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Abstract High tide combined with high meteorologi-
cal surge levels and discharges in the Garonne and Dor-
dogne rivers in the Gironde estuary (south-west France),
may lead to high water levels and flooding near the
Blayais nuclear power plant and the city of Bordeaux,
with significant economic and social impacts. A global
sensitivity analysis (GSA) was performed with a Telemac2D
numerical model currently used for operational water
level forecasts. The major sources of uncertainties were
identified by computing the Sobol’ indices for uncer-
tain inputs with an analysis of variance (ANOVA) ap-
proach for a 7-day storm event in 2003. The generation
of the GSA ensemble of simulations consists of sampling
scalar and field random variables: constant and uniform
friction coefficients, as well as time-varying hydrologi-
cal and maritime forcings. The temporal perturbation
of time-dependent upstream hydrological and down-
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stream maritime forcings is assumed to be represented
by a Gaussian Process characterized by a correlation
time scale calculated from observations. A Karhunen-
Loève decomposition was then applied to retain a lim-
ited number of eigenmodes. The GSA is performed for
20 random variables using GENCI HPC computational
resources for task parallelism and domain decomposi-
tion. This requires the use of 250 000 runs for an elapsed
simulation time of 101 days on 32768 cores. The per-
formance of the ensemble was assessed with a rank di-
agram and a reliability curve in comparison to a set of
measured water levels at 12 observing stations along
the estuary. It was shown that, for this event, the mar-
itime boundary conditions and the Strickler coefficients
have a predominant role along the length of the estu-
ary with an influence driven by the tidal cycle. In the
upstream fluvial areas, the friction coefficient and hy-
drological inputs are predominant.

Keywords uncertainty quantification · global
sensitivity analysis · time-dependent forcings ·
Karhunen-Loève decomposition · Sobol’ indices ·
Gironde estuary
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1 Introduction

Environmental, economical and security issues are at
stake in the Gironde estuary catchment located in South-
West France near the city of Bordeaux and the nuclear
power plant of Blayais. The Dordogne and Garonne
rivers meet at Bec d’Ambès and the estuary reaches the
Atlantic Ocean coastline about 75 km further down-
stream. The estuary is subject to maritime influences
and the combination of strong tidal amplitudes with
high fluvial inflows can lead to strong flood events [1].
Governmental agencies are responsible for the safety of
people and property. They rely on Decision Support
Systems to take preventive measures to alert commu-
nities and to coordinate crisis management. Since the
most severe flood event on record in the Gironde es-
tuary in 1770, infrastructures were built to limit the
consequences of flooding, yet these failed to protect
fully the area during strong events such as Lothar and
Martin in 1999 and Xynthia in 2010. The overflowing
of dikes protecting the Blayais nuclear power plant in
1999 demonstrated the strong need for water level fore-
casts in the estuary. In France, the SCHAPI (Service
Central d’Hydrométéorologie et d’Appui à la Prévision
des Inondations) and Flood Forecast Services (FFS)
are in charge of monitoring and forecasting water levels
and discharge over 22 000 km of rivers. They produce
a twice-daily vigilance colored-risk map available on-
line for governmental authorities and the general pub-
lic (http://www.vigicrues.gouv.fr). To create these risk
maps, they rely on numerical models and in-situ mea-
surements [2].
Hydrodynamic numerical software packages based on
the Shallow-Water Equations (SWE) are commonly used
tools to aid in the management and protection of urban
infrastructures located near rivers and coasts. They are
also used for operational flood forecasting. Yet, these
numerical codes remain imperfect as uncertainties in
the models and in the inputs (model parameters, bound-
ary conditions, geometry, etc.) propagate into uncer-
tainties in the outputs (water levels, discharge). Quan-
tifying physical uncertainties goes beyond the limits
of deterministic forecasting and represents a significant
challenge. The FFS Garonne-Adour-Dordogne (GAD)
is in charge of the Gironde estuary area. In order to
meet operational expectations, especially for extreme
events, FFS GAD moved from a statistical model based
on climatological data to a numerical model that solves
the SWE based on the hydraulic software Telemac2D
[3]. The Gironde estuary model was limited to the non-
overflowing area, excluding the floodplains owing to
computational constraints in an operational context.
Despite this limitation, it resulted in improving water

level forecast skill and increasing alert lead-times. While
this model provides good results for past events in re-
analysis mode, with errors of less than 10 cm for non-
overflowing scenarios, simulating high tides periods is
more challenging and in overflowing situations, errors of
the order of 30 cm remain near Bordeaux. The ‘Gironde
project’ [4] recommended areas for improvement includ-
ing updating the model state and parameters with data
assimilation algorithms. To do so, the major sources of
uncertainty amongst the numerous uncertain numerical
data, input data and forcing data should be identified,
quantified and reduced.
This paper presents a Sensitivity Analysis (SA) study in
the context of flood forecasting in the Gironde estuary.
It aims at identifying and classifying the major sources
of uncertainties that limit the predictive capability of
water levels and discharge from the fluvial upstream
boundaries to the downstream Atlantic coastline, focus-
ing on locations of interest where safety and economical
assets are at stake [5].
A wide range of SA methods are proposed in the lit-
erature [6] to estimate the contribution of uncertain
model parameters and inputs to the uncertainty in the
model Quantities of Interest (QoI). On the one hand,
local SA approaches provide the sensitivity of the model
outputs with respect to the model inputs around a refer-
ence value using the tangent linear of the model (when
available) or finite differences techniques. On the other
hand, Global SA approaches (GSA) provide the con-
tribution to the QoI’s uncertainty from the uncertain
input parameter when varying over the whole input pa-
rameter space. The ANOVA (ANalysis Of VAriance)
method consists in estimating the QoI variance decom-
position in terms of elementary variances associated
with the different parameters and their interactions [7].
This decomposition is obtained from a Proper Orthog-
onal Decomposition of the uncertain QoI over the prob-
abilized parameter space [8]. Sensitivity indices, called
Sobol’ indices, represent the contribution of each pa-
rameter and their interactions to the model output vari-
ance. The ANOVA approach is suited even for non lin-
ear and non monotonic models ([9], [10]) provided that
the uncertain parameters are uncorrelated and indepen-
dent [11].
GSA requires the integration of a large number of sim-
ulations with a direct model. In spite of increasing High
Performance Computing (HPC) resources, the ensem-
ble’s computational cost is still incompatible with op-
erational or industrial applications. Monte Carlo ran-
dom sampling techniques are often used as they are
generic, robust, and easily portable on massively paral-
lel architectures. Yet, they remain computationally ex-
pensive due to their slow convergence rate, which scales
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as the inverse of the square root of the number of mem-
bers [12]. Using a Sobol’ sequence space-filling strategy
is prefered to compute first and total Sobol’ sensitiv-
ity indices [10] and to assess the contribution of each
uncertain variable and their interactions to the total
variability of the system. When uncertainties are as-
sociated with field inputs, for instance discretized over
time and/or space, the cost of Monte Carlo-based GSA
becomes untrackable and advanced solutions should be
adopted. One approach consists in replacing the direct
solver with a meta (or surrogate) model built from a
limited number of integrations of the direct solver ([13],
[14], [15], [16], [17]). The quality of the surrogate de-
pends on the complexity of the physics, for instance the
non-linearity between inputs and outputs of the model,
the size of the learning sample, and the surrogate strat-
egy. Various metamodeling algorithms are proposed in
the literature. [18] gives an overview of metamodel-
ing approaches adapted to uncertainty propagation and
GSA. This approach is beyond the scope of the present
study. When the dimension of the uncertain space is
large, the GSA is carried out in a reduced space with
a Proper Orthogonal Decomposition [19]. The Proper
Orthogonal Decomposition (also refereed to as Princi-
pal Component Analysis or Karhunen-Loève (KL) de-
composition) is a procedure for extracting a basis of a
modal decomposition from an ensemble of signals [20].
Its power lies in the mathematical properties that sug-
gest that it is the appropriate basis, as it is a linear
procedure and makes no assumptions on the linearity of
the problem to which it applies. The KL decomposition
minimizes in the mean squared sense the representation
error.
GSA is often used to classify the sources of uncertainties
for large scale hydrology as well as for hydrodynamics
at the scale of French rivers, assuming the uncertainties
originate from scalar inputs. A multivariate GSA based
on the ANOVA technique was applied in the Amazon
River basin by [21] to highlight the major sources of
errors in the river water level and discharge simulated
by the river-routing scheme Total Runoff Integrating
Pathways (TRIP). By assuming a particular input un-
certainty distribution, it was shown that geomorpholog-
ical parameters explain most of the water level variance
with purely additive contributions from the river Man-
ning coefficients, riverbed slope and river width. [22]
presented a Sobol’ SA for flow simulation by a SWAT
(Soil And Water Assessment Tool) model of river, for
a complex environmental system controlled by a large
number of parameters (about 30). It was shown that
even with a limited number of direct solver evaluations,
the GSA identified the most significant parameters and
improved the understanding of the model behavior. [23]

presents an overview of SA studies for the Garonne river
in steady flow conditions with both local SA and GSA.
The details for the local SA are given in [24]. The 1.5D
hydraulic model SIC (Irstea) is used within a varia-
tional framework implying its tangent linear and ad-
joint codes to acknowledge the impact of the geometry,
friction coefficient and upstream discharge on the wa-
ter level and discharge discretized along the 50-km river
reach. The GSA was carried out with both 1D and 2D
solvers Mascaret-Telemac (Electricité de France) with
a Monte Carlo approach as well as with a polynomial
surrogate model. When uncertainties stem from field
data, such as meteorological (wind, pressure, temper-
ature) fields or river discharges for example, the cost
of Monte Carlo-based GSA drastically increases, and
the computation of the surrogate becomes challenging.
[25] presents solutions to perform GSA with field in-
puts and outputs to the numerical code NOE which
is a spatial model for cost-benefit analysis of flood risk
management plans and which is used to assess, through
simplified equations, the economic impact of flood risk
[26]. [27] uses empirical orthogonal functions and an-
alyzes the combined impact of uncertainties in initial
conditions and wind forcing fields in ocean general cir-
culation models using polynomial chaos (PC) expan-
sions.
In the context of the Gironde estuary study, the uncer-
tainties depend on the time-varying hydrological up-
stream forcing and on maritime boundary conditions,
the space and time-varying bathymetry, and wind and
pressure forcing, the space-varying bottom friction co-
efficients (4 scalars defined by uniform areas), and the
wind drag coefficient (scalar). Only uncertainties that
relate to friction and wind drag coefficients, hydrolog-
ical and maritime forcing are taken into account here.
The SA with respect to surface forcing is beyond the
scope of the present study. A KL expansion is used to
reduce the size of the time-dependent uncertain inputs,
assuming that each perturbation of the observed forc-
ing is a gaussian process characterized by a correlation
function and a correlation time scale. The originality of
the present study is that a GSA is performed on un-
steady flows simulations using the Telemac2D solver,
while accounting for the maritime influence of the Gironde
estuary. Beyond the central objective of the GSA, the
scope of the study is to build a reference case which will
enable future work with data assimilation techniques,
but also on metamodels or multi-fidelity simulations
applied to the Gironde estuary site. Moreover, the hy-
drodynamics of the Gironde estuary results from vary-
ing power balancing between the space- and/or time-
dependent friction, geometry and both upstream and
downstream boundary conditions, which complicate the
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immediate and intuitive interpretation of the complex
hydrodynamics of the estuary. Quantifying uncertain-
ties both in space and time, and identifying the most
influential variables can thus help to understand the
dominant physical processes in the estuary.
The structure of the paper is as follows. Section 2 presents
the materials and methods for the GSA. Section 2.1
presents the Gironde estuary, SWE and the hydrody-
namic model implemented with Telemac2D. Section 2.2
describes the computation of sensitivity indices. The
ensemble generation and sensitivity analysis with field
inputs techniques are described in Sect. 2.3. Details on
the HPC resources and performance of the ensemble are
also detailed. Statistics drawn from the ensemble are
presented in Sect. 3: the water level probability den-
sity function is shown at specific locations along the
estuary and the Sobol’ indices are plotted as a func-
tion of time and space. The focuses on the sensitivity to
the maritime boundary forcing eigenmodes, conclusions
and perspectives for the study are finally presented.

2 Framework

2.1 Hydrodynamic model of the Gironde estuary

2.1.1 Presentation of the Gironde estuary

The Gironde estuary is the largest macrotidal estuary
in France and Western Europe. The Gironde estuary
extends from the Bay of Biscay approximately 170 km
inland and covers a surface of 635 km2. It is located in
southwest France. Created from the confluence of two
rivers (Garonne and Dordogne rivers), it extends 75 km
to reach the mouth of the estuary at the Atlantic coast-
line (Fig. 1). On average, it is oriented from south-east
to north-west in a valley, and its width ranges from 1
km near Bordeaux to 15 km at the coast. The Gironde
estuary can be divided [28] into three subdomains: the
upstream river area, the central estuary area and the
downstream offshore area [29]. The estuary can be clas-
sified as macrotidal, hypersynchronous, and with an
asymmetric tide (4 h for the flood and 8 h 25 min for
the ebb). The tide in the Bay of Biscay is semidiur-
nal, with a period of 12 h 25 min and is dominated by
the principal semidiurnal lunar (M2) component. The
open ocean induces a strong tidal forcing with a tidal
amplitude near the mouth of the estuary ranging from
2.2 to 5.4 m over the spring-neap cycle. The Garonne
(resp. Dordogne) river discharge typically ranges from
50 (resp. 20) up to 2 000 (resp. 1 000) m3.s-1. During
flood events, the Garonne flow rate occasionally exceeds
5 000 m3.s-1. The economic importance of the Gironde
estuary is evidenced by the presence of large cities and

ports, including the city of Bordeaux and the Harbor of
Bordeaux, as well as by the presence of various indus-
tries, such as the Blayais nuclear power plant, fisheries
and tourism activities. The flooding risk has been a ma-
jor concern for authorities along the Gironde estuary
[1] for a long time, as shown by historical documents
dating from the XIIIth century. The most damaging
flood occurred in April 1770, when about 24 000 km2

were covered by water along the Garonne river and the
Gironde estuary, causing about 4,669 million euros in
damage exclusively in the city of Bordeaux (35 million
euros using purchasing power parity for primary goods).
From this point, flood protection structures were built
to limit the consequences of flooding. However, this did
not prevent strong floods in 1835, 1855 and 1856. In
1930, floods caused the destruction of 1 000 houses and
more than 300 casualties. In recent decades, three no-
table events were observed: the December 1981 event,
which was caused by strong river discharges during high
tides, and the Lothar and Martin storms in 1999 and
Xynthia in 2010 [30].

2.1.2 Shallow water equations in Telemac2D

The SWE are commonly used in environmental hydro-
dynamics modelling. They are derived from the Navier-
Stokes equations and express mass and momentum con-
servation averaged in the vertical dimension. The non-
conservative form of the equations are written in terms
of the water depth (h [m]) and the horizontal compo-
nents of velocity (u and v [m.s-1]).

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0 (1)
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Fy =− g

Ks
2

v
√
u2 + v2

h
4
3

− 1

ρw

∂Patm

∂y

+
1

h

ρair
ρw

Cd Uw,y

√
U2
w,x + U2

w,y

(5)

and ρair/ρw [kg.m-3] are the air/water density, Patm

[Pa] is the atmospheric pressure, Uw,x and Uw,y [m.s-1]
are the horizontal wind velocity components, Cd [-] is
the wind drag coefficient that relates the free surface
wind to the shear stress, Ks [m 1

3 .s-1] is the river bed and
floodplain friction coefficient, using the Strickler formu-
lation [31]. Fx and Fy [m.s-2] are the horizontal compo-
nents of external forces (friction, wind and atmospheric
forces), H [m NGF69] is the water level (h = H − zf
if zf [m NGF69] is the bottom level) and νe [m2.s-1] is
the water diffusion coefficient. div and −−→

grad are respec-
tively the divergence and gradient operators. To solve
the system of equations Eq. (1) to Eq. (3), initial condi-
tions h(x, y, t = 0) = h0(x, y); u(x, y, t = 0) = u0(x, y);
v(x, y, t = 0) = v0(x, y) are provided. Boundary condi-
tions (BC) both at the coastline (slip and impermeabil-
ity conditions) and at the upstream and downstream
boundaries (h(xBC , yBC , t) = hBC(t)) are also given.
In the present study, the SWE are solved with the par-
allel numerical solver Telemac2D (www.opentelemac.org)
with an explicit first-order time integration scheme, a fi-
nite element scheme and an iterative conjugate gradient
method [3]. In the following, we will take into account
parametric uncertainties, that are due to the stochastic
nature of the atmosphere-surface system. These include
the forcing fields and epistemic uncertainties that come
from a lack of knowledge concerning the physical pro-
cesses of the hydrodynamic system, leading to a simpli-
fied parametrization, such as friction or turbulence, but
also the imperfect description of the system, such as the
geometry of the river. These uncertainties can be repre-
sented by independent scalars (friction coefficients) or
time and/or space correlated discretized fields (fluvial,
atmospheric and maritime forcings).

2.1.3 The Gironde estuary numerical model

A hydrodynamic numerical model of the Gironde estu-
ary (Fig. 1), based on Telemac2D and on a bathymetry
/ topography field (Fig. 2), is used operationally to com-
pute the water depth and velocity in the estuary and
along the Garonne and Dordogne rivers. The maritime
boundary is located in the Gascogne Gulf, 35 km away
from le Verdon. The upstream boundaries are located
at La Réole on the Garonne River and at Pessac on the
Dordogne River. It should be noted that inflows from
the Isle and Dronne rivers are artificially injected at

Pessac [4] and that floodplains are not taken into ac-
count. The operational numerical model used by FFS
GAD covers about 125 km from east to west, features
12838 finite elements and is composed of 7351 nodes
(coarse mesh). Refined meshes (27546 nodes, 106450
nodes and 418314 nodes) were built for a convergence
study. It was shown that mesh convergence is obtained
for water levels (using a 5 cm error threshold) in the en-
tire estuary except in the fluvial areas for meshes with
more than 106450 nodes. The 418314 node fine mesh
was thus used in the following for SA. Hydrological up-
stream forcings for the Dordogne and Garonne rivers
are provided by the DREAL (Direction Régionale de
l’Environnement, de l’Aménagement des Territoires et
du Logement) Nouvelle Aquitaine at a 1-hour time step.
Surface wind velocity and pressure fields from the re-
gional meteorological model ALADIN [32] are provided
by Meteo-France at a 3-hour time step. Water levels at
the maritime boundary are the sum of the predicted
astronomical tide and surge levels; these data are also
provided in real-time by Meteo-France every 10 to 15
min. The friction coefficient is uniformly defined over
4 areas as shown in Fig. 1. The model calibration was
achieved during the non-flooding 2003 event to optimize
either the water level Root Mean Square Error (RMSE,
Eq. (6)) or the Nash criteria at high tide (NashHT,
Eq. (7)) computed between simulated and observed wa-
ter levels available at the 12 stations among the 26 sta-
tions of interest shown with red stars in Fig. 2. Two sets
of friction coefficients were obtained from the calibra-
tion and are presented in Table 1. The resulting RMSE
and NashHT scores for the 2003 event are presented in
Table 2 along with the evaluation scores for the 1999
flooding event. The NashHT (Eq. (7)) is evaluated at
high tide and the RMSE (Eq. (6)) (resp. RMSEHT) is
evaluated by summing over the entire flood event (resp.
at high tide):

RMSE =

√√√√ 1

n

n∑
i=1

(Hi − Ĥi)2 (6)

NashHT = 1−
∑n

i=1(Hi − Ĥi)
2∑n

i=1(Ĥi −H)2
, (7)

where n is the time index, Hi and Ĥi are the simulated
and observed water levels and H the time-averaged ob-
served water levels. As expected, the RMSE and NashHT
scores are significantly better for the 2003 non-flooding
calibration event than for the 1999 flooding evalua-
tion event. The water level RMSE reaches 16 cm at
Le Verdon and 36 cm at Laména in 2003 and 2.0 m
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at Le Verdon and 1.49 m at Laména for the overflow-
ing event in 1999. These errors remain higher than the
target 10 cm precision expected by FFS GAD. These re-
sults are computed over past events in reanalysis mode
using perfect meteorological and hydrological forcing.
Additional errors due to imperfect forecasting are ex-
pected in operational mode, especially with increasing
lead time [4]. The scores obtained for calibration and
evaluation events, especially in flooding conditions, ad-
vocate further improvement of the Gironde model with
the assimilation of observed water levels.

The wind drag coefficient formulates the wind shear
stress at the free surface from the wind velocity [33].
A uniform and constant value was chosen here (Cd =

2.14 10−3) consistently with the calibration of the surge
level numerical model for the Atlantic Ocean, English
Channel and North Sea [34].

2.2 Computation of sensitivity indices

2.2.1 Variance decomposition and Sobol’ indices

Sobol’ indices [35] measure the contributions of the dif-
ferent independent inputs X1, X2, . . . , Xd and their in-
teractions in the variance V(Y) of the output Y = f(X)

with X = (X1, X2, . . . , Xd), E((f(X))2) < ∞ and f

the model. Si =
Vi

V (Y ) is the first-order Sobol’ index of
Xi, representing the normalized elementary contribu-
tion of Xi to V (Y ). Si,j =

Vi,j

V (Y ) is the second-order
Sobol’ index of Xi and Xj , representing the normalized
contribution of the interaction between Xi and Xj to
V (Y ), and so on. As described in Appendix A, using
Eq. (8):

1 =
∑
i⊆Id

Si +
∑

{i,j}⊆I2
d

j>i

Si,j + . . .+ S1,2,...,d =
∑
u⊆Id

Su (8)

where: Id = {1, . . . , d} is the set of input indices, the to-
tal Sobol’ index STi

gathering all contributions related
to Xi is then defined as:

STi = Si +
∑
j∈Id
j>i

Si,j + . . .+ S1,2,...,d =
∑
u⊆Id
u∋i

Su (9)

It should be noted that
∑

i Si = 1 if there is no
interaction between the input parameters.

2.2.2 Implementation of Sobol’ indices computation

The main steps for the stochastic estimation of the
Sobol’ indices of the different independent inputs X1, X2,

. . . , Xd with X = (X1, X2, . . . , Xd) are described in Ap-
pendix B according to [10], which the reader can refer

to for more details.
It should be noted that the calculation of the first and
total Sobol’ indices for an ensemble of size N requires
the integration of two independent samples. Given d un-
certain variables and Ne perturbed members for each
variable, the total number of simulations is thus N =

Ne(d+ 2).
If (Xi)i=k,,k+m correspond to the m uncertain modes
of a field input, the contribution of each mode can be
estimated separately with the methodology described
in Appendix B, but also the whole contribution of the
field input. If km denotes the number of uncertain field
variables whose contribution is estimated in addition to
the contribution of each mode, then the total number
of simulations is N = Ne(d+ 2 + km).

2.3 Ensemble generation with field inputs

2.3.1 Uncertain space for SA in the Gironde estuary

The GSA study was carried for the 7-day February 2003
event with a tide coefficient in the range [43 ; 90], Dor-
dogne upstream discharge (resp. Garonne) in the range
[600 ; 2200] m3.s-1 (resp. [1200 ; 5900] m3.s-1).
The present study has d = 8 uncertain sources: the 4
zone-distributed scalar friction coefficients (Ks1, Ks2,
Ks3, Ks4), the scalar wind drag coefficient Cd, and the
time-dependent boundary conditions at the hydrolog-
ical limits (QDOR and QGAR for the Dordogne and
Garonne rivers respectively) and at the maritime limit
(CLMAR). Additional sources of uncertainty, such as
space- and time-varying meteorological forcing or bathymetry,
exist and have not been considered in the study. The
uncertain input vector is denoted by X = (Xi)i∈I8

where X1 = Ks1, X2 = Ks2, X3 = Ks3, X4 = Ks4,
X5 = Cd, X6 = QDOR, X7 = QGAR and X8 =

CLMAR. The QoI is the water level defined over the
simulation domain at a given time, with 26 stations
that are of particular interest (see Fig. 2). The water
level at a given location is a scalar denoted by Y in the
following.

The wind drag coefficient and friction coefficients
are supposed to follow uniform distributions with ranges
described in Table 1. [33] presents a review of paramet-
ric formulations of the wind drag coefficient based on
[36], [37], [38]. These parametric formulations were used
for the Gironde case using climatological wind intensi-
ties (Climate Forecast System Reanalysis from NOAA)
to define the range for the Cd uniform distribution.
The ranges of the friction coefficients are chosen so as
to include the calibration values for the 2003 event us-
ing both the NashHT and RMSE criteria. The interval
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corresponds to the commonly accepted uncertainty on
friction for engineering studies.

The time-dependent hydrological forcing is assumed
to be perturbed by an additive centered Gaussian pro-
cess q(t). The covariance of q(t) is defined by a squared
exponential kernel κ(t, t′) = σ2 exp(−ℓ−2(t−t′)2), where
ℓ is the correlation time scale estimated from obser-
vations over the 1981-2016 period, and the standard
deviation σ is the amplitude of the perturbation. The
time dependent maritime forcing is also assumed to be
perturbed by an additive Gaussian Process h(t) with
a gaussian covariance function. A truncated form qp(t)

(resp. hp(t)) of q(t) (resp. h(t)) is formulated with a KL
decomposition [20] of q(t) (resp. h(t)).

Numerically, as explained in Appendix C, the eigen-
function problem defined by the Fredholm equation is
approximated by the eigenvector problem defined over
the discretized time series {t1, t2, . . . , tN}:

KΦi = λiΦi (10)

where Φi = (ϕi(t1) . . . ϕi(tN ))T , K = (κ(ti, tj))1≤i,j≤p

and (λi, ϕi) are the ith eigenvalue and eigenfunction of
κ, the solution of the Fredholm equation [39].
The solution (λi, Φi) of Eq. (10) is obtained from a sin-
gular value decomposition (SVD) and contributes to
the truncated expansion of q(t) (and h(t)) discretized
over the discretized time series:

qp = (qp(t1), . . . , qp(tN ))
T
=

p∑
i=1

√
λiΦiϵi. (11)

where ϵi are independent standard Gaussian variables.
Last but not least, based on the property

∑p
i=1 λi = σ2,

the degree of truncation p is chosen such that the frac-
tion of the total variance

∑p
i=1 λiσ

−2 exceeds a thresh-
old the closest to one.

Sampling the perturbation q(t) (resp. h(t)) associ-
ated with the time-dependent hydrological (resp. mar-
itime) forcing over the discretized time series {t1, t2, . . . , tN}
sums up sampling the random vector qp (resp. hp), as
sampling p independent standard Gaussian variables.
Fig. 3-a and Fig. 3-b present a set of 7 perturbations of
the boundary condition q(t) at the Garonne upstream
location and h(t) at the maritime boundary.

The boundary condition resulting from the afore-
mentioned perturbed signal is displayed in Fig. 3-c for
the Garonne and in Fig. 3-d for the maritime bound-
ary. The autocorrelation time scale was estimated for
about 10 discharge signals during major flood events
on the Garonne and Dordogne rivers. The correlation
time scales ℓQGAR and ℓQDOR are thus set to 3 days for
the 2003 event and the correlation time scale ℓCLMAR
is set to 6 hours (approximately half a tidal cycle) for

the maritime boundary. The amplitudes σQDOR and
σQGAR of the perturbations of the upstream discharges
are set proportional (20 %) to the observed discharges
as the uncertainties of the rating curves used to trans-
late the water levels into discharges are larger for high
flow time series. The amplitude σCLMAR of the mar-
itime boundary condition perturbation is set to 50 cm,
representing the sum of the uncertainties in surge lev-
els and in the predicted offshore tide, at the maritime
boundary of the numerical model. The KL decompo-
sitions of the hydrological and maritime forcings are
respectively truncated to pQDOR = pQGAR = 4 and
pCLMAR = 7 modes, retaining respectively 90 % and
45 % of the Gaussian process variability. This value,
associated to ℓCLMAR, will be discussed in Sect. 3.4.
Moreover, the KL modes will be either aggregated or
treated separately in the following for Sobol’ indices
formulation. The GSA is thus carried out in an un-
certain space described by 20 variables: Ks1, Ks2, Ks3,
Ks4, Cd, 4 modes for each hydrological boundary condi-
tion (QGAR and QDOR) and 7 modes for the maritime
boundary condition CLMAR.

2.3.2 High Performance Computing resources

The GSA for the 2003 event was performed using both
coarse and fine meshes. Due to computational constraints,
it was only carried out over one tidal cycle with the fine
mesh. Yet the conclusions drawn for the GSA over this
period with the fine mesh are similar to those drawn for
the coarse mesh over the 7-day event. As a consequence,
in the following, illustrations for the GSA are given for
the coarse mesh model. Computational resources for
the GSA are given in Table 3. For the fine mesh, the
convergence of the GSA results was investigated with
increasing number of members Ne ranging from 100
to 10000. The Sobol’ indices reach convergence for all
variables over the simulation time period (not shown)
from Ne = 2000. The simulations were performed on
the HPC resources from GENCI-IDRIS (grant 2017-
A0030110292).
For coarse and fine meshes (Table 3 - Col. 1), the sim-
ulated period is indicated in Table 3 - Col. 2. For each
HPC architecture (Table 3 - Col. 9), a scalability study
was performed for a single run with domain decomposi-
tion: the optimal number of cores is shown in Table 3 -
Col. 3 along with the elapsed time in Table 3 -Col. 4.
The GSA involves both domain decomposition and task
parallelism. The total number of available cores for the
GSA is shown in Table 3 - Col. 5. As Sobol’ indices are
computed for field inputs considering the contribution
of each mode only and also the whole contribution of
the uncertain variable, the ensemble size Ne and the
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total number of simulations N are given in Table 3 -
Col. 6 and Col. 7 respectively. Finally, the elapsed time
for the GSA is given in Table 3 - Col. 8.

3 GSA results

The GSA study was carried for the 7-day February 2003
event with a tide coefficient in the range [43 ; 90], Dor-
dogne (resp. Garonne) upstream discharge in the range
of [600 ; 2200] m3.s-1 (resp. [1200 ; 5900] m3.s-1).

3.1 Performance of the ensemble

3.1.1 Description of the criteria

The performance of the ensemble forecasts is commonly
assessed with criteria such as consistency and reliabil-
ity [40]. The former measures the average spread of an
ensemble compared to observations, whereas the latter
generally reflects the accuracy of a forecast model.
The consistency criterion characterizes the coherence
between the distribution of the ensemble members and
a set of observations through the use of the rank his-
togram [41] for a given simulation time or over a simula-
tion period. The ensemble values are ranked in classes,
and the occurrence of the observed value within these
classes is computed and represented with a rank his-
togram. Fig. 4 displays the rank histogram at stations
Le Verdon, Richard and Bec d’Ambès for all time steps
during the 2003 event. It is expected to be flat when the
ensemble members and the observations follow similar
distributions, U-shaped when the ensemble is under-
dispersive, and bump-shaped when the ensemble is over-
dispersive. Here, the occurrence is normalized by the
ensemble size and is displayed in Fig. 5 with a blue-red
color bar along the curvilinear abscissa (x-axis) of 12
observing stations as a function of time (y-axis). This
time and space distributed representation allows the de-
termination of when and where the ensemble is consis-
tent with the observations (ranks uniformly distributed
from 0.1 to 0.9) or not (extreme rank values equal to
0 when the ensemble over estimates water levels, and
rank values equal to 1 when the ensemble under esti-
mates water levels).
The reliability criterion evaluates the coherence between
the forecasted and the observed probabilities of an event
[42]. An event is defined as Z >= ZT , where Z is the
random value simulated in the ensemble and ZT is the
threshold value. The reliability plot represents the ob-
servation probability for the events with respect to the
simulated probability. The ensemble is reliable if the re-
lation follows the first bisector line; it is under or over

dispersive otherwise. The reliability criterion for 4 ob-
serving stations (Le Verdon, Richard, Bec d’Ambès and
La Réole) is represented in Fig. 6. Over each curve,
the observation quantiles (q10 to q90) are represented
with circles (q50 represented by a larger symbol). Reli-
ability curves under (resp. above) the perfect reliability
diagonal curve reveal an over-predictive (resp. under-
predictive) ensemble.

3.1.2 Interpretation of water level ensemble
performance

Considering both performance criteria in Fig. 4, Fig. 5
and Fig. 6, it appears that the performance of the en-
semble is closely related to the tidal cycle and the lo-
cation in the estuary. At Le Verdon (resp. Richard),
at the mouth of the estuary, the reliability curve (blue
(resp. green) curve) shows that the ensemble is slightly
under- (resp. over-) predictive for all quantiles with wa-
ter levels that are under- (resp. over-) estimated. Con-
sidering the corresponding locations of Fig. 5 for each
of them shows respectively a predominance of red and
blue nuances independent of the tidal cycle. For wa-
ter levels lower than the mean tide water level, this
can be explained at Le Verdon by a truncated observed
signal during the 2003 event. Moreover, calibration re-
sults (Table 2) have shown the trend of the numerical
model to under-estimate water levels at Le Verdon and
to over-estimate them at Richard during flood tide, as
the mean error for high tides are respectively negative (-
12 cm at Le Verdon) and positive (+21 cm at Richard).
In the middle part of the estuary, from Laména to Bor-
deaux, Fig. 4 shows a tide-dependent rank. The ensem-
ble is over-predictive at low tide and under-predictive
at high tide, as suggested in Fig. 6 by the reliability
curve at Bec d’Ambès (red line). The Bec d’Ambès re-
liability curve is under the perfect diagonal reliability
curve for water quantiles lower than the mean tide level
and above this curve for quantiles higher than the mean
tide level. This reflects calibration choices for a better
representation of high tides leading to under-dispersive
behavior. Indeed, the reliability curve exhibits smaller
distances to the diagonal for higher water levels than
for lower ones. At the upstream part of Garonne and
Dordogne rivers, Fig. 4, Fig. 5 and Fig. 6 show a strong
under-predictive signature of the ensemble at La Réole
and an over-predictive signature at Pessac (for the end
of the storm). This highlights the need for a more re-
fined mesh in the fluvial part of the model.
The ensemble performance has been assessed. It shows
that the over/under predictive signature or non-reliability
is directly linked to the numerical model calibration or
to the mesh refinement in the fluvial areas.
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3.2 Water level probability density function

The water level mean and standard deviation are dis-
played with a blue-red color bar along the curvilinear
abscissa (x-axis) of the 26 stations of interest as a func-
tion of time (y-axis) in Fig. 7. Fig. 7-a shows the en-
semble mean water level; it illustrates the propagation
of tides from the mouth of the estuary to the upstream
part of the Garonne and Dordogne rivers. The hyper-
synchronic characteristic of the Gironde estuary due
to a funnel effect leads to the amplification of high
tides in the estuary from the decreasing water depth
in bathymetry. The absolute differences of the median
with 95%-quantile and 5%-quantile (not shown) shows
a nearly perfect symmetry of the distribution of QoIs
between its extreme quantiles. The standard deviation
plotted in Fig. 7-b increases from 20 cm at Royan to
45 cm at Pessac and La Réole for high tides.
Fig. 8 displays the PDF of water level anomalies (with
respect to the ensemble mean) at the storm peak (a),
ebb tide (b), low tide (c) and flood tide (d) for 14 ob-
serving stations (blue curves for the maritime bound-
ary, green for the estuary, yellow, orange and red for the
Garonne and Dordogne rivers). Upstream of the fluvial
areas, the PDF is asymmetric for all times with a me-
dian value of about -40 cm, a mean value of 10 cm, and
a fat tail for positive anomalies at La Réole, Langon
and Pessac. Upstream of La Réole, Langon and Pessac,
the PDF is symmetric on the Garonne and Dordogne
rivers with a standard deviation of about 1.8 m for the
flood rise and storm peak, leading to anomalies up to 1
m and a standard deviation of about 0.6 m for ebb tide
and low flow. Along the estuary and in the maritime
area, the PDF is rather symmetric. The standard de-
viation decreases from the confluence at Bec d’Ambès
to the mouth of the estuary. The standard deviation
over the estuary, except in the fluvial area, is larger for
flood tide and storm peak than for ebb tide and low
flow. This behavior can be explained by the hypersyn-
chronous shape of the estuary which amplifies pertur-
bations from the maritime boundary conditions along
the estuary at flood tide. Moreover, it reflects respec-
tively the predominance of the gaussian perturbation
of the maritime signal and the uniform perturbation of
the Strickler coefficient with a non-linear behavior in
the fluvial part.

3.3 Global sensitivity analysis indices for aggregated
modes

3.3.1 Temporal analysis

Sobol’ indices are displayed with a blue-red color bar for
the 8 uncertain inputs Xi (Sect. 2.3.1) in Fig. 9, along
the curvilinear abscissa (x-axis) and over time (y-axis).
The total Sobol’ indices are plotted for each input vari-
able. Blue/red means small/large Sobol’ indices for Xi.
For the 2003 event studied here, Fig. 9 clearly shows

the predominance of the maritime boundary conditions
and the dependency of all variables on the tidal signal.
The wind drag coefficient, the hydrological boundary
conditions and the friction coefficient in area A4 have
no influence on the water level variability except at the
upstream location of the Garonne and Dordogne rivers.
Over the maritime area A1, the water level variance
is explained by the variance in the maritime bound-
ary condition with Sobol’ indices close to 1 from Royan
(station 1) to Richard (station 5) near the mouth of
the estuary. It should be noted that the fraction of the
water level variance that is not explained by CLMAR
is explained by Ks1. In estuarian area A2, CLMAR and
Ks2 are the most significant sources of uncertainty, with
a large predominance of CLMAR at high tide. At low
tide, the Sobol’ index for Ks2 reaches 0.8. The influ-
ence of the maritime boundary condition decreases from
Fort-Médoc (in A2) to the confluence at Bec d’Ambès
(in A3) and the influence of Ks2 and Ks3 increases. For
this event, in area A4, the influences of CLMAR and
Ks4 are alternatively predominant in coherence with
the tidal signal. At La Réole and Pessac, Sobol’ index
for Ks4 reaches 0.8. It should be noted that the dif-
ference between total and first order indices, represent-
ing interactions of Xi with other uncertain variables,
has been computed for all uncertain variables. As it is
nearly equal to 0, it can be concluded that, for the 2003
storm, no interactions are detected between any input
variable Xi. Total Sobol’ indices and ranks are time-
averaged and plotted in Fig. 10 along the curvilinear
abscissa (x-axis) and for all Xi (y-axis). As expected, for
the 2003 event, the maritime boundary conditions have
a predominant impact along the entire domain, with the
significant influence of friction coefficients, while hydro-
logical boundary conditions have a limited impact to
the upstream locations of the Garonne and Dordogne
rivers.

3.3.2 Global sensitivity analysis space mapping

Figs 11-a (resp. -c) and 11-b (resp. -d) display maps of
total Sobol’ indices over the entire mesh of the variable
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X8 = CLMAR (resp. X1 = Ks1), at the storm peak
and at low tide respectively, for the 2003 event. These
maps show the homogeneity of the total Sobol’ indices
geographical repartition and confirm that the conclu-
sions drawn previously for the 26 locations of interest
can be generalized for all points located in A1, A2, A3

and A4. The same maps have been obtained for all un-
certain variables for the storm peak, ebb tide, low tide
and flood tide, but are not shown here. As formerly
observed, for the 2003 event, the wind drag coefficient
(Cd), Dordogne river discharge (QDOR) and Garonne
river discharge (QGAR) have a very small influence
over the tidal cycle along the estuary. As 2003 event
is a flood event for both rivers, further investigation is
needed to confirm this conclusion. The uncertainty in
the maritime boundary condition is predominant, espe-
cially during the flood tide and storm peak (at Royan)
(Fig 11-a) along the estuary except at the upstream
part of the Garonne and Dordogne rivers (in A4), where
friction coefficient Ks3 is the most dominant uncertain
variable. Ks1 (displayed in panels c- and d-), Ks2 and
Ks4 show no influence during the storm peak. During
ebb tide, the influence of CLMAR propagates along the
Garonne and Dordogne rivers, while the upstream parts
of the rivers remain fully under the influence of Ks3. At
low tide, Fig. 11-b shows that the influence of CLMAR
returns to the middle part of the estuary in A2, whereas
Ks1 (resp. Ks2) is the most dominant uncertain vari-
able farther downstream (resp. upstream), consistent
with the tidal signal. The influence of Ks3 in the up-
stream part of the Dordogne and Garonne rivers prop-
agates to A4. The Gironde Estuary hydrodynamics are
the result of interplays between time and/or space de-
pendent processes, such as friction, convergence of the
estuary and maritime and fluvial usptream boundary
conditions, but also of the memory of the state of the
system. UQ and GSA help to identify and understand
the evolution of complex physical processes that drive
the Gironde estuary and are not entirely intuitive, in
particular, when considering their phase with the tidal
cycle.

3.4 Focus on the eigenmodes of the maritime
boundary forcings

A GSA study dedicated to the maritime boundary forc-
ing was performed considering each eigenmode of the
KL decomposition for the 7-day 2003 event. The other
parameters (Ks1, Ks2, Ks3, Ks4, QGAR and QDOR)
are not perturbed and their associated values are their
mean values. Table 4 shows the variance associated with
each orthogonal function of the KL decomposition of

the Gaussian correlation function with its time scale set
to 6 hours (half-tide). No clear predominance of the first
modes is observed with about 6 % of the input variance
explained by the first 4 modes and 1 % for the follow-
ing 19 modes. The accumulated variance explained by
the first 7 modes kept for the GSA is about 45 %. The
Sobol’ indices associated with these modes are plotted
in Fig. 12. Their contributions are linked to the tide
cycle but are asynchronous. The influence of the eigen-
modes decreases from the mouth of the estuary to the
upstream part of the rivers with respect to the peri-
odic tide signal. Modes 2, 3, 4 and 5 have major contri-
butions, their respective Sobol’ indices reaching 30 %,
whereas modes 6 and 7 have less influence during the
second part of the storm event and mode 1 has no influ-
ence on water levels except at the end of the event when
its total Sobol’ index reaches 20 %. The uncertainty in
the tide and surge level was estimated by [43] to be re-
spectively 5 cm and 40 cm for a 36-hour lead time. This
suggests dividing the maritime signal uncertainty into a
deterministic tidal contribution and a stochastic surge
level contribution caused by the meteorological forc-
ings [44] as well as the tide/surge level interactions [45]
through surge levels. Further work should thus focus on
separating the tidal signal from the surge level signal.
The correlation time scale calculated from the surge
level time series provided by Meteo-France is about 2.1
days. Only 14 eigenmodes (resp. 4) are required to rep-
resent 99 % (resp. 90 %) of the total variance of the
signal, as shown in Fig. 13.

4 Conclusions and perspectives

The Telemac2D numerical model used for operational
flood forecasting by FFS GAD in the Gironde estuary
was used for a GSA based on ANOVA to estimate the
Sobol’ indices over a 7-day storm event in 2003. It was
shown that the maritime boundary conditions drive the
dynamics of the estuary.
Moving from the mouth of the estuary to the upstream
part of the Garonne and Dordogne rivers, the influence
of the friction coefficient increases, and the hydrologi-
cal forcing has a very local influence upstream in the
rivers. This GSA study allows the identification of the
most significant sources of uncertainty. Once identified,
these uncertainties should be reduced, for instance with
a data assimilation algorithm such as Ensemble Kalman
Filter, in order to improve the water level in the estu-
ary in simulation and forecast mode. A perspective for
this study is to take into account uncertainties in the
surface forcing atmospheric fields (wind and pressure).
Further work should also focus on the formulation of a
surrogate model for the 2D Gironde hydraulics model
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for high flow discharges in order to reduce the cost of
the GSA and the ensemble assimilation. Gaussian Pro-
cess or Polynomial Chaos surrogates have been used
for UQ and GSA in the context of hydraulics ([46],
[23]). Both methods proved efficient for metamodelling
of the SWE with the 1D solver Mascaret ([47], [48]) for
GSA with Sobol’ indices and covariance matrix esti-
mation. A polynomial surrogate was also implemented
for Telemac2D on the Garonne river and allowed for a
cost-reduced computation of the sensitivity indices [23].
This work should be extended to the Gironde estu-
ary taking into account scalar and field uncertainties.
The proposed surrogate modeling and data assimila-
tion approaches would meet this need and would result
in a reduced-cost ensemble based data assimilation al-
gorithm to reduce major sources of uncertainties and
improve water level forecasting in the Gironde estuary.

A Appendix A

Sobol’ indices [35] measure the contributions of the different in-
dependent inputs X1, X2, . . . , Xd and their interactions in the
variance V(Y) of the output Y = f(X) with X = (X1, X2, . . . , Xd),
E((f(X))2) < ∞ and f the model. They are based on the Ho-
effding decomposition of f [49],

f(X) =f∅ +
∑
i⊆Id

fi(Xi)

+
∑

{i,j}⊆I2
d

j>i

fi,j(Xi, Xj)

+ . . .+ f1,2,...,d(X1, X2, . . . , Xd)

=
∑

u⊆Id

fu(Xu)

(12)

where Id = {1, . . . , d} is the set of input indices, f∅ = E(Y ) is
the expectation of Y (here the average of all values Y can take),
fi(Xi) = E(Y |Xi)−f∅ is the elementary contribution of Xi to
f(X), and fi,j(Xi, Xj) = E(Y |Xi, Xj)−fi(Xi)−fj(Xj)−f∅
is the contribution of the interaction between Xi and Xj to
f(X).

From Eq. (12) and using the orthogonality condition E(fifj) =
0 if i ̸= j, the variance of Y is:

V (Y ) =
∑
i⊆Id

Vi+
∑

{i,j}⊆I2
d

j>i

Vi,j+ . . .+V1,2,...,d =
∑

u⊆Id

Vu (13)

where Vi = V (fi(Xi)) is the elementary contribution of Xi

to V (Y ), Vi,j = V (fi,j(Xi, Xj)) is the contribution of the
interaction between Xi and Xj to V (Y ), and so on. Dividing
Eq. (13) by V (Y ) leads to Eq. (8).

B Appendix B

This appendix describes the main steps for the stochastic esti-
mation of the Sobol’ indices of the different independent inputs
X1, X2, . . . , Xd with X = (X1, X2, . . . , Xd) according to [10].

1. Step 1: generation of two ensembles of size Ne for the nor-
malized input parameters set (x1, x2, . . . , xd). The first (resp.
second) (Ne, d) matrix is denoted by A (resp. B) (Eq. (14)
(resp. (Eq. (15)))). The space filling strategy is carried out with
a Sobol’ sequence rather than a classical Monte-Carlo strategy:

A =


x
(1)
1 x

(1)
2 · · · x

(1)
i · · · x

(1)
d

x
(2)
1 x

(2)
2 · · · x

(2)
i · · · x

(2)
d

· · · · · · · · · · · · · · · · · ·
x
(Ne−1)
1 x

(Ne−1)
2 · · · x(Ne−1)

i · · · x(Ne−1)
d

x
(Ne)
1 x

(Ne)
2 · · · x

(Ne)
i · · · x

(Ne)
d

 (14)

B =


x
(Ne+1)
1 x

(Ne+1)
2 · · · x

(Ne+1)
i · · · x

(Ne+1)
d

x
(Ne+2)
1 x

(Ne+2)
2 · · · x

(Ne+2)
i · · · x

(Ne+2)
d

· · · · · · · · · · · · · · · · · ·
x
(2Ne−1)
1 x

(2Ne−1)
2 · · · x(2Ne−1)

i · · · x(2Ne−1)
d

x
(2Ne)
1 x

(2Ne)
2 · · · x

(2Ne)
i · · · x

(2Ne)
d


(15)

2. Step 2: definition of d matrices Ci formed by all columns
of A except the ith column taken from B [49].

3. Step 3: computation of the model output (and QoI) yA (resp.
yB and yCi

with i = 1, , d), for all the input values in the sam-
ple matrix A (resp. B and the d matrices Ci), obtaining (d+2)
vector outputs of dimension Ne: yA = f (A), yB = f (B),
yCi

= f (Ci) with i = 1, , d.

[49], [50] and [51] describe the best approach to compute si-
multaneously Si and STi

for each input variable.
In this study, the following estimators have been chosen for:
VXi

(EX̃i
(Y |Xi)) =

1
N

∑N
j=1y

(j)
B

(
y
(j)
Ci

− y
(j)
A

)
,

EXi
(VXi

(Y |Xi)) =
1

2N

∑N
j=1

(
y
(j)
A − y

(j)
Ci

)2
and

V (Y ) = 1
N

∑N
j=1

(
yjA

)2
− f2

0

with f2
0 = 1

N

∑N
j=1y

j
AyjB .

Anomalies due to an uncertain variable Xi corresponding to
the normalized uncertain variable xi are defined as yCi

− yA
and represent the part of the QoIs output resulting from Xi

only.
If (Xi)i=k,,k+m correspond to the m uncertain modes of a
field input, the contribution of each mode can be estimated
separately with the methodology described above. The whole
contribution of the field input can also be estimated by process-
ing the uncertain variable modes in one block and by defining
a matrix Ck formed by all columns of A except the kth to
(k +m)th columns taken from B.

C Appendix C

A truncated form qp(t) (resp. hp(t)) of q(t) (resp. h(t)) is for-
mulated with a KL decomposition [20] of q(t) (resp. h(t)):

qp (t) =

p∑
i=1

√
λiϕi (t) ϵi (16)
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where ϵi are independent standard Gaussian variables and (λi, ϕi)
are the ith eigenvalue and eigenfunction of κ, the solution of the
Fredholm equation [39]:

∫
κ (t, τ)ϕi (τ) dτ = λiϕi (t) (17)

with
∫
ϕi(t)ϕj(t)dt = δi,j .
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Table 1: Calibrated Strickler (K) coefficients computed from the NashHT and RMSE criteria.

Input variable Updated Strickler coefficients Updated Strickler coefficients Range of uniform distribution
with NashHT criterion with RMSE criterion

Ks1 55 70 [50 ; 70]
Ks2 70 70 [45 ; 75]
Ks3 75 65 [25 ; 75]
Ks4 50 55 [40 ; 80]
Cd 2.57.10-6 2.57.10-6 [0.678.10-6 ; 3.016.10-6]

Table 2: Nash at high tides (NashHT), RMSE and RMSE at high tides (RMSEHT) for the 1999 and 2003 events
along the Gironde estuary

Station NashHT RMSE (m) RMSEHT (m)
1999 2003 1999 2003 1999 2003

Verdon -0.85 0.93 2.0 0.16 0.44 0.12
Richard 0.45 0.8 1.78 0.25 0.24 0.21
Laména 0.89 0.88 1.49 0.36 0.11 0.18
Pauillac 0.72 0.93 0.23 0.29 0.16 0.14

Fort Médoc 0.72 0.93 0.27 0.31 0.16 0.14
Bec d’Ambès 0.75 0.95 0.17 0.18 0.16 0.13
Le Marquis 0.53 0.95 0.28 0.24 0.22 0.12

Bassens 0.54 0.96 0.28 0.17 0.22 0.12
Bordeaux 0.59 0.96 0.23 0.18 0.21 0.13
La Réole 0.51 0.93

Pessac 0.38 1.01
Mean (without La Réole and Pessac) 0.48 0.92 0.75 0.24 0.21 0.15

Table 3: Computational costs for the 2003 event GSA.

Mesh Physical Optimal Single run Available Ensemble Total nb. of GSA Architecture
(number of elapsed nb. of cores elapsed nb. of cores size simulations elapsed

nodes) time (s) for one run time (min) for GSA (Ne) for GSA (N) time (days)
7351 250000 1 25 96 1000 25000 8 CentOS6 - Fedora

2 nodes
48 cores per node

7351 250000 1 25 96 5000 125000 40 CentOS6 - Fedora
418314 83400 112 13 2688 5000 125000 47 Intel Broadwell (2.4 GHz)

2 processors per node
14 cores per processor

418314 83400 32 1440 32768 7000 175000 71 BlueGene-Q
64 processors per node
16 cores per processor

418314 83400 32 1440 32768 10000 250000 101 BlueGene-Q
64 processors per node
16 cores per processor
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Table 4: Eigenvalues and cumulated variances for the tide signal correlation function

mode rank eigenvalue cumulated variance variance due to i (variance due to i)
(variance due to the first mode

0 42829.68 6.69 % 6.69 % 1.0
1 41746.64 13.21 % 6.52 % 97.47 %
2 40054.17 19.46 % 6.26 % 93.52 %
3 37895.49 25.38 % 5.92 % 88.48 %
4 35429.63 30.92 % 5.53 % 82.72 %
5 32807.55 36.04 % 5.12 % 76.60 %
6 30156.19 40.75 % 4.71 % 70.41 %
7 27571.53 45.06 % 4.31 % 64.37 %
8 25118.82 48.98 % 3.92 % 58.65 %
9 22836.84 52.55 % 3.57 % 53.32 %

10 20743.96 55.79 % 3.24 % 48.43 %
11 18844.02 58.73 % 2.94 % 44.00 %
12 17131.37 61.40 % 2.68 % 40.00 %
13 15594.70 63.84 % 2.44 % 36.41 %
14 14219.79 66.06 % 2.22 % 33.20 %
15 12991.35 68.09 % 2.03 % 30.33 %
16 11894.18 69.95 % 1.86 % 27.77 %
17 10913.85 71.65 % 1.70 % 25.48 %
18 10037.04 73.22 % 1.57 % 23.43 %
19 9251.70 74.66 % 1.44 % 21.60 %
20 8547.08 76.00 % 1.33 % 19.96 %
21 7913.65 77.24 % 1.24 % 18.48 %
22 7343.06 78.38 % 1.15 % 17.14 %
23 6827.94 79.45 % 1.07 % 15.94 %

Fig. 1: Extension and location of the numerical model of the Gironde estuary and delimitation of the Strickler
coefficient areas 1 to 4. Circles represent the nodes of the numerical model based on a mesh built with finite
elements (in black).
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Fig. 2: Bathymetry (m NGF69) of the numerical model of the Gironde estuary. Stars show the 26 main stations
of interest for the water level forecasts.
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Fig. 3: Representation with time (since the beginning of the storm) during the February 2003 event of a sample of
perturbations applied to the (a) Garonne river discharge and (b) maritime boundary conditions. Representation
of (c) the reference Garonne river discharge (black line with crosses and left y-axis), of one perturbed member
(black dotted line and left y-axis) and of the relative perturbation (red line marked with circles and right y-axis)
and (d) the reference water level signal (black line and left y-axis) at one node of the maritime boundary, of one
perturbed member (black dotted line and left y-axis) and of the perturbation (red line and right y-axis)
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Fig. 4: Ranks diagrams for 3 stations along the Gironde estuary (Le Verdon at the mouth (top), Richard (middle)
and Bec d’Ambès (bottom)).
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Fig. 5: Surface distribution of ranks along the Gironde estuary during the February 2003 storm. The black vertical
lines represent the limits between the estuary, the confluence and the Garonne and Dordogne rivers. The x-axis
displays the 12 observing stations classified from left to right from downstream to upstream, from Royan to the
confluence at bec d’Ambès (1st black vertical line), from the confluence to La Réole (Garonne river area located
between both black vertical lines), and from the confluence to Pessac on the Dordogne river (Dordogne river
area on the right of the 2nd black vertical line). The red vertical lines represent the limits between the 4 friction
coefficients areas (denoted by A1, A2, A3 and A4).
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Fig. 6: Reliability diagram for 4 stations along the Gironde estuary (Le Verdon at the mouth (deep blue), Richard
(green), Bec d’Ambès (red) and La Réole (cyan)) with corresponding observed water level quantiles during the
2003 event. Mean water levels at each station are represented with hexagons.
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Fig. 7: Median (left) and standard deviation (right) of the water level outputs ensemble along the Gironde estuary
during the February 2003 storm. The black vertical lines represent the limits between the estuary, the confluence
and the Garonne and Dordogne rivers. The x-axis displays the 26 stations of interest classified from left to right
for downstream to upstream, from Royan to the confluence at bec d’Ambès (1st black vertical line), from the
confluence to La Réole (Garonne river area located between both black vertical lines) and from the confluence to
Pessac on the Dordogne river (Dordogne river area on the right of the 2nd black vertical line). The red vertical
lines represent the limits between the 4 friction coefficients areas (denoted by A1, A2, A3 and A4).
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Fig. 8: Water level anomaly probability density functions along the Gironde estuary at the (a) storm peak, (b)
ebb tide, (c) low tide, and (d) flood tide during the February 2003 storm.
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Fig. 9: Total Sobol’ indices (STi) along the Gironde estuary during the February 2003 storm for 8 uncertain input
variables (maritime boundary conditions (CLMAR), friction coefficients (Ks1, Ks2, Ks3, Ks4), the wind drag
coefficient Cd and hydrological boundary conditions (Dordogne river discharge: QDOR; Garonne river discharge:
QGAR). The x-axis is similar to that of Fig. 7, with the 26 stations of interest classified from left to right from
downstream to upstream. The red vertical lines represent the limits between the 4 friction coefficient areas. The
black vertical lines represent the limits between the estuary, the confluence, and the Garonne and Dordogne rivers.
The thick dashed lines represent the time-averaged values for Sobol’ indices along the Gironde estuary.
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Fig. 10: representation of time averaged STi (left) and of the rank of the input variable with respect to STi (right)
along the Gironde estuary during the February 2003 storm.
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Fig. 11: Total Sobol’ indices (STi) in the Gironde estuary at (a) (resp. (c)) storm peak and (b) (resp. (d)) low tide
for uncertain variable maritime boundary condition CLMAR (resp. friction coefficient Ks1).
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Fig. 12: Total Sobol’ indices (STi) in panels a- (resp. interactions STi - Si in panels b-) along the Gironde estuary
during the February 2003 storm for 7 uncertain input variables (maritime boundary (CLMAR) eigenmodes :
mode1, mode2, mode3, mode4, mode5, mode6, mode7)
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Fig. 13: Cumulated variance for the 14 first modes for several correlation time scales.
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