equivalent of at least
100 independent draws from the posterior distribution), and the discrepancies are less than
or slightly above 0.3. The run is thus quite acceptable. Ideally, one would like to achieve
effective sample sizes more in the order of 1000 or more, and discrepancies smaller than
0.1. However, this has typically been difficult to achieve in Bayesian phylogenomics, for
reasonably large datasets. In the present case, the chains could be run for an additional
few days, and the discrepancies would then decrease, eventually landing below 0.1 for all
entries of the trace file. Of note, the differences that are implied by these discrepancies
are relatively small in practice. For instance, in the case of alpha (the o parameter of the
gamma distribution of rates across sites), which is the entry with the highest discrepancy
(0.32), the 4 posterior mean estimates obtained for the 4 chains are all between 0.64 and
0.67 — thus implying very similar distributions of rates across sites. The reason why the
discrepancies look large is that the standard deviation within each chain is small (around
0.03). Thus, the criterion of having all discrepancies below 0.1 is in fact fairly stringent.
Second, we inspect tree lists using bpcomp:

bpcomp -x 500 catf8lmicrol catf8lmicro2 catf8lmicro3 catf8lmicro4
or, more rapidly:
bpcomp -x 500 catf8lmicro?.treelist

The program writes in the log the largest (maxdiff) and mean (meandiff) discrepancy
observed across all bipartitions:

maxdiff : 0.186092
meandiff : 0.00323931

bipartition list in : bpcomp.bplist
consensus in : bpcomp.con.tre

In the present case, the maximum difference in bipartition frequencies among the four chains
is above 0.1 (equal to 0.186). Detailed inspection of the bpcomp.bplist file, however, shows
that this is due only to discrepancies between chains about the position of Glomus within
Fungi. For all other bipartitions, the discrepancy between the chains is below 0.1. Of note, a
maxdiff of 1, which happens not so rarely in practice, warns us that at least one clade is
inferred with a posterior probability of 1 in one chain and 0 in another chain, a clear sign of
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Figure 2 Consensus tree under the CAT-F81 model

MCMC mixing problems. In practice, however, as long as the discrepancies between chains
does not directly affect the group of interest, this has usually been considered as acceptable.

Posterior consensus tree

The bpcomp program also produces a file containing the consensus obtained by pooling the
trees of all of the chains given as arguments (file named bpcomp.con.tre). We see from this
tree (Figure 2) that CAT-F81 infers that Microsporidia are the sister-group to Fungi, which
is in accordance with the currently accepted view (Brinkmann et al., 2005). There is some
uncertainty in the early splits at the base of eukaryotes, with posterior probability support
values often smaller than 0.95. In fact, most of this lack of support is due to some hesitation
about the branching point for the outgroup (Archaea). In the consensus displayed here, it is
between Unikonta (Holozoa, Fungi, Amebozoa) and Bikonta (Viridiplantae, Alveolata and
Stramenopiles), although this specific rooting point has a posterior probability of only 0.49.

2.2 Running PhyloBayes under other models

We can now run a similar analysis under other models. Here, we consider CAT-GTR, LG (Le
and Gascuel, 2008) and GTR. The commands are as follows (in each case, with 4 replicates):

mpirun -np 32 pb_mpi -d microsporidia.ali -cat -gtr -dgam 4 catgtrmicrospol &
mpirun -np 32 pb_mpi -d microsporidia.ali -ncat 1 -gtr -dgam 4 gtrmicrospol &
mpirun -np 32 pb_mpi -d microsporidia.ali -ncat 1 -1lg -dgam 4 lgmicrospol &

Note that the command-line option to select one-matrix models in PhyloBayes is just -ncat
1, that is, a mixture with one single category (one single matrix for all sites).

For these three models, the time per cycle is substantially longer than under CAT-F81:
1 point per minute for GTR and LG, and 1 point every 2 minutes for CAT-GTR. For the
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CAT-GTR model, we will thus need 5 to 6 days in order for our chains to reach a size of
3500. Checking convergence on CAT-GTR after 5 days gives results similar to those obtained
for CAT-F81. With tracecomp, effective sizes are all greater than 100. Discrepancies, on

the other hand, are a bit larger between independent chains than what was observed with
CAT-F81, although still acceptable:

name effsize
loglik 374
length 101
alpha 980
Nmode 466
statent 241
statalpha 291
kappa 704
rrent 1005
rrmean 2852

rel diff

.434818
.159781
.178217
.123387
.38135
.126557
.0996022
.21717
.0308481

O O O O O O O O o

With bpcomp, reproducibility between chains is high:

: 0.0219639
: 0.000298828

maxdiff
meandiff

The resulting consensus tree (Figure 3) differs from that obtained under CAT-F81 only for
the position of Glomus, although this might be due to the lack of convergence of the CAT-F81
analyses concerning the position of this particular taxon. Another remarkable difference,
compared to CAT-F81, is the higher posterior probability support values obtained by CAT-
GTR for the deep clades of the eukaryotic ingroup. The most probable rooting for eukaryotes

PGE
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is, again, between Unikonta and Bikonta, although now with a posterior probability greater
than 0.95. This pattern is often observed when comparing these 2 models: typically, CAT-F81
tends to be more conservative than CAT-GTR, giving lower clade posterior probabilities.
Otherwise, the two models do not differ so much in their point estimates.

With LG and GTR, mixing turns out to be challenging, with different chains stabilizing
at different levels. This is clearly detected both by tracecomp and bpcomp. First, the
tracecomp output points to a very high discrepancy for the log likelihoods between chains,
with a rel_diff statistic above 25:

name effsize rel diff
loglik 1783 25.8753
length 658 2.24296
alpha 966 1.05931
Nmode 2400 0

statent 943 0.253293
statalpha 2400 0

rrent 761 0.263397
rrmean 1991 0.0536239

As for bpcomp, it gives us a maximal discrepancy of 1:

maxdiff 1
meandiff : 0.025974

A closer look at the trace files shows that the log likelihood stabilizes for all chains, after less
than 100 cycles. However, some chains stabilize at -727300, while other chains reach only
-727600. Obviously, the latter are stuck in a local optimum in tree space. The difference in
log likelihood between chains is so large in the present case that we can fairly exclude the
chains stabilizing at -727600, as not representative of the true equilibrium, and concentrate
on those chains that reach the highest average log likelihood. Restricting the tracecomp
analysis to those chains gives much better convergence statistics:

name effsize rel diff
loglik 1586 0.00714185
length 942 0.10133
alpha 505 0.180445
Nmode 2400 0

statent 389 0.139412
statalpha 2400 0

rrent 311 0.0898343
rrmean 1877 0.0254995

Running bpcomp on those chains gives a maxdiff of 0, indicating that they have stabilized
on one single tree. Importantly, this tree differs from the ones obtained under CAT-F81 or
CAT-GTR, in that Microsporidia now appear as being the sister-group to all other eukaryotes
(Figure 4). In fact, this tree differs more specifically from the tree obtained by CAT-GTR
by rotating the eukaryotic ingroup, so as to root it on Microsporidia. Equivalently, if we
ignore the rooting, we might see this tree as the result of Archaea moving up in the tree and
becoming the sister-group to Microsporidia. The same tree topology, with maximal support,
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Figure 4 Consensus tree under the GTR model

is also obtained under LG (not shown). Of note, this result is confirmed by maximum
likelihood analyses —such as conducted using RaxML (Stamatakis et al., 2005) for the LG
model, or IQTree (Nguyen et al., 2015) for LG and GTR~ which all give the topology obtained
here using PhyloBayes under these 2 site-homogeneous models (not shown). This illustrates
the fact that what determines the outcome of the analysis is not, in itself, the choice between
maximum likelihood or Bayesian inference, but instead, the choice of the model of sequence
evolution.

2.3 A typical case of long-branch attraction artifact

The analysis conducted above represents a situation where different models give different
tree topologies based on the same dataset. On one side, site-homogeneous models (GTR,
LG) give Microsporidia sister-group to all other eukaryotes (Figure 4); on the other side,
site-heterogeneous models (CAT-F81, CAT-GTR) give Microsporidia sister-group to Fungi
(Figures 2 and 3). Thus, at least one category of models is subject to a systematic error.
In the present case, we happen to have a relatively good independent knowledge of
which of the two estimates obtained above is more likely to be correct. The position of
Microsporidia in the eukaryotic tree is a well-known phylogenetic problem, having received a
lot of attention since the early days of molecular phylogenetics. Based on the first universal
trees reconstructed using 16S rRNA (Woese et al., 1990), it was at originally believed that

Microsporidia were “early-emerging” eukaryotes, as also suggested here by GTR or by LG.

However, there are now quite a few lines of evidence suggesting that Microsporidia are in fact

closely related to Fungi (Brinkmann et al., 2005), as suggested by CAT-F81 and CAT-GTR.

In most practical situations, however, independent knowledge about the true tree is
lacking. A case in point is the position of Ctenophores in the metazoan tree, which has
received a lot of attention recently, and for which alternative hypotheses are still the subject
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of some controversy (Telford et al., 2016). In such situations, independent and objective
arguments are needed, in order to determine which of the alternative models is more likely
to return an accurate estimate of the phylogeny.

In the case of Microsporidia, and assuming no independent knowledge, it can be noted
that the two longest branches in the tree are, first, the branch leading to Microsporidia,
and second, the branch between Eukaryotes and Archaea. The tree inferred by GTR is
thus exactly what one would expect as the result of an artifactual attraction between these
two long branches. Such arguments in terms of long-branch attraction artifacts are often
useful. In many situations, they offer a good heuristic for making sense of the observed
incompatibilities between the trees returned by alternative models, or the instability in tree
estimation caused by varying the taxonomic sampling. These heuristic arguments, however,
should be complemented by more formal model evaluation. This can be done along two main
directions: model comparison and model checking.

2.4 Model comparison

Model comparison consists of measuring how well each model fits the data at hand. Choosing
the best-fitting model (and the corresponding phylogenetic estimate) usually defines a good
decision procedure, in particular if the difference in fit between alternative models is very
large. In Bayesian inference, a classical measure of the fit of a model is its marginal likelihood,
which is the likelihood averaged over the prior. The higher the marginal likelihood, the more
likely it is that the model would produced the observed data, upon drawing a parameter
configuration from its prior and then simulating the sequence evolutionary process. When
comparing two models, it is customary to define the Bayes factor between these two models
as the ratio of their marginal likelihoods (Jeffreys, 1935; Kass and Raftery, 1995; Gelman
et al., 2004).

Marginal likelihoods have several drawbacks, however. First, on a theoretical ground, they
are sensitive to the prior, and much more so than the posterior distribution itself. Second, on
a more practical note, marginal likelihoods are notoriously difficult to numerically evaluate.

For those reasons, an alternative approach, used in PhyloBayes, is cross-validation. The
idea of cross-validation is relatively simple: the data D are split into two subsets of unequal
size, D1 (typically, 90% of the original dataset) and Dy (10% of the original dataset). The
model is trained on Dy, and then the trained model is used to “predict” dataset Ds. In a
Bayesian framework, this translates into averaging the likelihood of Dy under the posterior
distribution obtained by conditioning the model on D;. This procedure is replicated over
random splits of the data into D; and Dy. Of note, cross-validation automatically accounts
for the dimensional penalty: a model that is overfitting (i.e. capturing non-reproducible
random fluctuations) on D; is not expected to generalize well on unseen data Ds.

The entire procedure for cross-validation is computationally intensive and is thus not
shown in detail here (see the manual available from the package for the detailed procedure).
The results for the Microsporidia dataset are shown in Table 1. We see that the score of
the CAT-GTR model (relative to LG) is much higher than that of CAT, which in turns
has a better fit than GTR, and then finally LG. More generally, cross-validation on most
empirical datasets over broad evolutionary scales (metazoans, eukaryotes, archaea, eubacteria,
angiosperms, etc) invariably shows that site-heterogeneous models are much better fitting than
one-matrix models, thus confirming the common-sense intuition that pattern heterogeneity
is prevalent in empirical coding sequences.
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Model CV-score standard deviation

GTR 288 28
CAT-F81 1154 122
CAT-GTR 2337 66

Table 1 Cross-validation scores (over 10 replicates) for the GTR, CAT-F81 and CAT-GTR
models, relative to the LG model

2.5 Model checking by posterior predictive resampling

Measuring the empirical fit of alternative models represents a first fundamental principle for
guiding the inference and the decision. On the other hand, it shows two main limitations.
First, the fit of a model is a global measure of how well a model fits all aspects of the data,
and not just those aspects that are relevant for the specific question being asked (here, the
phylogenetic relationships). Thus, it can never be totally excluded that a lesser fitting model
is in the end more accurate for phylogenetic reconstruction. Second, the fit is a relative
measure, allowing one to determine the best among a series of models. Yet, even the best
among the currently available models may not provide a good absolute fit to the data. For
those reasons, it is essential to complement model comparison with model checking (i.e.
using goodness-of-fit tests). Unlike model comparison, goodness-of-fit tests offer an absolute
measure, by implementing a rejection test for each model taken individually. In addition, the
test can be targeted, via the choice of summary statistics, to those aspects of the data that
are deemed particularly relevant for the question being asked (Meng, 1994; Gelman et al.,
2004).

In Bayesian inference, model checking is done using posterior predictive simulations. This
method has been extensively used in Bayesian phylogenetics (Bollback, 2002; Lewis et al.,
2014; Hohna et al., 2018). Posterior predictive checks can be seen as the Bayesian analogue
of the parametric bootstrap: once the model has been conditioned on empirical data, the
parameter configurations sampled from the posterior distribution are used to re-simulate
replicates of the original dataset. Then, the value of some summary statistic of interest is
computed on the simulated replicates, thus yielding a null distribution for the statistic under
the fitted model. The value of the statistic computed on the original data is then compared
to this null distribution. If it deviates significantly, this means that there is something in
the empirical data which is not reproduced in the simulated replicates — and which is thus
missed by the model.

The summary statistic used for the test should be designed so as to capture key features
of the data that are deemed to be important in the context of the specific question under
consideration. In the present case, we want to test each of the four models considered
above, LG, GTR, CAT and CAT-GTR, concerning their ability to account for site-specific
restrictions imposed by selection on amino acid usage. To this end, a simple statistic we can
use is the amino acid diversity, i.e. the mean number of distinct amino acids per column
across the sequence alignment. Under strong site-specific amino acid preferences, we expect
a low diversity (a small subset of amino acids observed at each column).

Running a posterior predictive analysis can be done with the readpb_mpi, using the -div
option for the diversity statistic (more general posterior predictive checks can be conducted
using the -ppred option). In the case of the GTR model, the command is:

mpirun -np 8 readpb_mpi -x 500 1 -div gtrmicrol

and the program returns the following output:
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diversity test

obs div : 4.07397

mean div: 4.67027 +/- 0.00923482
z-score : 64.5712

PP : 0

The mean number of amino acids per column on the original alignment is 4.07. In contrast,
the datasets simulated under the GTR model show on average 4.67 distinct amino acids per
site. This difference is highly significant: the p-value is indistinguishable from 0, and the
observed diversity is more than 64 standard deviations away from the mean of the posterior
predictive null distribution (a p-value of 0.5 would approximately correspond to only 2
standard deviations away from the mean). In other words, the spectrum of amino acids
present at each site in datasets simulated under GTR is too broad, compared to original
sequence alignment, which indicates that the GTR model does not correctly reproduce (and
thus, does not correctly capture) positional biochemical constraints. A similar result is
obtained with LG (observed diversity is 72 standard deviations off the null distribution).
Doing the same experiment with CAT-F81 leads to a clearly different outcome:

diversity test

obs div : 4.07397

mean div: 4.07294 +/- 0.00810093
z-score : -0.126924

PP : 0.5625

The diversity observed in data simulated under CAT-F81 is very close to the diversity of
the original alignment (in fact, a bit smaller), and well within the posterior predictive null
distribution (p = 0.56). This suggests that CAT-F81 adequately models site-specific amino
acid propensities.

Finally, the CAT-GTR model, it is formally rejected by the test (p < 0.01):

diversity test

obs div : 4.07397

mean div: 4.0939 +/- 0.00850677
z-score : 2.3433

PP : 0.00833333

However, the deviation between observed and posterior predictive diversity is much less than
what was obtained above under the GTR or the LG model: the observed diversity (4.07)
is now only 2.3 standard deviations away from the mean of the posterior predictive null
distribution (4.09).

2.6 Pattern heterogeneity across sites and phylogenetic accuracy

We can now summarize the analysis and propose a global interpretation. Essentially two
types of models were considered. On one side, LG and GTR assume pattern homogeneity
across sites (i.e. invoke a single amino acid replacement process across all sites); on the
other side, CAT and CAT-GTR explicitly account for site-specific amino acid preferences.
Strikingly, the two models assuming pattern homogeneity give Microsporidia sister-group
to all other eukaryotes, whereas the two models accounting for pattern heterogeneity give
instead Microsporidia sister-group to Fungi.
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Ignoring contextual knowledge about eukaryotic evolution, several independent lines of
evidence suggest that site-heterogeneous models are more accurate in the present case. First,
the tree produced by LG and GTR is a typical long-branch attract tree. Second, the much
better relative fit of CAT-F81 and CAT-GTR, compared to LG and GTR, combined with
the posterior predictive goodness-of-fit test using the diversity statistic, both show that
site-specific amino acid preferences represent an important aspect of the true evolutionary
process, which is not correctly captured by one-matrix models such as LG or GTR.

Why should the incorrect modeling of site-specific selective constraints make classical
one-matrix models particularly sensitive to tree reconstruction errors? One main reason is
that sites that are under strong biochemical constraints may nevertheless evolve rapidly — it is
just that they stay within a small range of biochemically similar amino acids, which they keep
repeatedly visiting. However, this fast evolution among a small number of possible amino
acid states then makes it very likely for distantly related species to display the same amino
acid at that site just by chance. Models ignoring site-specific amino acid preferences will
underestimate this effect and will instead tend to incorrectly interpret the resulting identity
by state as indicative of shared ancestry. As a result, they will underestimate sequence
saturation and evolutionary distances (Halpern and Bruno, 1998) and will be more sensitive
to long-branch attraction (Lartillot et al., 2007).

In the present case, we can get a rough estimate of the effective number of allowed amino
acids per site by taking the exponential of the mean site entropy (8th. column of the trace
file). Under the CAT-GTR model, this gives around 6.3 accepted amino acids per site, to
be contrasted with 16.7 amino acids per site, according to the GTR model. Such a large
discrepancy in the expectations under the two types of models as to the long-term probability
of convergent evolution suggests that the effect of accounting for site-specific amino acid
preferences on phylogenetic accuracy is likely to be substantial, and therefore represents a
plausible explanation for the observed discrepancy between the two classes of models in the
case of Microsporidia.

A similar phenomenon has been observed in several other well-characterized phylogenetic
problems (e.g. Lartillot et al., 2007). More generally, there is now a broad array of empirical
analyses showing that site-specific amino acid preferences represent an important aspect of
the sequence evolutionary process, which is likely to negatively impact phylogenetic accuracy

if not properly modeled. This is particularly true in the context of deep phylogenies (i.e.

over broad evolutionary scales), for which sequence saturation is the rule and the risk of
systematic errors in tree reconstruction is always an important concern. In the face of these
problems, the site-heterogeneous models presented here certainly represent an important
option to consider in a typical phylogenomic analysis.

In terms of practical recommendations, the best model is, by far, CAT-GTR, although
the computational cost is high. A reasonable and computationally more efficient alternative
is offered by CAT-F81. In spite of its rather crude approximations, CAT-F81 has generally
proven more robust against long-branch attraction than one-matrix models in many situations

(which is consistent with its good absolute fit under the posterior predictive diversity test).

Therefore, a good procedure would be to always start with CAT-F81, so as to get a first idea
of how much time it takes to obtain reasonable chains and to obtain a first series of useful
results for the the dataset of interest. Then, if deemed affordable, a CAT-GTR analysis can
be conducted (given that it would take about 6 to 8 times longer). A GTR (and possibly LG)
analysis can also be conducted (possibly, with maximum likelihood implementations, such
as RaxML [Stamatakis et al. 2005] or IQTree [Nguyen et al. 2015]). If the results are the
same between site-homogeneous and site-heterogeneous models, then they can be considered
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as robust. Conversely if the inferred tree topology turns out to depend on the model, then,
a more thorough analysis along the lines proposed here can be conducted, using posterior
predictive checks to make a stronger case about which model is likely to give a more accurate
tree.

3 Challenges and perspectives

In summary, there is now good empirical evidence showing that accounting for pattern
heterogeneity across sites makes an important difference when reconstructing deep phylogenies.
The site-heterogeneous models implemented in PhyloBayes (CAT and CAT-GTR) currently
represent the most radical approach — and perhaps the most accurate thus far — for capturing
the modulations across sites in amino acid preferences. Over the recent years, the use of
these models has proven instrumental for accurate inference on multiple practical cases.

All this comes at a cost, however. As it stands, the non-parametric random-effect
models implemented in PhyloBayes are computationally very demanding. If the current
implementation strikes a reasonable compromise between computational efficiency, model
adequacy and phylogenetic accuracy for datasets of intermediate size (50 to 100 taxa, 10,000
to 30,000 positions), it does not scale up well to larger datasets, such as those that are
currently contemplated in phylogenomics. For instance, resolving the relationships at the base
of the metazoan tree, and addressing particularly difficult questions such as the position of
ctenophores, seems to require datasets of the order of at 100,000 to 500,000 aligned positions
(Simion et al., 2017). For such large datasets, the current implementation is not usable in
practice, at least not directly on the full dataset.

In the face of these limitations, pragmatic solutions have been considered. A first simple
approach is to use jackknife resampling, i.e. repeating the Bayesian analysis on subsets
of genes or sites drawn without replacement from the original dataset and then averaging
out the results over the replicates (Delsuc et al., 2008; Simion et al., 2017). Of note, this
approach is not purely Bayesian and is admittedly a work-around. However, because of
the additional layer of non-parametric resampling, jackknife should in fact produce robust
estimates of the statistical support for the phylogeny.

Alternatively, other non strictly Bayesian approaches are currently being explored, most
of which aim at proposing reasonable approximations explicitly accounting for site-specific
amino acid preferences, while preserving the benefits of the increased robustness against tree
reconstruction errors: posterior mean site frequency approximations (Wang et al., 2018),
better empirical finite mixtures (Susko et al., 2018), penalized likelihood (Tamuri et al., 2014)
or variational approaches (Dang and Kishino, 2019). These represent promising developments.
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