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Introduction

RAxML [START_REF] Stamatakis | RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models[END_REF][START_REF] Stamatakis | RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies[END_REF]) is a widely-used tool for maximum likelihood (ML) based phylogenetic inference (see Chapter 1.2 [START_REF] Stamatakis | Efficient maximum likelihood tree building methods[END_REF]). It has been cited by more than 25, 000 publications over the last 15 years. More recently, we introduced ExaML [START_REF] Stamatakis | Novel parallelization schemes for large-scale likelihoodbased phylogenetic inference[END_REF][START_REF] Kozlov | ExaML version 3: a tool for phylogenomic analyses on supercomputers[END_REF], a variant of RAxML with several novel features including checkpointing, improved load balancing, and an efficient fine-grained MPI parallelization. These improvements were particularly important for being able to analyze large-scale phylogenomic datasets on compute clusters and supercomputer systems [START_REF] Misof | Phylogenomics resolves the timing and pattern of insect evolution[END_REF][START_REF] Jarvis | Whole-genome analyses resolve early branches in the tree of life of modern birds[END_REF]. However, ExaML only offered a core subset of RAxML functionalities. It lacks several important functions such as bootstrapping and comprehensive starting tree generation. These limitations, and its dependency on MPI, made ExaML more difficult to install and use, and therefore presumably limited its adoption.
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ERROR: Following taxon name contains invalid characters: t3 1200bp ERROR: Alignment check failed (see details above)! It seems that this MSA file has almost every conceivable problem. RAxML-NG will attempt to automatically fix the most common issues, for instance, by removing fully undetermined columns and sequences, replacing invalid characters in taxon names etc. To achieve this, it will write an analogously updated/fixed MSA file back to disk: NOTE: Reduced alignment (with duplicates and gap-only sites/taxa removed) NOTE: was saved to: /home/alexey/ng-tutorial/bad.fa.raxml.reduced.phy

Let us now repeat the sanity check with the fixed file:

$ raxml-ng --check --msa bad.fa.raxml.reduced.phy --model GTR+G [..] Alignment can be successfully read by RAxML-NG.

Compression and conversion to binary format

For large alignments, we recommend using the --parse command after, or, instead of --check:

$ raxml-ng --parse --msa prim.phy --model GTR+G In addition to the MSA sanity check, this command will compress alignment patterns and store the MSA in a binary format (RAxML Binary Alignment, RBA): NOTE: Binary MSA file created: prim.phy.raxml.rba

In the process of pattern compression, RAxML-NG identifies identical MSA sites and converts them into a single site ('pattern') with a weight corresponding to their number of occurrences. Since this compression step can potentially require quite some time for broad supermatrix MSAs, directly loading a RBA file is (substantially) faster compared to parsing and loading a plain FASTA or PHYLIP file. This parsing speed is important for large-scale parallel tree inferences with say, 500 cores or more, as virtually no time is lost at the beginning for parsing the file and the cores can almost immediately start with the likelihood calculations (see Kozlov et al., 2015, Supplement Section 3 for more details).

In addition, --parse will estimate the memory requirements and optimal number of CPUs/threads for the particular MSA: * Estimated memory requirements : 2 MB * Recommended number of threads / MPI processes: 2

Even though these estimates are approximate, they provide a "good" starting point for experimentation (see Section 7 for details) to determine the optimal number of cores that will yield maximum parallel efficiency.

Inferring ML trees

Let us now infer a tree under the GTR+GAMMA (general time reversible model of nucleotide substitution with a Γ model of rate heterogeneity) model with default parameters. We P G E
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RAxML-NG will use 2 threads as suggested above, and provide a fixed random number seed to ensure reproducibility. By using a fixed random number seed RAxML-NG will always produce the same sequence of random numbers and therefore a failed run can be easily reproduced for debugging. Note that, we will also always use a new name via the --prefix output file name option for each RAxML-NG example run to avoid overwriting preceding output files.

$ raxml-ng --msa prim.phy --model GTR+G --prefix T3 --threads 2 --seed 2

The above command will perform 20 tree searches using 10 random and 10 parsimonybased starting trees. In the end it will pick the best-scoring topology:

Analysis options: run mode: ML tree search start tree(s): random (10) + parsimony (10)

This default setting represents a reasonable choice for most practical cases. However, computational resources permitting, we might want to increase the number of starting trees to explore the tree space more thoroughly: $ raxml-ng --msa prim.phy --model GTR+G --prefix T4 --threads 2 --seed 2 --tree pars{25},rand{25}

Conversely, we can also just perform a quick-and-dirty search from a single random starting tree using the --search1 command:

$ raxml-ng --search1 --msa prim.phy --model GTR+G --prefix T5 --threads 2 --seed 2
Let us now compare the results of all three alternative tree inference runs:

$ grep "Final LogLikelihood:" T{3,4,5}.raxml.log T3.raxml.log:Final LogLikelihood: -5708.923977 T4.raxml.log:Final LogLikelihood: -5708.923977 T5.raxml.log:Final LogLikelihood: -5708.979717

This looks quite good: the likelihood surface appears to have a clear peak, which RAxML-NG finds regardless of the search parameters (up to a small deviation in "T5", which we will explain below). We use the term likelihood surface in a colloquial/subjective way to describe the space of all possible tree topologies and their respective likelihood scores. If the likelihood surface is smooth there seems to be one clear peak that is identified by several independent searches. If the surface is rough, we typically observe a plethora of substantially different tree topologies but with statistically indistinguishable likelihood scores. Rough likelihood surfaces are frequently observed for large single gene MSAs with 1, 000 or more sequences (see Section 3.2 in Chapter 1.2 [START_REF] Stamatakis | Efficient maximum likelihood tree building methods[END_REF]).

Let us get back to our example. We observe that the tree "T5" has a slightly worse likelihood. The question arises if it also has a distinct topology. We can check this by using the --rfdist command to compute the topological Robinson-Foulds (RF) distance [START_REF] Robinson | Comparison of phylogenetic trees[END_REF] between all trees we have inferred:

$ cat T{3,4}.raxml.mlTrees T5.raxml.bestTree > mltrees $ raxml-ng --rfdist --tree mltrees --prefix RF [...] Loaded 71 trees with 12 taxa.

Average absolute RF distance in this tree set: 0.000000 Average relative RF distance in this tree set: 0.000000 Number of unique topologies in this tree set: 1 This tells us that, in fact, all 71 resulting topologies (one per starting tree) are identical, so we can be optimistic that we found the globally optimal ML tree. The slight numerical deviations we observe for the likelihood scores are due to numerical round-off error propagation.

To conduct calculations computers rely on so-called floating-point numbers that are just an imperfect representation of the real numbers on the machine.

Unfortunately, not all datasets are as well-behaved as our initial test dataset:

$ raxml-ng --msa fusob.phy --model GTR+G --prefix T6 Here, 1st and 2nd column contain tree indices in the NEWICK file, 3rd column shows the absolute RF distance between those two trees, and 4th column shows the relative or normalized RF distance ranging from 0 to 1. Relative RF distance is calculated by dividing the absolute value (column 3) by the maximum possible RF distance for this tree pair.

As we can see, all 10 searches from the random starting trees (trees 0 to 9) found the best-scoring topology (RF=0, logL=-9974), whereas 5 out of 10 searches from a parsimony starting tree converged to a local optimum (RF = 8, logL = -9980). Ideally, one should also check whether the likelihood difference between both topologies is statistically significant. This could be done, for example, by CONSEL [START_REF] Shimodaira | Consel: for assessing the confidence of phylogenetic tree selection[END_REF], which implements a large number of statistical significance tests for comparing tree topologies.
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Bootstrapping and branch support NOTE: As of v.0.8.0b, RAxML-NG only supports the standard bootstrap algorithm (corresponding to the -b option in standard RAxML). It is subsantially slower than rapid bootstrapping implemented in standard RAxML (-x or -f a options), but returns more accurate support values.

Inferring bootstrap trees

RAxML-NG can perform the standard non-parametric bootstrap by re-sampling alignment columns and re-inferring a tree for each bootstrap (BS) replicate MSA:

raxml-ng --bootstrap --msa prim.phy --model GTR+G --prefix T7 --seed 2 -threads 2

By default, RAxML-NG employs the so-called MRE-based bootstopping test [START_REF] Pattengale | How many bootstrap replicates are necessary[END_REF] to automatically determine the sufficient number of BS replicates. The diagnostic statistics is evaluated after every 50 BS tree inferences, and once its value drops below the cutoff, the analysis stops. The key motivation for the bootstopping criterion is to ensure that neither too few (unstable/inaccurate support values) nor too many (waste of CPU time) replicates are computed. To assess stability of support values, the bootstopping criterion repeatedly splits the current set of BS replicate trees at random into two tree sets of equal size and subsequently compares the support values induced by these sets. If the induced support values are not substantially different it suggests that bootstrapping should stop.

Let us now infer some BS replicates:

bootstrap replicates: max: 1000 + bootstopping (autoMRE, cutoff: 0.030000) [...] [00:00:15] Bootstrap tree #50, logLikelihood: -5762.777409 [00:00:15] Bootstrapping converged after 50 replicates.

This converged quickly! Let us now manually increase the number of BS replicates to be on the safe side: raxml-ng --bootstrap --msa prim.phy --model GTR+G --prefix T8 --seed 2 -threads 2 --bs-trees 200

Bootstrap convergence can also be assessed after the BS inference via the --bsconverge command. Note that, we can also change the bootstopping cutoff value to make the test more or less stringent:

$ raxml-ng --bsconverge --bs-trees T7.raxml.bootstraps --prefix T9 --seed 2 --threads 2 --bs-cutoff 0.01 # trees avg WRF avg WRF in % # perms: wrf <= 1.00 % converged? 50 7.400 1.644 0 NO Bootstopping test did not converge after 50 trees

The cutoff here represents the bipartition-frequency-weighted RF distance (WRF, see Pattengale et al., 2010, for details) between extended majority rule consensus trees calculated on the respective randomly split BS tree set. By default we calculate 1000 such random splits of the tree set and average the WRF distances over them.

As we can see, with a 1% WRF cutoff 50 replicates are not enough. What about 200?

$ raxml-ng --bsconverge --bs-trees T8.raxml.bootstraps --prefix T10 --seed 2 --threads 2 --bs-cutoff 0.01 Still no convergence, but the WRF distance (avg WRF in %) is steadily decreasing as we add more replicates, and now lies below the 1% cutoff for 648 out of the 1000 random splits of the BS tree set (convergence requirement: > 990). This looks promising, and we can expect convergence after few hundred replicates. Luckily, bootstraps are independent, and we can thus reuse the 200 BS trees we have already inferred. So let's add 400 additional BS replicate trees.

#
IMPORTANT NOTE: It is extremely important to specify a distinct random seed for the second run, otherwise first 200 trees of the second run will be identical to the first run! raxml-ng --bootstrap --msa prim.phy --model GTR+G --prefix T11 --seed 333 --threads 2 --bs-trees 400

Now, we can simply concatenate the BS replicate trees from both runs, and re-assess the convergence: Now we have convergence, even with a more stringent bootstopping cutoff. However, we had to conduct 600 BS replicate searches instead of just 50. On large datasets, this quickly becomes computationally expensive. Hence in practice, the default bootstopping cutoff value of an average WRF of 3% should be sufficient in most cases [START_REF] Pattengale | How many bootstrap replicates are necessary[END_REF].

$ cat T8.raxml.bootstraps T11.raxml.bootstraps > allbootstraps $ raxml-ng --bsconverge --bs-trees allbootstraps --prefix T12 --seed 2 -- threads 1 --bs-cutoff 0.

Computing branch support

Now, what can we do with the BS trees? We can either summarize them via some sort of consensus tree (strict, majority, majority rule extended, e.g., using the --consense command of RAxML-NG) or we can map them onto the best-scoring ML tree that we inferred on the original MSA. It is debatable what the best way of summarizing BS trees might be, but there seems to be a trend toward mapping the BS support values onto the best-scoring/best-known ML tree (remember: finding the globally optimal ML tree is computationally hard), so let us do that.

We will use the ML tree obtained in run T3 (see Section 3):

raxml-ng --support --tree T3.raxml.bestTree --bs-trees allbootstraps -prefix T13 --threads 2

Now, we can actually look at this best-known ML tree including supports, contained in T13.raxml.support, using some tree viewer (e.g., Dendroscope [START_REF] Huson | Dendroscope 3: An Interactive Tool for Rooted Phylogenetic Trees and Networks[END_REF] or FigTree [START_REF] Rambaut | Figtree v1. 4. molecular evolution, phylogenetics and epidemiology[END_REF]). Beware: due to confusion between node and branch attributes in the NEWICK format, some viewers have or had issues concerning correct branch support visualization [START_REF] Czech | A critical review on the use of support values in tree viewers and bioinformatics toolkits[END_REF]. If possible (e.g., in recent versions of Dendroscope), you should specify that support values must be interpreted as edge labels.

Alternatively, we can also compute the so-called Transfer Bootstrap Expectation (TBE) support metric recently suggested by [START_REF] Lemoine | Renewing Felsenstein's phylogenetic bootstrap in the era of big data[END_REF] as follows:

$ raxml-ng --support --tree T3.raxml.bestTree --bs-trees allbootstraps -prefix T14 --threads 2 --bs-metric tbe

While the standard bootstrap support metric (Felsenstein's bootstrap, FBP) relies on binary presence/absence of bipartitions from replicate trees in the best-known ML tree, TBE is based on a gradual 'transfer' distance. Transfer distance between two branches equals to the minimum number of taxa that have to be transfered (or removed) to make those branches identical (that is, both branches split the set of taxa in identical subsets). TBE support for a branch in the ML tree is computed based on the minimum transfer distance between this branch and any branch in the BS replicate tree; in other words, we compare each ML tree branch to its respective closest branch in the BS replicate tree (please see Lemoine et al., 2018, for details). For this reason, TBE can better recover support in very large trees with thousands of taxa. This is because, bipartitions that exactly match those in the best-known ML tree are rarely present in replicates, and thus FBP usually yields low support, especially for deep branches.

As shown above, TBE can be computed from the same set of bootstrap replicate trees, so there in no need to repeat the compute-intensive tree inference step. However, the TBE computation itself is more expensive than FBP. This can be noted when computing the TBE on large trees: e.g., on a laptop, RAxML-NG v0.8.0 needs ≈ 20 seconds per BS replicate tree on the 9, 000 taxon dataset by [START_REF] Lemoine | Renewing Felsenstein's phylogenetic bootstrap in the era of big data[END_REF]. However, this time is still negligible compared to the time required for BS replicate tree inference.

Finally, RAxML-NG offers a convenient "all-in-one" analysis mode for really lazy users (analogous to -f a in standard RAxML):

$ raxml-ng --all --msa prim.phy --model GTR+G --prefix T15 --seed 2 -- threads 2 --bs-metric fbp,tbe
This will do all of the above steps (20 ML inferences on the original MSA, inferring bootstrap replicate trees, applying MRE-based bootstopping test, and drawing support values using both FBP and TBE on the best-scoring tree) with just a single command: Please note, that for taxa-rich alignments running such a complete analysis with the --all command can take extremely long. It is therefore recommended to estimate the runtime required for a single tree search first, for instance, by using the --search1 command. Based on the results, one might consider allocating more CPU cores and/or using the coarse-grained parallelization (see Section 7.7).
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Tree likelihood evaluation

Basics

Another standard task is to evaluate trees, that is, to compute the likelihood of a given fixed tree topology by just optimizing model and/or branch length parameters on that fixed tree. This operation is frequently needed in model and hypothesis testing.

The basic option is --evaluate. It will re-optimize all branch lengths and all free model parameters. This default behavior can be altered with --opt-branches on/off and --opt-model on/off. There is also the --loglh command which is a short alias for --evaluate --opt-branches off --opt-model off --nofiles that is, it will compute and print the likelihood of the tree(s) without optimizing anything and without creating any output files. For instance, we can re-compute the likelihood of T3 with default model parameters as follows:

$ raxml-ng --loglh --msa prim.phy --model GTR+G --tree T3.raxml.bestTree --threads 2 Rate heterogeneity: GAMMA (4 cats, mean), alpha: 1.000000 (ML), weights&rates: (0.250000,0.136954) (0.250000,0.476752) (0.250000,1.000000) (0.250000,2.386294) Base frequencies (ML): 0.250000 0.250000 0.250000 0.250000 Substitution rates (ML): 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

Final LogLikelihood: -6420.095053

In contrast, after re-optimizing all model parameters we obtain:

$ raxml-ng --evaluate --msa prim.phy --model GTR+G --tree T3. Full list of supported evolutionary models and respective parameters can be found at https://github.com/amkozlov/raxml-ng/wiki/Input-data#single-model.

Comparing different models

Let us now conduct some small tests that show how the likelihood improves as we add more and more free parameters to our model. For this, we will use the best-scoring ML tree from Section 3 again.

Let us first evaluate the tree under the most simple model, Jukes-Cantor (JC):

$ raxml-ng --evaluate --msa prim.phy --threads 2 --model JC --tree T3. raxml.bestTree --prefix E1

Now, let us add the Γ model of rate heterogeneity:

$ raxml-ng --evaluate --msa prim.phy --threads 2 --model JC+G --tree T3. raxml.bestTree --prefix E2

Now let us use a simple GTR model (without rate heterogeneity):

$ raxml-ng --evaluate --msa prim.phy --threads 2 --model GTR --tree T3. raxml.bestTree --prefix E3

GTR with the GAMMA model of rate heterogeneity, but using empirical base frequencies:

$ raxml-ng --evaluate --msa prim.phy --threads 2 --model GTR+G+FC --tree T3.raxml.bestTree --prefix E4

And now also conducting a ML estimate of the base frequencies:

$ raxml-ng --evaluate --msa prim.phy --threads 2 --model GTR+G+FO --tree T3.raxml.bestTree --prefix E5

Finally, using 4 free rates [START_REF] Yang | A space-time process model for the evolution of DNA sequences[END_REF] instead of GAMMA-distributed rates:

$ raxml-ng --evaluate --msa prim.phy --threads 2 --model GTR+R4+FO --tree T3.raxml.bestTree --prefix E6

Let us check the results:

P G E For all criteria, model with the lowest score should be preferred. As we can see, the GTR+G+FO model scores best according to all three information theoretical criteria evaluated, even though it yields a lower likelihood than GTR+R4+FO. This example illustrates the importance of formal model selection. In practice, one should use specialized tools such as ModelTest-NG [START_REF] Darriba | ModelTest-NG: A New and Scalable Tool for the Selection of DNA and Protein Evolutionary Models[END_REF], IQTree/ModelFinder [START_REF] Kalyaanamoorthy | Modelfinder: fast model selection for accurate phylogenetic estimates[END_REF], or PartitionFinder [START_REF] Lanfear | Partitionfinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses[END_REF] for this task.

6 Partitioned analyses

Partitioned model definition

So far, we always used a single evolutionary model for all MSA sites. This is biologically rather unrealistic, since different genes and/or codon positions typically exhibit distinct substitution patterns. Therefore, it is common to divide MSA sites into subsets or partitions, to which we can assign individual evolutionary models. In the most simple case, we can assign identical models to all partitions, but allow for independent model parameter estimates:

$ cat prim.part GTR+G+FO, NADH4=1-504 GTR+G+FO, tRNA=505-656 GTR+G+FO, NADH5=657-898

The RAxML-NG partition file format is similar to that of standard RAxML and ExaML.

Each line defines a partition, and contains the evolutionary model specification, the partition name, and the MSA site range(s).

IMPORTANT NOTE: the evolutionary model specification is not compatible with that in RAxML/ExaML! In particular, rate heterogeneity has to be defined for each partition individually, that is, we specify GTR+G for every partition with the Γ model instead of using a global -m GTRGAMMA switch on the command line as in standard RAxML/ExaML. Therefore, special care has to be taken when using legacy partition files.

Below, we show a more sophisticated example, where we use different per-partition substitution matrices and rate heterogeneity models, and also split the first gene by codon position:

$ cat prim2.part GTR+G+FO, NADH4=1-504/3,2-504/3 JC+I, tRNA=505-656 GTR+R4+FC, NADH5=657-898 HKY, NADH4p3=3-504/3

Here, we use the stride notation to separate codon positions. For instance, 1-504/3 means "every 3rd position in the range between 1 and 504'.

Likelihood evaluation with partitioned models

Now, let us try to evaluate the likelihood on a fixed tree topology as in Section 5, but using a partitioned model (we will also increase the log output verbosity to be able to inspect the estimated parameter values):

$ raxml-ng --evaluate --msa prim.phy --threads 2 --model prim.part --tree T3.raxml.bestTree --prefix P1 -log verbose As we can see from the output above, even though we assigned the GTR+G+FO model to all three partitions, each of them has independent estimates of the parameter values (α shape parameter of the GAMMA distribution, base frequencies, and GTR substitution rates). Let us repeat this evaluation using the second, more complex partition scheme:

$ raxml-ng --evaluate --msa prim.phy --threads 2 --model prim2.part --tree T3.raxml.bestTree --prefix P2 -log verbose and compare the likelihoods for P2 vs. P1 vs. single GTR+G+FO model: The situation is less clear now: AIC and AICc favor the P1 model, whereas GTR+G+FO has the best BIC score. Unfortunately, there seems to be no general consensus with respect to which information criterion is superior. Therefore, the decision whether to use AIC, AICc or BIC is left to the user. Furthermore, the computation of AICc and BIC scores requires the knowledge of sample size. In the context of phylogenetics, both the number of alignment sites (columns) and the total number of alignment characters (sites × taxa) have been proposed as sample size definitions (see e.g. Posada and Buckley, 2004, and references therein). In RAxML-NG, we define sample size as number of alignment sites, which is a more conservative option, also used by e.g., ModelTest-NG [START_REF] Darriba | ModelTest-NG: A New and Scalable Tool for the Selection of DNA and Protein Evolutionary Models[END_REF] and IQTree [START_REF] Nguyen | IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[END_REF].

$

Branch length linkage

In the output shown in Section 6.2, there is an extra parameter called Speed estimated for each partition: linked: all partitions share a common set of (global) branch lengths. This is the most simple model with the lowest number of parameters (#branches). However, it is often considered too unrealistic, as it is known that genes (or genome regions) evolve at different speeds. unlinked: each partition has its own, independent set of branch lengths. This model allows for the highest flexibility, but it also introduces a huge number of free parameters (#branches × #partitions), which makes it prone to overfitting. scaled (proportional): a global set of branch lengths is estimated as in the "linked" mode, but each partition has an individual scaling factor; per-partition branch lengths are obtained by multiplying the global branch lengths with these individual scalers. This approach represents a compromise that allows to model distinct evolutionary rates across partitions while, at the same time, only introducing a moderate number of free parameters (#branches + #partitions).

RAxML-NG supports all three branch linkage models described above; they can be selected using the --brlen option. A recent simulation study by [START_REF] Duchene | Linking branch lengths across loci provides the best fit for phylogenetic inference[END_REF] showed that the scaled branch linkage model offers the best fit for a large number of typical representative datasets. This confirms the intuition about its "good" flexibility P G E
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versus complexity trade-off. Hence, RAxML-NG uses the scaled branch linkage model for partitioned analyses by default.

IMPORTANT NOTE: standard RAxML and ExaML use the linked branch length model by default. This should be kept in mind when comparing likelihoods and resulting topologies with those obtained via RAxML-NG! So let us now explore how the linked and unlinked models behave on our toy dataset:

$ raxml-ng --evaluate --msa prim.phy --threads 2 --model prim.part --tree T3.raxml.bestTree --prefix P3 --brlen linked $ raxml-ng --evaluate --msa prim.phy --threads 2 --model prim.part --tree T3.raxml.bestTree --prefix P4 --brlen unlinked

As could be expected, more complex models yield better likelihood scores (unlinked > scaled > linked): $ grep logLikelihood {P1,P3,P4}.raxml.log P1.raxml.log:[00:00:00] Tree #1, final logLikelihood: -5673.027260 <scaled P3.raxml.log:[00:00:00] Tree #1, final logLikelihood: -5678.429054 <linked P4.raxml.log:[00:00:00] Tree #1, final logLikelihood: -5648.348677 <unlinked However, the induced likelihood score difference is not always large enough to justify using additional model parameters:

grep "AIC score" {P1,P3,P4}.raxml.log Once again, we observe a disagreement between the AIC/AICc and BIC criteria, which choose scaled and linked branch length models, respectively. However, all three criteria exclude the extremely parameter-rich unlinked model.

Tree searches with partitioned models

In the previous subsection, we used partitioned models to re-evaluate the likelihood of the ML tree obtained under the GTR+G model. But what if we re-run tree search from scratch under a partitioned model? Will this alter the resulting likelihoods and/or topologies?

$ raxml-ng --msa prim.phy --model prim.part --prefix P5 --threads 2 --seed 2 --brlen scaled $ raxml-ng --msa prim.phy --model prim.part --prefix P6 --threads 2 --seed 2 --brlen linked $ raxml-ng --msa prim.phy --model prim.part --prefix P7 --threads 2 --seed 2 --brlen unlinked

Checking the new likelihood scores $ grep "Final LogLikelihood" {P5,P6,P7}.raxml.log P5.raxml.log:Final LogLikelihood: -5672.951995 P6.raxml.log:Final LogLikelihood: -5678.301081 P7.raxml.log:Final LogLikelihood: -5648.204296

shows that they are almost identical to the values obtained on the T3 topology (see Section 6.2). Moreover, all three partitioned runs converged to the same ML tree topology as the unpartitioned T3 run (see Section 3). Of course, this observation will not hold for all datasets. However, there is some evidence that the choice of the DNA substitution models has a rather limited influence on the resulting tree topology [START_REF] Hoff | Does the choice of nucleotide substitution models matter topologically?[END_REF]. Of course, this result does not mean that model selection should not be conducted. However, it suggests that subtle details such as the conflicts between AIC(c) versus BIC or sample size definition are of minor concern in practice.
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Parallelization and performance

Introduction

RAxML-NG supports three levels of parallelism: CPU instruction level (vectorization), intranode (multithreading), and inter-node (MPI) parallelism. Unlike standard RAxML/ExaML, a single RAxML-NG executable offers all parallelism levels. The desired parallelism level can be configured at run-time (MPI support is optional and should be enabled at compile-time). As of v.0.8.0b, RAxML-NG only supports fine-grained parallelization across MSA sites. This is the same parallelization approach that has been used in the PThreads version of standard RAxML and ExaML. It is conceptually different from the coarse-grained parallelizations across independent tree searches or tree moves as implemented in RAxML-MPI or IQTree-MPI [START_REF] Nguyen | IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[END_REF], respectively. With fine-grained parallelization, the number of CPU cores that can be efficiently utilized is limited by the MSA "width" (=number of site patterns). For instance, using 20 cores on a single-gene protein alignment with 300 sites would be suboptimal, and using 100 cores would most probably result in a huge slowdown. In order to prevent wasting CPU time and energy, RAxML-NG will warn you -or, in extreme cases, even refuse to run -if you try to assign too few MSA sites to a core.

Coarse-grained parallelization, although not directly implemented in RAxML-NG, can be easily emulated as shown in Section 7.7.

Multithreading (pthreads)

By default, RAxML-NG will start as many threads as there are CPU cores available on your system. Most modern CPUs employ so-called hyperthreading technology, which makes each physical core appear as two logical cores to software. Hyperthreading can be beneficial for some programs, but RAxML-NG achieves the best performance when run with one thread per physical core. Therefore, RAxML-NG will try to detect if CPU supports hyperthreading, and will reduce the number of threads accordingly.

P G E
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For instance, on a laptop with an Intel i7-8550U processor, RAxML-NG will detect 4 (physical) cores and use 4 threads by default: parallelization: PTHREADS (4 threads), thread pinning: OFF even though this CPU has 8 logical cores:

$ lscpu -e CPU NODE SOCKET CORE L1d:L1i:L2:L3 ONLINE MAXMHZ MINMHZ 0 0 0 0 0:0:0:0 yes 4000,0000 400,0000 1 0 0 1 1:1:1:0 yes 4000,0000 400,0000 2 0 0 2 2:2:2:0 yes 4000,0000 400,0000 3 0 0 3 3:3:3:0 yes 4000,0000 400,0000 4 0 0 0 0:0:0:0 yes 4000,0000 400,0000 5 0 0 1 1:1:1:0 yes 4000,0000 400,0000 6 0 0 2 2:2:2:0 yes 4000,0000 400,0000 7 0 0 3 3:3:3:0 yes 4000,0000 400,0000

Unfortunately, it is very hard to reliably detect situations when hyperthreading is supported by the CPU, but disabled in BIOS. For instance, this setup can be found on Amazon AWS as well as on some clusters. In this situation, RAxML-NG can underestimate the number of available physical cores. Thus, it is recommended to use the --threads option and manually set the number of threads, to be on the safe side.

MPI and hybrid MPI/pthreads

If compiled with MPI support, RAxML-NG can leverage multiple compute nodes for a single analysis. Please check your cluster documentation for system-specific instructions on running MPI programs as this is different for every cluster. In MPI-only mode, you should start one MPI process per physical CPU core (the number of threads will be set to one by default).

However, in most cases, a hybrid MPI/pthreads setup will be more efficient in terms of both, runtime, and memory consumption. Typically, you would start one MPI rank per compute node, and one thread per physical core (e.g. --threads 16 for nodes equipped with dual-slot octa-core CPUs). Below is a sample job submission script for the cluster at our research institute which uses SLURM [START_REF] Yoo | Slurm: Simple linux utility for resource management[END_REF] as workload manager: #!/bin/bash #SBATCH -N 4 #SBATCH -B 2:8:1 #SBATCH --ntasks-per-node=1 #SBATCH --cpus-per-task=16 #SBATCH --hint=compute_bound #SBATCH -t 08:00:00 raxml-ng-mpi --msa rbcl.phy --model GTR+G --prefix H1 --threads 16

Here, we requested 4 nodes with one task per node and 16 cores per node/task. We further specify job runtime limit (-t), set thread mapping according to node topology (-B) and prevent core oversubscription with --hint=compute_bound (please refer to https: //slurm.schedmd.com/documentation.html for the full list of SLURM options).

Once again, please consult your cluster documentation to find out how to properly configure a hybrid MPI/pthreads run. Please note that incorrect configuration can result in extreme slowdowns and hence waste time and resources!

Thread pinning

For attaining optimal performance, it is crucial to ensure that only one RAxML-NG thread is running on each physical CPU core. Usually, the operating system can handle the threadto-core assignment automatically. However, some (misconfigured) MPI runtimes tend to pack all threads onto a single CPU core, resulting in abysmal performance. To avoid this situation, each thread can be "pinned" (explicitly assigned to) to a particular CPU core.

In RAxML-NG, thread pinning is enabled by default only in the hybrid MPI/pthreads mode when one MPI rank per node is used. You can explicitly enable or disable thread pinning with --extra thread-pin and --extra thread-nopin, respectively.

Vector instructions

RAxML-NG will automatically detect the best (fastest) set of vector instructions available on your CPU, and use the respective computational kernels to achieve optimal performance. On modern Intel CPUs, this autodetection mechanism appears to work pretty well, so most probably you will not need to worry about this. However, you can force RAxML-NG to use a specific set of vector instructions with the --simd option, for instance, $ raxml-ng --msa prim.phy --model GTR+G --prefix V1 --threads 2 --seed 2 --simd sse to use SSE3 vector instructions, or $ raxml-ng --msa prim.phy --model GTR+G --prefix V2 --threads 2 --seed 2 --simd none to use non-vectorized (scalar) instructions. This option might be useful for debugging, but otherwise using non-optimal vectorization should be avoided as it incurs a substantial performance penalty:

$ grep "Elapsed time:" {T3,V1,V2}.raxml.log 
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RAxML-NG q q q q q q q q q 100 200 300 400 1 2 4 6 8 10 12 14 16

Number of threads Execution time (s) q q q q q q q q q 1 2 3 4 1 2 4 6 8 10 12 14 16

Number of threads Speedup (x) q q q q q q q q q 0 20 40 A reasonable workflow for analyzing a large dataset would be as follows. First, run RAxML-NG in parser mode, that is, $ raxml-ng --parse --msa rbcl.phy --model GTR+G+F --prefix rbcl This command will generate a binary MSA file (rbcl.raxml.rba), which can subsequently be loaded by RAxML-NG much faster than the original FASTA alignment. Furthermore, it will print the estimated memory requirements and the recommended number of threads for this dataset: The recommended number of threads is computed using a simple heuristic and should yield a decent runtime/resource utilization trade-off in most cases. It also constitutes a good starting point for your experiments: you can now run tree searches with a varying number of threads, for instance, $ raxml-ng --search1 --msa rbcl.raxml.rba --seed 1 --threads 2 $ raxml-ng --search1 --msa rbcl.raxml.rba --seed 1 --threads 4 $ raxml-ng --search1 --msa rbcl.raxml.rba --seed 1 --threads 8 and so on. For a small example dataset as in our example, the execution time will decrease initially as we add more threads, but will then quickly level off (leftmost plot below). Although the maximum speedup of ≈ 3.75× can be attained with 8 -14 threads (middle plot), it induces a rather poor parallel efficiency of 60%-30% (right plot; parallel efficiency is defined as speedup divided by the number of threads). The recommended number of threads (4) yields a reasonable speedup (3×) without compromising the parallel efficiency too much (75%). Finally, if we use an excessively large number of cores (≥ 16 in this example), execution times will start to increase again. Although the actual speedups will vary across datasets and systems, the general trend will stay the same. Therefore, it is up to the user to decide how many resources (=higher CPU time) can be sacrificed to obtain the results faster (=lower execution time).

Coarse-grained parallelization for short alignments

If you want to utilize a large number of CPU cores for analyzing a small ("single-gene") alignment, please have a look at our ParGenes pipeline [START_REF] Morel | ParGenes: a tool for massively parallel model selection and phylogenetic tree inference on thousands of genes[END_REF] which implements coarse-grained parallelization and dynamic load balancing. ParGenes is freely available at https://github.com/BenoitMorel/ParGenes.

Alternatively, coarse-grain parallelization can easily be emulated by executing multiple RAxML-NG instances, but with distinct random seeds. For instance, let us assume that we want to run an "all-in-one' analysis on the dataset described in Section 7.6, and we want to use a server with 16 CPU cores. As Figure 1 shows, the fine-grained parallelization across 16 cores is very inefficient for this dataset. We will therefore use fine-grained parallelization with 2 cores per tree search, which means we can run 16/2 = 8 RAxML-NG instances in parallel. First, we will infer 24 ML trees, using 12 random and 12 parsimony-based starting trees. Hence, each RAxM-NG instance will run searches from 24/8 = 3 starting trees. Below is a sample SLURM script for doing this: #!/bin/bash #SBATCH -N 1 #SBATCH -n 8 #SBATCH -B 2:8:1 #SBATCH --threads-per-core=1 #SBATCH --cpus-per-task=2 #SBATCH -t 02:00:00 for i in 'seq 1 4'; do srun -N 1 -n 1 --exclusive raxml-ng --search --msa rbcl.raxml.rba --tree pars{3} --prefix CT$i --seed $RANDOM --threads 2 & done for i in 'seq 5 8'; do srun -N 1 -n 1 --exclusive raxml-ng --search --msa rbcl.raxml.rba --tree rand{3} --prefix CT$i --seed $RANDOM --threads 2 & done P G E 1.3:22
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wait Of course, this script has to be adapted for your specific cluster configuration and/or job submission system. You can also use GNU parallel, or directly start multiple RAxML-NG instances from the command line. Please pay attention to the ampersand symbol (&) at the end of each RAxML-NG command line: it is extremely important here, since if you forget the ampersand all RAxML-NG instances will run one after another and not in parallel! Furthermore, we add --exclusive flag to tell ensure that raxml-ng instances will be assigned to distinct CPU cores (this is default behavior with some SLURM configurations, but not always).

Once the job has finished, we can inspect the likelihoods: and select the best-scoring tree (CT7.raxml.bestTree in our case):

$
$ ln -s CT7.raxml.bestTree best.tre

The same trick can be applied to bootstrapping. For the sake of simplicity, let us infer 8 × 15 = 120 replicate trees: for i in 'seq 1 8'; do raxml-ng --bootstrap --msa rbcl.raxml.rba --bs-trees 15 --prefix CB$i -seed $RANDOM --threads 2 & done wait Now, we can simply concatenate all replicate tree files (*.raxml.bootstraps) and then proceed with the bootstrap convergence check as well as branch support calculation as usual (see Section 4):

$ cat CB*.raxml.bootstraps > allbootstraps $ raxml-ng --bsconverge --bs-trees allbootstraps --prefix CS --seed 2 -threads 1

$ raxml-ng --support --tree best.tre --bs-trees allbootstraps --prefix CS --threads 1

There are two things to keep in mind when conducting this type of coarse-grained parallelization. First, memory consumption will grow proportionally to the number of RAxML-NG instances running in parallel. That is, in our case, an estimate given by the --parse command should be multiplied by 8. Second, correct thread allocation (one thread per CPU core) is crucial for achieving the optimal performance. Hence, we recommend to check thread allocation, for instance, by running htop after your initial script submission.

NOTE: RAxML-NG v. 1.0 and later provides "built-in" coarse-grained parallelization, please consult online documentation for details: https://github.com/amkozlov/raxml-ng/ wiki/Parallelization.

  $ ls T15.* T15.raxml.bestModel T15.raxml.bestTree T15.raxml.bootstraps T15.raxml.log T15.raxml.mlTrees T15.raxml.rba T15.raxml.startTree T15.raxml.supportFBP

  mean? In partitioned analyses, there are three common ways to estimate branch lengths (sometimes called branch linkage models):

Figure 1

 1 Figure1Typical scaling of RAxML-NG on a small alignment (here: 436 taxa and 1, 371 DNA sites). Parallel efficiency (right) shows percentage of ideal (linear) speedup is defined as follows: P arallel_ef f iciency = Speedup/N umber_of _threads × 100%.

[

  00:00:00] Reading alignment from file: rbcl.phy [00:00:00] Loaded alignment with 436 taxa and 1371 sites Alignment comprises 1 partitions and 1001 patterns NOTE: Binary MSA file created: rbcl.raxml.rba * Estimated memory requirements : 54 MB * Recommended number of threads / MPI processes: 4

  Unsurprisingly, models with more free parameters yield better likelihood scores. However, this does not mean that we should always use the most parameter-rich model. Instead, it is common to use information theoretical criteria such as AIC (Akaike Information Criterion), AICc (corrected AIC; AIC with a correction for small sample sizes) or BIC (Bayesian Information Criterion) to penalize parameter-rich models and thereby avoid overfitting the data. The three aforementioned criteria are implemented in RAxML-NG:
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		$ grep logLikelihood E*.raxml.log
		E1.raxml.log:[00:00:00] Tree #1, final logLikelihood: -6424.203056 <-JC
		E2.raxml.log:[00:00:00] Tree #1, final logLikelihood: -6272.469063 <-JC+
		GAMMA
		E3.raxml.log:[00:00:00] Tree #1, final logLikelihood: -5934.158958 <-GTR
		E4.raxml.log:[00:00:00] Tree #1, final logLikelihood: -5719.408956 <-GTR
		+ GAMMA + empirical base freqs
		E5.raxml.log:[00:00:00] Tree #1, final logLikelihood: -5709.002997 <-GTR
		+ GAMMA + estimated base freqs
		E6.raxml.log:[00:00:01] Tree #1, final logLikelihood: -5706.008654 <-GTR
		+ FreeRate + estimated base freqs
		$ grep "AIC score" E*.raxml.log
		E1.raxml.log:AIC score: 12890.406112 / AICc score: 12891.460907 / BIC
		score: 12991.209684 <-JC
		E2.raxml.log:AIC score: 12588.938126 / AICc score: 12590.094698 / BIC
		score: 12694.541868 <-JC+G
		E3.raxml.log:AIC score: 11926.317917 / AICc score: 11928.322525 / BIC
		score: 12065.522849 <-GTR
		E4.raxml.log:AIC score: 11498.817912 / AICc score: 11500.963241 / BIC
		score: 11642.823014 <-GTR+G+FC
		E5.raxml.log:AIC score: 11478.005995 / AICc score: 11480.151323 / BIC
		score: 11622.011097 <-GTR+G+FO
		E6.raxml.log:AIC score: 11482.017308 / AICc score: 11484.940742 / BIC
		score: 11650.023260 <-GTR+R4+FO

  Hence, we will once again use AIC/BIC criteria to assess the model complexity versus likelihood score trade-off (the lower the better):

	P2.raxml.log:AIC score: 11451.737617 / AICc score: 11458.260694 / BIC
	score: 11701.346461
	grep logLikelihood {E5,P1,P2}.raxml.log
	E5.raxml.log:[00:00:00] Tree #1, final logLikelihood: -5709.002997
	P1.raxml.log:[00:00:00] Tree #1, final logLikelihood: -5673.027260
	P2.raxml.log:[00:00:00] Tree #1, final logLikelihood: -5673.868809
	So P1 has the best likelihood score, closely followed by P2. But both P1 and P2 also
	introduce more free parameters compared to GTR+G+FO:
	$ grep "Free parameters" {E5,P1,P2}.raxml.log
	E5.raxml.log:Free parameters (model + branch lengths): 30
	P1.raxml.log:Free parameters (model + branch lengths): 50
	P2.raxml.log:Free parameters (model + branch lengths): 52
	grep "AIC score" {E5,P1,P2}.raxml.log
	E5.raxml.log:AIC score: 11478.005995 / AICc score: 11480.151323 / BIC
	score: 11622.011097
	P1.raxml.log:AIC score: 11446.054521 / AICc score: 11452.075772 / BIC
	score: 11686.063024

Determining the optimal number of threads

  One of the most frequent question we get from RAxML users is: How many threads should I use?. As always, simple questions are the toughest ones. You might as well ask: How fast should I drive?. In both cases, the answer would be: It depends. It depends on where you drive (dataset), your vehicle (system), and your priorities (time versus money/energy). In RAxML-NG, we have implemented some warning signs and radar speed guns, for your own safety. As in real life, you are free to ignore them (with the --force option), which can result in two things: (1) earlier arrival, or (2) lost time and money. Fortunately, unlike on the road, you can experiment with RAxML-NG safely, and we encourage you to do so.

	T3.raxml.log:Elapsed time: 7.802 seconds <-AVX (autodetect)
	V1.raxml.log:Elapsed time: 15.394 seconds <-SSE
	V2.raxml.log:Elapsed time: 21.663 seconds <-scalar
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  grep "Final LogLikelihood" CT*.raxml.log | sort -k 3 CT7.raxml.log:Final LogLikelihood: -30621.004116 CT6.raxml.log:Final LogLikelihood: -30621.537107 CT2.raxml.log:Final LogLikelihood: -30621.699234 CT3.raxml.log:Final LogLikelihood: -30622.534482 CT1.raxml.log:Final LogLikelihood: -30622.783250 CT8.raxml.log:Final LogLikelihood: -30623.963471 CT5.raxml.log:Final LogLikelihood: -30623.020351 CT4.raxml.log:Final LogLikelihood: -30623.378857
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Summary of changes compared to RAxML 8.x

RAxML-NG offers multiple improvements and extensions compared to standard RAxML 8.x. On the other hand, not all features of standard RAxML are implemented as of RAxML-NG v0.8.0b (most notably, rapid bootstrapping and CAT/PSR model [Stamatakis 2006a]). Furthermore, several important defaults have been changed to be in line with best practices: for instance, RAxML-NG is using multiple starting trees and scaled branch lengths by default.

To give a better overview, we provide a side-by-side comparison of standard RAxML 8.x and RAxML-NG 0.8.0b in Table 1.