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Abstract
RAxML-NG is a new phylogenetic inference tool that replaces the widely-used RAxML and
ExaML tree inference codes. Compared to its predecessors, RAxML-NG offers improvements in
accuracy, flexibility, speed, scalability, and user-friendliness. In this chapter, we provide practical
recommendations for the most common use cases of RAxML-NG: tree inference, branch support
estimation via non-parametric bootstrapping, and parameter optimization on a fixed tree topo-
logy. We also describe best practices for achieving optimal performance with RAxML-NG, in
particular, with respect to parallel tree inferences on computer clusters and supercomputers. As
RAxML-NG is continuously updated, the most up-to-date version of the tutorial described in
this chapter is available online at: https://cme.h-its.org/exelixis/raxml-ng/tutorial

How to cite: Alexey M. Kozlov and Alexandros Stamatakis (2020). Using RAxML-NG in Prac-
tice. In Scornavacca, C., Delsuc, F., and Galtier, N., editors, Phylogenetics in the Genomic Era,
chapter No. 1.3, pp. 1.3:1–1.3:25. No commercial publisher | Authors open access book. The book
is freely available at https://hal.inria.fr/PGE.

Supplement Material https://github.com/amkozlov/ng-tutorial
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1 Introduction

RAxML (Stamatakis, 2006b, 2014) is a widely-used tool for maximum likelihood (ML) based
phylogenetic inference (see Chapter 1.2 [Stamatakis and Kozlov 2020]). It has been cited
by more than 25, 000 publications over the last 15 years. More recently, we introduced
ExaML (Stamatakis and Aberer, 2013; Kozlov et al., 2015), a variant of RAxML with
several novel features including checkpointing, improved load balancing, and an efficient
fine-grained MPI parallelization. These improvements were particularly important for being
able to analyze large-scale phylogenomic datasets on compute clusters and supercomputer
systems (Misof et al., 2014; Jarvis et al., 2014). However, ExaML only offered a core subset
of RAxML functionalities. It lacks several important functions such as bootstrapping and
comprehensive starting tree generation. These limitations, and its dependency on MPI, made
ExaML more difficult to install and use, and therefore presumably limited its adoption.
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1.3:2 RAxML-NG

With RAxML-NG, we introduced one single code that scales from the laptop to the
supercomputer. It combines the parallel efficiency of ExaML with the functional completeness
of RAxML. Furthermore, RAxML-NG is more user-friendly than RAxML/ExaML because of
a simplified installation process, the re-engineered command line interface, and new default
settings that cover the most common usage scenarios (see Appendix A).

RAxML-NG can be downloaded at https://github.com/amkozlov/raxml-ng. The cor-
responding documentation is available via a GitHub wiki at https://github.com/amkozlov/
raxml-ng/wiki. Technical implementation details and benchmarking results are provided by
Kozlov et al. (2019) and in Chapter 4 in Kozlov (2018). We also offer extensive user support
via the RAxML google group: https://groups.google.com/forum/#!forum/raxml.

All datasets used in this chapter can be downloaded from https://github.com/amkozlov/
ng-tutorial.

IMPORTANT NOTE: You will need RAxML-NG 0.8.0b or later for this tutorial, so
please make sure you have the right version:

$ raxml-ng -v

RAxML-NG v. 0.8.0 BETA released on 11.01.2019 by The Exelixis Lab.

2 Pre-processing the alignment

2.1 Sanity check
Before starting the actual analysis, it is strongly recommended to perform a multiple sequence
alignment (MSA) sanity check by calling RAxML-NG with the --check option.

$ raxml-ng --check --msa bad.fa --model GTR+G

This command will check the MSA for several common format issues as well as data
inconsistencies including:

duplicate taxon names
invalid characters in taxon names
duplicate sequences
fully undetermined (“gap-only”) sequences and columns
incorrect or incompatible evolutionary models, partitioning scheme and starting trees (if
provided)

Performing this check before starting the analysis is very important, since based on our
experience, a large proportion of failed RAxML runs are due to tree or MSA format errors!

Let us take a closer look at the output of our sanity check invocation:

WARNING: Fully undetermined columns found: 2

WARNING: Fully undetermined sequences found: 2

WARNING: Sequences t3 1200bp and t8 are exactly identical!
WARNING: Duplicate sequences found: 1

ERROR: Following taxon name contains invalid characters: t9’
ERROR: Following taxon name contains invalid characters: t6)

https://github.com/amkozlov/raxml-ng
https://github.com/amkozlov/raxml-ng/wiki
https://github.com/amkozlov/raxml-ng/wiki
https://groups.google.com/forum/#!forum/raxml
https://github.com/amkozlov/ng-tutorial
https://github.com/amkozlov/ng-tutorial
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ERROR: Following taxon name contains invalid characters: t3 1200bp

ERROR: Alignment check failed (see details above)!

It seems that this MSA file has almost every conceivable problem. RAxML-NG will
attempt to automatically fix the most common issues, for instance, by removing fully
undetermined columns and sequences, replacing invalid characters in taxon names etc. To
achieve this, it will write an analogously updated/fixed MSA file back to disk:

NOTE: Reduced alignment (with duplicates and gap-only sites/taxa removed)
NOTE: was saved to: /home/alexey/ng-tutorial/bad.fa.raxml.reduced.phy

Let us now repeat the sanity check with the fixed file:

$ raxml-ng --check --msa bad.fa.raxml.reduced.phy --model GTR+G

[..]
Alignment can be successfully read by RAxML-NG.

2.2 Compression and conversion to binary format
For large alignments, we recommend using the --parse command after, or, instead of
--check:

$ raxml-ng --parse --msa prim.phy --model GTR+G

In addition to the MSA sanity check, this command will compress alignment patterns
and store the MSA in a binary format (RAxML Binary Alignment, RBA):

NOTE: Binary MSA file created: prim.phy.raxml.rba

In the process of pattern compression, RAxML-NG identifies identical MSA sites and converts
them into a single site (’pattern’) with a weight corresponding to their number of occurrences.
Since this compression step can potentially require quite some time for broad supermatrix
MSAs, directly loading a RBA file is (substantially) faster compared to parsing and loading
a plain FASTA or PHYLIP file. This parsing speed is important for large-scale parallel
tree inferences with say, 500 cores or more, as virtually no time is lost at the beginning for
parsing the file and the cores can almost immediately start with the likelihood calculations
(see Kozlov et al., 2015, Supplement Section 3 for more details).

In addition, --parse will estimate the memory requirements and optimal number of
CPUs/threads for the particular MSA:

* Estimated memory requirements : 2 MB
* Recommended number of threads / MPI processes: 2

Even though these estimates are approximate, they provide a “good” starting point for
experimentation (see Section 7 for details) to determine the optimal number of cores that
will yield maximum parallel efficiency.

3 Inferring ML trees

Let us now infer a tree under the GTR+GAMMA (general time reversible model of nucleotide
substitution with a Γ model of rate heterogeneity) model with default parameters. We

PGE



1.3:4 RAxML-NG

will use 2 threads as suggested above, and provide a fixed random number seed to ensure
reproducibility. By using a fixed random number seed RAxML-NG will always produce the
same sequence of random numbers and therefore a failed run can be easily reproduced for
debugging. Note that, we will also always use a new name via the --prefix output file name
option for each RAxML-NG example run to avoid overwriting preceding output files.

$ raxml-ng --msa prim.phy --model GTR+G --prefix T3 --threads 2 --seed 2

The above command will perform 20 tree searches using 10 random and 10 parsimony-
based starting trees. In the end it will pick the best-scoring topology:

Analysis options:
run mode: ML tree search
start tree(s): random (10) + parsimony (10)

This default setting represents a reasonable choice for most practical cases. However,
computational resources permitting, we might want to increase the number of starting trees
to explore the tree space more thoroughly:

$ raxml-ng --msa prim.phy --model GTR+G --prefix T4 --threads 2 --seed 2
--tree pars{25},rand{25}

Conversely, we can also just perform a quick-and-dirty search from a single random
starting tree using the --search1 command:

$ raxml-ng --search1 --msa prim.phy --model GTR+G --prefix T5 --threads 2
--seed 2

Let us now compare the results of all three alternative tree inference runs:

$ grep "Final LogLikelihood:" T{3,4,5}.raxml.log

T3.raxml.log:Final LogLikelihood: -5708.923977
T4.raxml.log:Final LogLikelihood: -5708.923977
T5.raxml.log:Final LogLikelihood: -5708.979717

This looks quite good: the likelihood surface appears to have a clear peak, which RAxML-NG
finds regardless of the search parameters (up to a small deviation in “T5”, which we will
explain below).

We use the term likelihood surface in a colloquial/subjective way to describe the space of
all possible tree topologies and their respective likelihood scores. If the likelihood surface is
smooth there seems to be one clear peak that is identified by several independent searches. If
the surface is rough, we typically observe a plethora of substantially different tree topologies
but with statistically indistinguishable likelihood scores. Rough likelihood surfaces are
frequently observed for large single gene MSAs with 1, 000 or more sequences (see Section
3.2 in Chapter 1.2 [Stamatakis and Kozlov 2020]).

Let us get back to our example. We observe that the tree “T5” has a slightly worse
likelihood. The question arises if it also has a distinct topology. We can check this by using
the --rfdist command to compute the topological Robinson-Foulds (RF) distance (Robinson
and Foulds, 1981) between all trees we have inferred:

$ cat T{3,4}.raxml.mlTrees T5.raxml.bestTree > mltrees
$ raxml-ng --rfdist --tree mltrees --prefix RF
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[...]
Loaded 71 trees with 12 taxa.

Average absolute RF distance in this tree set: 0.000000
Average relative RF distance in this tree set: 0.000000
Number of unique topologies in this tree set: 1

This tells us that, in fact, all 71 resulting topologies (one per starting tree) are identical,
so we can be optimistic that we found the globally optimal ML tree. The slight numerical
deviations we observe for the likelihood scores are due to numerical round-off error propagation.
To conduct calculations computers rely on so-called floating-point numbers that are just an
imperfect representation of the real numbers on the machine.

Unfortunately, not all datasets are as well-behaved as our initial test dataset:

$ raxml-ng --msa fusob.phy --model GTR+G --prefix T6 --seed 2 --threads 2
$ grep "ML tree search #" T6.raxml.log

[00:00:03] ML tree search #1, logLikelihood: -9974.668088
[00:00:07] ML tree search #2, logLikelihood: -9974.666644
[00:00:11] ML tree search #3, logLikelihood: -9974.669417
[00:00:15] ML tree search #4, logLikelihood: -9974.664855
[00:00:19] ML tree search #5, logLikelihood: -9974.663779
[00:00:22] ML tree search #6, logLikelihood: -9974.666906
[00:00:26] ML tree search #7, logLikelihood: -9974.668155
[00:00:30] ML tree search #8, logLikelihood: -9974.664340
[00:00:33] ML tree search #9, logLikelihood: -9974.666937
[00:00:37] ML tree search #10, logLikelihood: -9974.666388
[00:00:40] ML tree search #11, logLikelihood: -9980.601114
[00:00:43] ML tree search #12, logLikelihood: -9974.675123
[00:00:46] ML tree search #13, logLikelihood: -9980.602470
[00:00:49] ML tree search #14, logLikelihood: -9974.671637
[00:00:52] ML tree search #15, logLikelihood: -9980.602668
[00:00:54] ML tree search #16, logLikelihood: -9980.601182
[00:00:57] ML tree search #17, logLikelihood: -9974.672801
[00:01:00] ML tree search #18, logLikelihood: -9974.668668
[00:01:03] ML tree search #19, logLikelihood: -9974.669997
[00:01:06] ML tree search #20, logLikelihood: -9980.607281

This example illustrates why it is so important to use multiple starting trees: we can
see that some searches ended up in a local optimum with a substantially lower likelihood
(−9980.607281 vs. −9974.669997). Once again, let us check if the resulting trees differ
topologically:

$ raxml-ng --rfdist --tree T6.raxml.mlTrees --prefix RF6
[...]
Loaded 20 trees with 38 taxa.

Average absolute RF distance in this tree set: 3.157895
Average relative RF distance in this tree set: 0.045113

PGE



1.3:6 RAxML-NG

Number of unique topologies in this tree set: 2

Pairwise RF distances saved to: <...>/RF6.raxml.rfDistances

So we have 2 distinct topologies in our set of 20 inferred trees, which correspond to two
distinct likelihood values we observed in the tree search output. Let us look at the individual
pairwise RF distances which are printed to the RF6.raxml.rfDistances file:

$ cat RF6.raxml.rfDistances

0 1 0 0.000000
0 2 0 0.000000
0 3 0 0.000000
0 4 0 0.000000
0 5 0 0.000000
0 6 0 0.000000
0 7 0 0.000000
0 8 0 0.000000
0 9 0 0.000000
0 10 8 0.114286
0 11 0 0.000000
0 12 8 0.114286
0 13 0 0.000000
0 14 8 0.114286
0 15 8 0.114286
0 16 0 0.000000
0 17 0 0.000000
0 18 0 0.000000
0 19 8 0.114286
[...]

Here, 1st and 2nd column contain tree indices in the NEWICK file, 3rd column shows
the absolute RF distance between those two trees, and 4th column shows the relative or
normalized RF distance ranging from 0 to 1. Relative RF distance is calculated by dividing
the absolute value (column 3) by the maximum possible RF distance for this tree pair.

As we can see, all 10 searches from the random starting trees (trees 0 to 9) found the
best-scoring topology (RF=0, logL=−9974), whereas 5 out of 10 searches from a parsimony
starting tree converged to a local optimum (RF = 8, logL = −9980). Ideally, one should also
check whether the likelihood difference between both topologies is statistically significant.
This could be done, for example, by CONSEL (Shimodaira and Hasegawa, 2001), which
implements a large number of statistical significance tests for comparing tree topologies.

4 Bootstrapping and branch support

NOTE: As of v.0.8.0b, RAxML-NG only supports the standard bootstrap algorithm (cor-
responding to the -b option in standard RAxML). It is subsantially slower than rapid
bootstrapping implemented in standard RAxML (-x or -f a options), but returns more
accurate support values.
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4.1 Inferring bootstrap trees
RAxML-NG can perform the standard non-parametric bootstrap by re-sampling alignment
columns and re-inferring a tree for each bootstrap (BS) replicate MSA:

raxml-ng --bootstrap --msa prim.phy --model GTR+G --prefix T7 --seed 2 --
threads 2

By default, RAxML-NG employs the so-called MRE-based bootstopping test (Pattengale
et al., 2010) to automatically determine the sufficient number of BS replicates. The diagnostic
statistics is evaluated after every 50 BS tree inferences, and once its value drops below the
cutoff, the analysis stops. The key motivation for the bootstopping criterion is to ensure
that neither too few (unstable/inaccurate support values) nor too many (waste of CPU time)
replicates are computed. To assess stability of support values, the bootstopping criterion
repeatedly splits the current set of BS replicate trees at random into two tree sets of equal
size and subsequently compares the support values induced by these sets. If the induced
support values are not substantially different it suggests that bootstrapping should stop.

Let us now infer some BS replicates:

bootstrap replicates: max: 1000 + bootstopping (autoMRE, cutoff:
0.030000)

[...]
[00:00:15] Bootstrap tree #50, logLikelihood: -5762.777409
[00:00:15] Bootstrapping converged after 50 replicates.

This converged quickly! Let us now manually increase the number of BS replicates to be
on the safe side:

raxml-ng --bootstrap --msa prim.phy --model GTR+G --prefix T8 --seed 2 --
threads 2 --bs-trees 200

Bootstrap convergence can also be assessed after the BS inference via the --bsconverge
command. Note that, we can also change the bootstopping cutoff value to make the test
more or less stringent:

$ raxml-ng --bsconverge --bs-trees T7.raxml.bootstraps --prefix T9 --seed
2 --threads 2 --bs-cutoff 0.01

# trees avg WRF avg WRF in % # perms: wrf <= 1.00 % converged?
50 7.400 1.644 0 NO

Bootstopping test did not converge after 50 trees

The cutoff here represents the bipartition-frequency-weighted RF distance (WRF, see
Pattengale et al., 2010, for details) between extended majority rule consensus trees calculated
on the respective randomly split BS tree set. By default we calculate 1000 such random
splits of the tree set and average the WRF distances over them.

As we can see, with a 1% WRF cutoff 50 replicates are not enough. What about 200?

$ raxml-ng --bsconverge --bs-trees T8.raxml.bootstraps --prefix T10 --seed
2 --threads 2 --bs-cutoff 0.01

# trees avg WRF avg WRF in % # perms: wrf <= 1.00 % converged?
50 7.400 1.644 0 NO

PGE



1.3:8 RAxML-NG

100 11.702 1.300 245 NO
150 13.960 1.034 457 NO
200 16.484 0.916 648 NO

Bootstopping test did not converge after 200 trees

Still no convergence, but the WRF distance (avg WRF in %) is steadily decreasing as
we add more replicates, and now lies below the 1% cutoff for 648 out of the 1000 random
splits of the BS tree set (convergence requirement: > 990). This looks promising, and we
can expect convergence after few hundred replicates. Luckily, bootstraps are independent,
and we can thus reuse the 200 BS trees we have already inferred. So let’s add 400 additional
BS replicate trees.

IMPORTANT NOTE: It is extremely important to specify a distinct random seed for
the second run, otherwise first 200 trees of the second run will be identical to the first run!

raxml-ng --bootstrap --msa prim.phy --model GTR+G --prefix T11 --seed 333
--threads 2 --bs-trees 400

Now, we can simply concatenate the BS replicate trees from both runs, and re-assess the
convergence:

$ cat T8.raxml.bootstraps T11.raxml.bootstraps > allbootstraps
$ raxml-ng --bsconverge --bs-trees allbootstraps --prefix T12 --seed 2 --

threads 1 --bs-cutoff 0.01

# trees avg WRF avg WRF in % # perms: wrf <= 1.00 % converged?
50 7.400 1.644 0 NO
100 11.702 1.300 245 NO
150 13.960 1.034 457 NO
200 16.484 0.916 648 NO
250 17.410 0.774 841 NO
300 18.900 0.700 927 NO
350 20.060 0.637 942 NO
400 22.076 0.613 969 NO
450 23.856 0.589 973 NO
500 26.164 0.581 985 NO
550 27.844 0.563 985 NO
600 28.462 0.527 991 YES

Bootstopping test converged after 600 trees

Now we have convergence, even with a more stringent bootstopping cutoff. However, we
had to conduct 600 BS replicate searches instead of just 50. On large datasets, this quickly
becomes computationally expensive. Hence in practice, the default bootstopping cutoff value
of an average WRF of 3% should be sufficient in most cases (Pattengale et al., 2010).

4.2 Computing branch support
Now, what can we do with the BS trees? We can either summarize them via some sort of
consensus tree (strict, majority, majority rule extended, e.g., using the --consense command
of RAxML-NG) or we can map them onto the best-scoring ML tree that we inferred on the
original MSA. It is debatable what the best way of summarizing BS trees might be, but there
seems to be a trend toward mapping the BS support values onto the best-scoring/best-known



A.M. Kozlov and A. Stamatakis 1.3:9

ML tree (remember: finding the globally optimal ML tree is computationally hard), so let us
do that.

We will use the ML tree obtained in run T3 (see Section 3):

raxml-ng --support --tree T3.raxml.bestTree --bs-trees allbootstraps --
prefix T13 --threads 2

Now, we can actually look at this best-known ML tree including supports, contained
in T13.raxml.support, using some tree viewer (e.g., Dendroscope [Huson and Scornavacca
2012] or FigTree [Rambaut 2012]). Beware: due to confusion between node and branch
attributes in the NEWICK format, some viewers have or had issues concerning correct branch
support visualization (Czech et al., 2017). If possible (e.g., in recent versions of Dendroscope),
you should specify that support values must be interpreted as edge labels.

Alternatively, we can also compute the so-called Transfer Bootstrap Expectation (TBE)
support metric recently suggested by Lemoine et al. (2018) as follows:

$ raxml-ng --support --tree T3.raxml.bestTree --bs-trees allbootstraps --
prefix T14 --threads 2 --bs-metric tbe

While the standard bootstrap support metric (Felsenstein’s bootstrap, FBP) relies on
binary presence/absence of bipartitions from replicate trees in the best-known ML tree, TBE
is based on a gradual ’transfer’ distance. Transfer distance between two branches equals to
the minimum number of taxa that have to be transfered (or removed) to make those branches
identical (that is, both branches split the set of taxa in identical subsets). TBE support for
a branch in the ML tree is computed based on the minimum transfer distance between this
branch and any branch in the BS replicate tree; in other words, we compare each ML tree
branch to its respective closest branch in the BS replicate tree (please see Lemoine et al.,
2018, for details). For this reason, TBE can better recover support in very large trees with
thousands of taxa. This is because, bipartitions that exactly match those in the best-known
ML tree are rarely present in replicates, and thus FBP usually yields low support, especially
for deep branches.

As shown above, TBE can be computed from the same set of bootstrap replicate trees,
so there in no need to repeat the compute-intensive tree inference step. However, the TBE
computation itself is more expensive than FBP. This can be noted when computing the TBE
on large trees: e.g., on a laptop, RAxML-NG v0.8.0 needs ≈ 20 seconds per BS replicate tree
on the 9, 000 taxon dataset by Lemoine et al. (2018). However, this time is still negligible
compared to the time required for BS replicate tree inference.

Finally, RAxML-NG offers a convenient “all-in-one” analysis mode for really lazy users
(analogous to -f a in standard RAxML):

$ raxml-ng --all --msa prim.phy --model GTR+G --prefix T15 --seed 2 --
threads 2 --bs-metric fbp,tbe

This will do all of the above steps (20 ML inferences on the original MSA, inferring
bootstrap replicate trees, applying MRE-based bootstopping test, and drawing support
values using both FBP and TBE on the best-scoring tree) with just a single command:

$ ls T15.*
T15.raxml.bestModel T15.raxml.bestTree
T15.raxml.bootstraps T15.raxml.log
T15.raxml.mlTrees T15.raxml.rba
T15.raxml.startTree T15.raxml.supportFBP

PGE



1.3:10 RAxML-NG

T15.raxml.supportTBE

Please note, that for taxa-rich alignments running such a complete analysis with the
--all command can take extremely long. It is therefore recommended to estimate the runtime
required for a single tree search first, for instance, by using the --search1 command. Based
on the results, one might consider allocating more CPU cores and/or using the coarse-grained
parallelization (see Section 7.7).

5 Tree likelihood evaluation

5.1 Basics
Another standard task is to evaluate trees, that is, to compute the likelihood of a given fixed
tree topology by just optimizing model and/or branch length parameters on that fixed tree.
This operation is frequently needed in model and hypothesis testing.

The basic option is --evaluate. It will re-optimize all branch lengths and all free
model parameters. This default behavior can be altered with --opt-branches on/off and
--opt-model on/off. There is also the --loglh command which is a short alias for

--evaluate --opt-branches off --opt-model off --nofiles

that is, it will compute and print the likelihood of the tree(s) without optimizing anything
and without creating any output files. For instance, we can re-compute the likelihood of T3
with default model parameters as follows:

$ raxml-ng --loglh --msa prim.phy --model GTR+G --tree T3.raxml.bestTree
--threads 2

Rate heterogeneity: GAMMA (4 cats, mean), alpha: 1.000000 (ML),
weights&rates: (0.250000,0.136954) (0.250000,0.476752)
(0.250000,1.000000) (0.250000,2.386294)

Base frequencies (ML): 0.250000 0.250000 0.250000 0.250000
Substitution rates (ML): 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000

Final LogLikelihood: -6420.095053

In contrast, after re-optimizing all model parameters we obtain:

$ raxml-ng --evaluate --msa prim.phy --model GTR+G --tree T3.raxml.
bestTree --threads 2 --nofiles

Rate heterogeneity: GAMMA (4 cats, mean), alpha: 0.377068 (ML),
weights&rates: (0.250000,0.013550) (0.250000,0.164429)
(0.250000,0.705224) (0.250000,3.116797)

Base frequencies (ML): 0.354236 0.321458 0.080986 0.243320
Substitution rates (ML): 3.989744 45.320369 3.326172 2.533579 36.939966

1.000000

Final LogLikelihood: -5709.002997

Finally, we can fix some parameters to certain values and optimize others:
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$ raxml-ng --evaluate --msa prim.phy --model GTR+G{2.0}+F{0.2/0.3/0.4/0.1}
--tree T3.raxml.bestTree --threads 2 --nofiles

Rate heterogeneity: GAMMA (4 cats, mean), alpha: 2.000000 (user),
weights&rates: (0.250000,0.293275) (0.250000,0.655014)
(0.250000,1.069990) (0.250000,1.981722)

Base frequencies (user): 0.200000 0.300000 0.400000 0.100000
Substitution rates (ML): 44.454379 47.979464 65.161744 2.413970
252.745302 1.000000

Final LogLikelihood: -6158.335994

Full list of supported evolutionary models and respective parameters can be found at
https://github.com/amkozlov/raxml-ng/wiki/Input-data#single-model.

5.2 Comparing different models

Let us now conduct some small tests that show how the likelihood improves as we add more
and more free parameters to our model. For this, we will use the best-scoring ML tree from
Section 3 again.

Let us first evaluate the tree under the most simple model, Jukes-Cantor (JC):

$ raxml-ng --evaluate --msa prim.phy --threads 2 --model JC --tree T3.
raxml.bestTree --prefix E1

Now, let us add the Γ model of rate heterogeneity:

$ raxml-ng --evaluate --msa prim.phy --threads 2 --model JC+G --tree T3.
raxml.bestTree --prefix E2

Now let us use a simple GTR model (without rate heterogeneity):

$ raxml-ng --evaluate --msa prim.phy --threads 2 --model GTR --tree T3.
raxml.bestTree --prefix E3

GTR with the GAMMA model of rate heterogeneity, but using empirical base frequencies:

$ raxml-ng --evaluate --msa prim.phy --threads 2 --model GTR+G+FC --tree
T3.raxml.bestTree --prefix E4

And now also conducting a ML estimate of the base frequencies:

$ raxml-ng --evaluate --msa prim.phy --threads 2 --model GTR+G+FO --tree
T3.raxml.bestTree --prefix E5

Finally, using 4 free rates (Yang, 1995) instead of GAMMA-distributed rates:

$ raxml-ng --evaluate --msa prim.phy --threads 2 --model GTR+R4+FO --tree
T3.raxml.bestTree --prefix E6

Let us check the results:

PGE
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$ grep logLikelihood E*.raxml.log

E1.raxml.log:[00:00:00] Tree #1, final logLikelihood: -6424.203056 <- JC
E2.raxml.log:[00:00:00] Tree #1, final logLikelihood: -6272.469063 <- JC+

GAMMA
E3.raxml.log:[00:00:00] Tree #1, final logLikelihood: -5934.158958 <- GTR
E4.raxml.log:[00:00:00] Tree #1, final logLikelihood: -5719.408956 <- GTR

+ GAMMA + empirical base freqs
E5.raxml.log:[00:00:00] Tree #1, final logLikelihood: -5709.002997 <- GTR

+ GAMMA + estimated base freqs
E6.raxml.log:[00:00:01] Tree #1, final logLikelihood: -5706.008654 <- GTR

+ FreeRate + estimated base freqs

Unsurprisingly, models with more free parameters yield better likelihood scores. However,
this does not mean that we should always use the most parameter-rich model. Instead, it is
common to use information theoretical criteria such as AIC (Akaike Information Criterion),
AICc (corrected AIC; AIC with a correction for small sample sizes) or BIC (Bayesian Inform-
ation Criterion) to penalize parameter-rich models and thereby avoid overfitting the data.
The three aforementioned criteria are implemented in RAxML-NG:

$ grep "AIC score" E*.raxml.log

E1.raxml.log:AIC score: 12890.406112 / AICc score: 12891.460907 / BIC
score: 12991.209684 <- JC

E2.raxml.log:AIC score: 12588.938126 / AICc score: 12590.094698 / BIC
score: 12694.541868 <- JC+G

E3.raxml.log:AIC score: 11926.317917 / AICc score: 11928.322525 / BIC
score: 12065.522849 <- GTR

E4.raxml.log:AIC score: 11498.817912 / AICc score: 11500.963241 / BIC
score: 11642.823014 <- GTR+G+FC

E5.raxml.log:AIC score: 11478.005995 / AICc score: 11480.151323 / BIC
score: 11622.011097 <- GTR+G+FO

E6.raxml.log:AIC score: 11482.017308 / AICc score: 11484.940742 / BIC
score: 11650.023260 <- GTR+R4+FO

For all criteria, model with the lowest score should be preferred. As we can see, the
GTR+G+FO model scores best according to all three information theoretical criteria evaluated,
even though it yields a lower likelihood than GTR+R4+FO. This example illustrates the
importance of formal model selection. In practice, one should use specialized tools such as
ModelTest-NG (Darriba et al., 2020), IQTree/ModelFinder (Kalyaanamoorthy et al., 2017),
or PartitionFinder (Lanfear et al., 2016) for this task.

6 Partitioned analyses

6.1 Partitioned model definition
So far, we always used a single evolutionary model for all MSA sites. This is biologically
rather unrealistic, since different genes and/or codon positions typically exhibit distinct
substitution patterns. Therefore, it is common to divide MSA sites into subsets or partitions,
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to which we can assign individual evolutionary models. In the most simple case, we can assign
identical models to all partitions, but allow for independent model parameter estimates:

$ cat prim.part

GTR+G+FO, NADH4=1-504
GTR+G+FO, tRNA=505-656
GTR+G+FO, NADH5=657-898

The RAxML-NG partition file format is similar to that of standard RAxML and ExaML.
Each line defines a partition, and contains the evolutionary model specification, the partition
name, and the MSA site range(s).

IMPORTANT NOTE: the evolutionary model specification is not compatible with
that in RAxML/ExaML! In particular, rate heterogeneity has to be defined for each partition
individually, that is, we specify GTR+G for every partition with the Γ model instead of using a
global -m GTRGAMMA switch on the command line as in standard RAxML/ExaML. Therefore,
special care has to be taken when using legacy partition files.

Below, we show a more sophisticated example, where we use different per-partition
substitution matrices and rate heterogeneity models, and also split the first gene by codon
position:

$ cat prim2.part

GTR+G+FO, NADH4=1-504/3,2-504/3
JC+I, tRNA=505-656
GTR+R4+FC, NADH5=657-898
HKY, NADH4p3=3-504/3

Here, we use the stride notation to separate codon positions. For instance, 1-504/3 means
“every 3rd position in the range between 1 and 504’.

6.2 Likelihood evaluation with partitioned models
Now, let us try to evaluate the likelihood on a fixed tree topology as in Section 5, but using
a partitioned model (we will also increase the log output verbosity to be able to inspect the
estimated parameter values):

$ raxml-ng --evaluate --msa prim.phy --threads 2 --model prim.part --tree
T3.raxml.bestTree --prefix P1 -log verbose

Optimized model parameters:

Partition 0: NADH4
Speed (ML): 1.045481
Rate heterogeneity: GAMMA (4 cats, mean), alpha: 0.320532 (ML),
weights&rates: (0.250000,0.007108) (0.250000,0.120533)
(0.250000,0.628725) (0.250000,3.243634)

Base frequencies (ML): 0.347608 0.343620 0.074289 0.234483
Substitution rates (ML): 1.110014 16.895228 0.903118 0.001000 11.861976

1.000000

PGE
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Partition 1: tRNA
Speed (ML): 0.505287
Rate heterogeneity: GAMMA (4 cats, mean), alpha: 0.300774 (ML),
weights&rates: (0.250000,0.005358) (0.250000,0.105097)
(0.250000,0.597100) (0.250000,3.292444)

Base frequencies (ML): 0.362527 0.230093 0.151307 0.256073
Substitution rates (ML): 66.393654 308.024274 43.477166 37.411363
671.608883 1.000000

Partition 2: NADH5
Speed (ML): 1.216009
Rate heterogeneity: GAMMA (4 cats, mean), alpha: 0.614255 (ML),
weights&rates: (0.250000,0.056061) (0.250000,0.320104)
(0.250000,0.888421) (0.250000,2.735414)

Base frequencies (ML): 0.360963 0.322304 0.061324 0.255409
Substitution rates (ML): 67.157660 1000.000000 56.903929 148.358484
530.324413 1.000000

As we can see from the output above, even though we assigned the GTR+G+FO model to all
three partitions, each of them has independent estimates of the parameter values (α shape
parameter of the GAMMA distribution, base frequencies, and GTR substitution rates).

Let us repeat this evaluation using the second, more complex partition scheme:

$ raxml-ng --evaluate --msa prim.phy --threads 2 --model prim2.part --tree
T3.raxml.bestTree --prefix P2 -log verbose

and compare the likelihoods for P2 vs. P1 vs. single GTR+G+FO model:

$ grep logLikelihood {E5,P1,P2}.raxml.log

E5.raxml.log:[00:00:00] Tree #1, final logLikelihood: -5709.002997
P1.raxml.log:[00:00:00] Tree #1, final logLikelihood: -5673.027260
P2.raxml.log:[00:00:00] Tree #1, final logLikelihood: -5673.868809

So P1 has the best likelihood score, closely followed by P2. But both P1 and P2 also
introduce more free parameters compared to GTR+G+FO:

$ grep "Free parameters" {E5,P1,P2}.raxml.log

E5.raxml.log:Free parameters (model + branch lengths): 30
P1.raxml.log:Free parameters (model + branch lengths): 50
P2.raxml.log:Free parameters (model + branch lengths): 52

Hence, we will once again use AIC/BIC criteria to assess the model complexity versus
likelihood score trade-off (the lower the better):

grep "AIC score" {E5,P1,P2}.raxml.log

E5.raxml.log:AIC score: 11478.005995 / AICc score: 11480.151323 / BIC
score: 11622.011097

P1.raxml.log:AIC score: 11446.054521 / AICc score: 11452.075772 / BIC
score: 11686.063024
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P2.raxml.log:AIC score: 11451.737617 / AICc score: 11458.260694 / BIC
score: 11701.346461

The situation is less clear now: AIC and AICc favor the P1 model, whereas GTR+G+FO has
the best BIC score. Unfortunately, there seems to be no general consensus with respect to
which information criterion is superior. Therefore, the decision whether to use AIC, AICc or
BIC is left to the user. Furthermore, the computation of AICc and BIC scores requires the
knowledge of sample size. In the context of phylogenetics, both the number of alignment sites
(columns) and the total number of alignment characters (sites × taxa) have been proposed
as sample size definitions (see e.g. Posada and Buckley, 2004, and references therein). In
RAxML-NG, we define sample size as number of alignment sites, which is a more conservative
option, also used by e.g., ModelTest-NG (Darriba et al., 2020) and IQTree (Nguyen et al.,
2015).

6.3 Branch length linkage
In the output shown in Section 6.2, there is an extra parameter called Speed estimated for
each partition:

Optimized model parameters:

Partition 0: NADH4
Speed (ML): 1.045481

[..]
Partition 1: tRNA
Speed (ML): 0.505287

[..]
Partition 2: NADH5
Speed (ML): 1.216009

What does it mean? In partitioned analyses, there are three common ways to estimate
branch lengths (sometimes called branch linkage models):

linked: all partitions share a common set of (global) branch lengths. This is the most
simple model with the lowest number of parameters (#branches). However, it is often
considered too unrealistic, as it is known that genes (or genome regions) evolve at different
speeds.
unlinked: each partition has its own, independent set of branch lengths. This model
allows for the highest flexibility, but it also introduces a huge number of free parameters
(#branches× #partitions), which makes it prone to overfitting.
scaled (proportional): a global set of branch lengths is estimated as in the “linked”
mode, but each partition has an individual scaling factor; per-partition branch lengths
are obtained by multiplying the global branch lengths with these individual scalers. This
approach represents a compromise that allows to model distinct evolutionary rates across
partitions while, at the same time, only introducing a moderate number of free parameters
(#branches+ #partitions).

RAxML-NG supports all three branch linkage models described above; they can be
selected using the --brlen option. A recent simulation study by Duchene et al. (2018)
showed that the scaled branch linkage model offers the best fit for a large number of
typical representative datasets. This confirms the intuition about its “good” flexibility

PGE
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versus complexity trade-off. Hence, RAxML-NG uses the scaled branch linkage model for
partitioned analyses by default.

IMPORTANT NOTE: standard RAxML and ExaML use the linked branch length
model by default. This should be kept in mind when comparing likelihoods and resulting
topologies with those obtained via RAxML-NG!

So let us now explore how the linked and unlinked models behave on our toy dataset:

$ raxml-ng --evaluate --msa prim.phy --threads 2 --model prim.part --tree
T3.raxml.bestTree --prefix P3 --brlen linked

$ raxml-ng --evaluate --msa prim.phy --threads 2 --model prim.part --tree
T3.raxml.bestTree --prefix P4 --brlen unlinked

As could be expected, more complex models yield better likelihood scores (unlinked >
scaled > linked):

$ grep logLikelihood {P1,P3,P4}.raxml.log

P1.raxml.log:[00:00:00] Tree #1, final logLikelihood: -5673.027260 <-
scaled

P3.raxml.log:[00:00:00] Tree #1, final logLikelihood: -5678.429054 <-
linked

P4.raxml.log:[00:00:00] Tree #1, final logLikelihood: -5648.348677 <-
unlinked

However, the induced likelihood score difference is not always large enough to justify using
additional model parameters:

grep "AIC score" {P1,P3,P4}.raxml.log

P1.raxml.log:AIC score: 11446.054521 / AICc score: 11452.075772 / BIC
score: 11686.063024 <- scaled

P3.raxml.log:AIC score: 11452.858107 / AICc score: 11458.398743 / BIC
score: 11683.266270 <- linked

P4.raxml.log:AIC score: 11476.697354 / AICc score: 11496.994752 / BIC
score: 11908.712661 <- unlinked

Once again, we observe a disagreement between the AIC/AICc and BIC criteria, which choose
scaled and linked branch length models, respectively. However, all three criteria exclude
the extremely parameter-rich unlinked model.

6.4 Tree searches with partitioned models
In the previous subsection, we used partitioned models to re-evaluate the likelihood of the
ML tree obtained under the GTR+G model. But what if we re-run tree search from scratch
under a partitioned model? Will this alter the resulting likelihoods and/or topologies?

$ raxml-ng --msa prim.phy --model prim.part --prefix P5 --threads 2 --seed
2 --brlen scaled

$ raxml-ng --msa prim.phy --model prim.part --prefix P6 --threads 2 --seed
2 --brlen linked
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$ raxml-ng --msa prim.phy --model prim.part --prefix P7 --threads 2 --seed
2 --brlen unlinked

Checking the new likelihood scores

$ grep "Final LogLikelihood" {P5,P6,P7}.raxml.log

P5.raxml.log:Final LogLikelihood: -5672.951995
P6.raxml.log:Final LogLikelihood: -5678.301081
P7.raxml.log:Final LogLikelihood: -5648.204296

shows that they are almost identical to the values obtained on the T3 topology (see Sec-
tion 6.2). Moreover, all three partitioned runs converged to the same ML tree topology as
the unpartitioned T3 run (see Section 3).

Of course, this observation will not hold for all datasets. However, there is some evidence
that the choice of the DNA substitution models has a rather limited influence on the resulting
tree topology (Hoff et al., 2016). Of course, this result does not mean that model selection
should not be conducted. However, it suggests that subtle details such as the conflicts
between AIC(c) versus BIC or sample size definition are of minor concern in practice.

7 Parallelization and performance

7.1 Introduction
RAxML-NG supports three levels of parallelism: CPU instruction level (vectorization), intra-
node (multithreading), and inter-node (MPI) parallelism. Unlike standard RAxML/ExaML,
a single RAxML-NG executable offers all parallelism levels. The desired parallelism level can
be configured at run-time (MPI support is optional and should be enabled at compile-time).

As of v.0.8.0b, RAxML-NG only supports fine-grained parallelization across MSA sites.
This is the same parallelization approach that has been used in the PThreads version of
standard RAxML and ExaML. It is conceptually different from the coarse-grained paralleliz-
ations across independent tree searches or tree moves as implemented in RAxML-MPI or
IQTree-MPI (Nguyen et al., 2015), respectively. With fine-grained parallelization, the number
of CPU cores that can be efficiently utilized is limited by the MSA “width” (=number of
site patterns). For instance, using 20 cores on a single-gene protein alignment with 300 sites
would be suboptimal, and using 100 cores would most probably result in a huge slowdown. In
order to prevent wasting CPU time and energy, RAxML-NG will warn you – or, in extreme
cases, even refuse to run – if you try to assign too few MSA sites to a core.

Coarse-grained parallelization, although not directly implemented in RAxML-NG, can be
easily emulated as shown in Section 7.7.

7.2 Multithreading (pthreads)
By default, RAxML-NG will start as many threads as there are CPU cores available on
your system. Most modern CPUs employ so-called hyperthreading technology, which makes
each physical core appear as two logical cores to software. Hyperthreading can be beneficial
for some programs, but RAxML-NG achieves the best performance when run with
one thread per physical core. Therefore, RAxML-NG will try to detect if CPU supports
hyperthreading, and will reduce the number of threads accordingly.

PGE
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For instance, on a laptop with an Intel i7-8550U processor, RAxML-NG will detect 4
(physical) cores and use 4 threads by default:

parallelization: PTHREADS (4 threads), thread pinning: OFF

even though this CPU has 8 logical cores:

$ lscpu -e

CPU NODE SOCKET CORE L1d:L1i:L2:L3 ONLINE MAXMHZ MINMHZ
0 0 0 0 0:0:0:0 yes 4000,0000 400,0000
1 0 0 1 1:1:1:0 yes 4000,0000 400,0000
2 0 0 2 2:2:2:0 yes 4000,0000 400,0000
3 0 0 3 3:3:3:0 yes 4000,0000 400,0000
4 0 0 0 0:0:0:0 yes 4000,0000 400,0000
5 0 0 1 1:1:1:0 yes 4000,0000 400,0000
6 0 0 2 2:2:2:0 yes 4000,0000 400,0000
7 0 0 3 3:3:3:0 yes 4000,0000 400,0000

Unfortunately, it is very hard to reliably detect situations when hyperthreading is supported
by the CPU, but disabled in BIOS. For instance, this setup can be found on Amazon AWS
as well as on some clusters. In this situation, RAxML-NG can underestimate the number of
available physical cores. Thus, it is recommended to use the --threads option and manually
set the number of threads, to be on the safe side.

7.3 MPI and hybrid MPI/pthreads
If compiled with MPI support, RAxML-NG can leverage multiple compute nodes for a single
analysis. Please check your cluster documentation for system-specific instructions on running
MPI programs as this is different for every cluster. In MPI-only mode, you should start one
MPI process per physical CPU core (the number of threads will be set to one by default).

However, in most cases, a hybrid MPI/pthreads setup will be more efficient in terms
of both, runtime, and memory consumption. Typically, you would start one MPI rank per
compute node, and one thread per physical core (e.g. --threads 16 for nodes equipped with
dual-slot octa-core CPUs). Below is a sample job submission script for the cluster at our
research institute which uses SLURM (Yoo et al., 2003) as workload manager:

#!/bin/bash
#SBATCH -N 4
#SBATCH -B 2:8:1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=16
#SBATCH --hint=compute_bound
#SBATCH -t 08:00:00

raxml-ng-mpi --msa rbcl.phy --model GTR+G --prefix H1 --threads 16

Here, we requested 4 nodes with one task per node and 16 cores per node/task. We
further specify job runtime limit (-t), set thread mapping according to node topology
(-B) and prevent core oversubscription with --hint=compute_bound (please refer to https:
//slurm.schedmd.com/documentation.html for the full list of SLURM options).

https://slurm.schedmd.com/documentation.html
https://slurm.schedmd.com/documentation.html
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Once again, please consult your cluster documentation to find out how to properly
configure a hybrid MPI/pthreads run. Please note that incorrect configuration can
result in extreme slowdowns and hence waste time and resources!

7.4 Thread pinning
For attaining optimal performance, it is crucial to ensure that only one RAxML-NG thread
is running on each physical CPU core. Usually, the operating system can handle the thread-
to-core assignment automatically. However, some (misconfigured) MPI runtimes tend to
pack all threads onto a single CPU core, resulting in abysmal performance. To avoid this
situation, each thread can be “pinned” (explicitly assigned to) to a particular CPU core.

In RAxML-NG, thread pinning is enabled by default only in the hybrid MPI/pthreads
mode when one MPI rank per node is used. You can explicitly enable or disable thread
pinning with --extra thread-pin and --extra thread-nopin, respectively.

7.5 Vector instructions
RAxML-NG will automatically detect the best (fastest) set of vector instructions available
on your CPU, and use the respective computational kernels to achieve optimal performance.
On modern Intel CPUs, this autodetection mechanism appears to work pretty well, so most
probably you will not need to worry about this. However, you can force RAxML-NG to use
a specific set of vector instructions with the --simd option, for instance,

$ raxml-ng --msa prim.phy --model GTR+G --prefix V1 --threads 2 --seed 2
--simd sse

to use SSE3 vector instructions, or

$ raxml-ng --msa prim.phy --model GTR+G --prefix V2 --threads 2 --seed 2
--simd none

to use non-vectorized (scalar) instructions. This option might be useful for debugging,
but otherwise using non-optimal vectorization should be avoided as it incurs a substantial
performance penalty:

$ grep "Elapsed time:" {T3,V1,V2}.raxml.log

T3.raxml.log:Elapsed time: 7.802 seconds <- AVX (autodetect)
V1.raxml.log:Elapsed time: 15.394 seconds <- SSE
V2.raxml.log:Elapsed time: 21.663 seconds <- scalar

7.6 Determining the optimal number of threads
One of the most frequent question we get from RAxML users is: How many threads should I
use?. As always, simple questions are the toughest ones. You might as well ask: How fast
should I drive?. In both cases, the answer would be: It depends. It depends on where you
drive (dataset), your vehicle (system), and your priorities (time versus money/energy). In
RAxML-NG, we have implemented some warning signs and radar speed guns, for your own
safety. As in real life, you are free to ignore them (with the --force option), which can
result in two things: (1) earlier arrival, or (2) lost time and money. Fortunately, unlike on
the road, you can experiment with RAxML-NG safely, and we encourage you to do so.
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Figure 1 Typical scaling of RAxML-NG on a small alignment (here: 436 taxa and 1, 371 DNA
sites). Parallel efficiency (right) shows percentage of ideal (linear) speedup and is defined as follows:
P arallel_efficiency = Speedup/Number_of_threads × 100%.

A reasonable workflow for analyzing a large dataset would be as follows. First, run
RAxML-NG in parser mode, that is,

$ raxml-ng --parse --msa rbcl.phy --model GTR+G+F --prefix rbcl

This command will generate a binary MSA file (rbcl.raxml.rba), which can subsequently
be loaded by RAxML-NG much faster than the original FASTA alignment. Furthermore, it
will print the estimated memory requirements and the recommended number of threads for
this dataset:

[00:00:00] Reading alignment from file: rbcl.phy
[00:00:00] Loaded alignment with 436 taxa and 1371 sites

Alignment comprises 1 partitions and 1001 patterns

NOTE: Binary MSA file created: rbcl.raxml.rba

* Estimated memory requirements : 54 MB
* Recommended number of threads / MPI processes: 4

The recommended number of threads is computed using a simple heuristic and should yield
a decent runtime/resource utilization trade-off in most cases. It also constitutes a good
starting point for your experiments: you can now run tree searches with a varying number of
threads, for instance,

$ raxml-ng --search1 --msa rbcl.raxml.rba --seed 1 --threads 2
$ raxml-ng --search1 --msa rbcl.raxml.rba --seed 1 --threads 4
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$ raxml-ng --search1 --msa rbcl.raxml.rba --seed 1 --threads 8

and so on. For a small example dataset as in our example, the execution time will decrease
initially as we add more threads, but will then quickly level off (leftmost plot below). Although
the maximum speedup of ≈ 3.75× can be attained with 8 − 14 threads (middle plot), it
induces a rather poor parallel efficiency of 60%-30% (right plot; parallel efficiency is defined as
speedup divided by the number of threads). The recommended number of threads (4) yields
a reasonable speedup (3×) without compromising the parallel efficiency too much (75%).
Finally, if we use an excessively large number of cores (≥ 16 in this example), execution
times will start to increase again. Although the actual speedups will vary across datasets and
systems, the general trend will stay the same. Therefore, it is up to the user to decide how
many resources (=higher CPU time) can be sacrificed to obtain the results faster (=lower
execution time).

7.7 Coarse-grained parallelization for short alignments
If you want to utilize a large number of CPU cores for analyzing a small (“single-gene”)
alignment, please have a look at our ParGenes pipeline (Morel et al., 2019) which implements
coarse-grained parallelization and dynamic load balancing. ParGenes is freely available at
https://github.com/BenoitMorel/ParGenes.

Alternatively, coarse-grain parallelization can easily be emulated by executing multiple
RAxML-NG instances, but with distinct random seeds. For instance, let us assume that we
want to run an “all-in-one’ analysis on the dataset described in Section 7.6, and we want to
use a server with 16 CPU cores. As Figure 1 shows, the fine-grained parallelization across 16
cores is very inefficient for this dataset. We will therefore use fine-grained parallelization
with 2 cores per tree search, which means we can run 16/2 = 8 RAxML-NG instances in
parallel. First, we will infer 24 ML trees, using 12 random and 12 parsimony-based starting
trees. Hence, each RAxM-NG instance will run searches from 24/8 = 3 starting trees. Below
is a sample SLURM script for doing this:

#!/bin/bash
#SBATCH -N 1
#SBATCH -n 8
#SBATCH -B 2:8:1
#SBATCH --threads-per-core=1
#SBATCH --cpus-per-task=2
#SBATCH -t 02:00:00

for i in ‘seq 1 4‘;
do

srun -N 1 -n 1 --exclusive raxml-ng --search --msa rbcl.raxml.rba --tree
pars{3} --prefix CT$i --seed $RANDOM --threads 2 &

done

for i in ‘seq 5 8‘;
do

srun -N 1 -n 1 --exclusive raxml-ng --search --msa rbcl.raxml.rba --tree
rand{3} --prefix CT$i --seed $RANDOM --threads 2 &

done
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wait

Of course, this script has to be adapted for your specific cluster configuration and/or job
submission system. You can also use GNU parallel, or directly start multiple RAxML-NG
instances from the command line. Please pay attention to the ampersand symbol (&) at
the end of each RAxML-NG command line: it is extremely important here, since if you
forget the ampersand all RAxML-NG instances will run one after another and not in parallel!
Furthermore, we add --exclusive flag to tell ensure that raxml-ng instances will be assigned
to distinct CPU cores (this is default behavior with some SLURM configurations, but not
always).

Once the job has finished, we can inspect the likelihoods:

$ grep "Final LogLikelihood" CT*.raxml.log | sort -k 3

CT7.raxml.log:Final LogLikelihood: -30621.004116
CT6.raxml.log:Final LogLikelihood: -30621.537107
CT2.raxml.log:Final LogLikelihood: -30621.699234
CT3.raxml.log:Final LogLikelihood: -30622.534482
CT1.raxml.log:Final LogLikelihood: -30622.783250
CT8.raxml.log:Final LogLikelihood: -30623.963471
CT5.raxml.log:Final LogLikelihood: -30623.020351
CT4.raxml.log:Final LogLikelihood: -30623.378857

and select the best-scoring tree (CT7.raxml.bestTree in our case):

$ ln -s CT7.raxml.bestTree best.tre

The same trick can be applied to bootstrapping. For the sake of simplicity, let us infer
8 × 15 = 120 replicate trees:

for i in ‘seq 1 8‘;
do

raxml-ng --bootstrap --msa rbcl.raxml.rba --bs-trees 15 --prefix CB$i --
seed $RANDOM --threads 2 &

done

wait

Now, we can simply concatenate all replicate tree files (*.raxml.bootstraps) and then
proceed with the bootstrap convergence check as well as branch support calculation as usual
(see Section 4):

$ cat CB*.raxml.bootstraps > allbootstraps

$ raxml-ng --bsconverge --bs-trees allbootstraps --prefix CS --seed 2 --
threads 1

$ raxml-ng --support --tree best.tre --bs-trees allbootstraps --prefix CS
--threads 1

There are two things to keep in mind when conducting this type of coarse-grained
parallelization. First, memory consumption will grow proportionally to the number of
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RAxML-NG instances running in parallel. That is, in our case, an estimate given by the
--parse command should be multiplied by 8. Second, correct thread allocation (one thread
per CPU core) is crucial for achieving the optimal performance. Hence, we recommend to
check thread allocation, for instance, by running htop after your initial script submission.

NOTE: RAxML-NG v. 1.0 and later provides “built-in” coarse-grained parallelization,
please consult online documentation for details: https://github.com/amkozlov/raxml-ng/
wiki/Parallelization.
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A Summary of changes compared to RAxML 8.x

RAxML-NG offers multiple improvements and extensions compared to standard RAxML
8.x. On the other hand, not all features of standard RAxML are implemented as of RAxML-
NG v0.8.0b (most notably, rapid bootstrapping and CAT/PSR model [Stamatakis 2006a]).
Furthermore, several important defaults have been changed to be in line with best practices:
for instance, RAxML-NG is using multiple starting trees and scaled branch lengths by default.
To give a better overview, we provide a side-by-side comparison of standard RAxML 8.x and
RAxML-NG 0.8.0b in Table 1.

Option/Feature RAxML 8.x RAxML-NG 0.8.0b

Features

Bootstrapping standard, rapid standard

Parallelization scheme fine-grained (PTHREADS)
coarse-grained (MPI)

fine-grained (PTHREADS
and MPI)

Checkpointing NO YES

Binary MSA NO YES

Evolutionary models

Rate heterogeneity across
sites (RHAS)

GAMMA, p-inv, CAT GAMMA, p-inv, FreeRate

RHAS linkage global per-partition

Branch length linkage linked, unlinked linked, unlinked, scaled

LG4X with linked branches YES NO

User-specified parameter
values

NO YES

Defaults

Starting tree(s) parsimony (1) parsimony(10)+random(10)

Stationary state frequencies empirical ML estimate

Branch lengths linkage linked scaled

Number of boostrap
replicates

100 AUTO (bootstopping)

Table 1 Differences in features and default settings between standard RAxML and RAxML-NG
v0.8.0b
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