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—— Abstract

A large body of research is dedicated to model sequence evolutionary dynamics. The evolutionary

process may vary within groups of genes, among sites within a gene, between populations and
among diverged species. Evolutionary models aiming to describe these dynamics must account
for base pair substitutions as well as insertion and deletion (indel) events. Here, we explain the
fundamental of continuous time Markov models used to describe sequence evolution. We be-
gin by describing discrete Markov models, and slowly progress towards more realistic and more
computationally complicated continuous time Markov models. Among other topics, we discuss
nucleotide, amino acid, and codon models, among site rate variation, model reversibility, station-
ary distributions, rate matrix normalization, mixture models, indel models, and models of gene
family evolution. Understanding the concepts presented here is vital for various phylogenom-
ics analyses such as the inference of positive selection, alignment and phylogeny reconstruction,
ancestral sequence reconstruction, and molecular dating.

How to cite: Tal Pupko and Itay Mayrose (2020). A gentle Introduction to Probabilistic Evol-
utionary Models. In Scornavacca, C., Delsuc, F., and Galtier, N., editors, Phylogenetics in the
Genomic Era, chapter No.1.1, pp.1.1:1-1.1:21. No commercial publisher | Authors open access
book. The book is freely available at https://hal.inria.fr/PGE.

1 General outline — the great importance of evolutionary models

The past decade has witnessed a revolution in evolutionary biology, driven by advances in
high-throughput sequencing, functional genomics, and computational technologies. The ge-
nomic revolution opened up possibilities for rapidly generating large-scale sequencing data
from non-model organisms at a reasonable cost. However, while new methodologies have
been devised to handle and assemble these data (Ekblom and Galindo, 2011), methodolo-
gical advances to convert these data into meaningful biological knowledge are still lagging
behind. Indeed, one of the main challenges for the decade ahead will be to unravel the
connection between genomic changes and the diversity of phenotypes seen in nature and
to decipher the evolutionary forces responsible for this diversification. Such research efforts
will lead to a more explanatory theory of evolution, with implications for all branches of
the life sciences, from agriculture to ecology to medicine. Discovering these linkages is a
difficult task that requires novel biologically-inspired computational methodologies that will
identify candidate loci under selection and will correlate these loci to phenotypic differences.
In the post-genomic era, probabilistic models of molecular evolution are the powerhouse of
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data analyses. Such models form the backbone of various bioinformatics applications such
as phylogenetic reconstruction (see Chapters 1.2 [Stamatakis and Kozlov 2020] and 1.4 [Lar-
tillot 2020]), sequence alignment (see Chapter 2.2 [Ranwez and Chantret 2020]), molecular
dating (see Chapter 5.1 [Pett and Heath 2020]), and functional sites prediction (Anisimova
et al., 2013; Yang, 2014). These models are an attempt to represent the stochastic nature of
evolution, built within a robust statistical framework of inference. Constructing evolution-
ary models enables us to mathematically describe various biological phenomena, estimate
relevant parameters such as the strength of selection (see Chapter 4.5 [Lowe and Rodrigue
2020]) and rate of evolutionary events (see Chapter 4.4 [Bromham 2020]), and test different
hypotheses, e.g., to determine which of several alternative evolutionary pathways is more
likely. A main challenge in designing a model is to capture the key elements of the biological
process at hand without over-parameterizing the model, which will render it inadequate. In
molecular phylogenetics, Markov models, a specific class of stochastic models, are intens-
ively used to analyze sequence data and to quantify the evolutionary dynamics of genes
and genomes. In this chapter we introduce the theoretical foundations of these probabilistic
models, starting with the simplest ones and progressing towards richer and more realistic
models.

2 Discrete Time Markov chains

It is often helpful to start thinking of probabilistic evolutionary models in terms of simu-
lations, i.e., to describe how one would mimic the evolutionary process using a computer.
Specifically, we are interested in describing how sequences change through time and which
parameters control this evolutionary process. For simplicity, we describe the evolution of
only a single sequence site; assuming that all sites evolve independently, this process can be
repeated N times to generate a sequence of length V. We start by drawing the identity of
this position in the initial generation — the ancestor. Assuming that the probabilities of all
nucleotides are equal, this is equivalent to rolling a dice with four possible outcomes (A, C,
G, or T). Next, we would like to decide on the fate of this position in the next generation.
It can either mutate or not. If it mutates, it can change to each one of the other nucleotides
with equal probabilities. We can put this model into a matrix form:

1— 3¢ € € €
€ 1— 3¢ € €
Mij = € € 1— 3¢ € (1)
€ € € 1— 3¢

This matrix represents a simple discrete-time Markov model with four states. The model
is called discrete, because t, the time that corresponds to the number of generations, can
only take discrete values (0,1,2,---). M;; is the probability to start with nucleotide 7 and
end in nucleotide j after one generation. Because each row includes all possible events, the
sum of each row must equal one. There is one free parameter in this model, 0 < € < %,
which dictates the rate of evolution. If we run the simulations for many generations, a
fewer mutations are expected for low values of € compared to larger values. In fact, in each
generation there are two possibilities: either a mutation has occurred, with probability 3e
or the position remained the same, with probability 1 — 3e. Thus, the expectation of the
number of changes for a single generation per position is 3e.

Suppose now that we use this model to simulate 1,000 generations and that we are
interested in calculating the probability that we end up with the nucleotide C in generation
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1,000, given that we started with nucleotide A at generation zero. A naive approach would
be to simulate the evolution process for 1,000 generations according to the matrix M and
record the final nucleotide (note that we always start the simulation with an A at generation
zero). This represents one possible evolutionary outcome. In order to estimate the desired
probability we repeat this process multiple times (say 1,000,000). The frequency of the
outcome “ending with C” serves as a good estimation for the desired probability.

However, we can use Markov chain theory to analytically compute this probability. We
first compute (rather than simulate) the probability of the event starting with A and after
two generations ending with C. We denote this probability P4 ¢(2). The course of this event
can be described as “A will change to some unknown character X after one generation”
(Pa,x (1)) and then X will change to C in one generation (Px c(1)). By the law of total
probability, we can express this probability by summing over all possible values of X:

Pa,c(2) = Pa,a(1)Pa,c(1) + Pac(1)Po,c(1) + Pag(1)Pg,c(1) + Par(1)Prc(1) (2)
We note that we implicitly assume that the probability to change from A in generation
0 to X in generation 1, is the same as the probability to change from A in generation 1 to
X in generation 2. More formally, we assumed that the Markov chain is time homogenous.
In probabilistic terms, let X (k) represent the nucleotide after k generations. Matrix M
represents the transition probability from generation g to generation g + 1 for every g and
using this notation, we can express M as
Mij = P(X(k+1) = j|X(k) = 1) = P ;(1) (3)
Note that this equality directly stems from the time homogeneity assumption. In matrix
notations, we will hence consider M as P(1), i.e., the Markov matrix representing the
probabilities of changes after one generation. Note that we also implicitly assume that the
transition probability from A in generation 1000 to C in generation 1001 is only dictated by
M, and does not depend on the history of events that have occurred in generations 0 to 1000.
This is an important property of the Markovian process, which is called memorylessness.
Returning to Eq. 2, one could notice that this computation is identical to the dot product
of row A (first row) and column C (second column) in M. Let us denote by P(2) the matrix
of transition probabilities between each pair of nucleotides after two generations (and in
general, P(k) the matrix after k generations). The computation of each entry is performed
in an identical way to Eq. 2:

Paa(2) Pac(2) Pac(2) Par(2)

Py | Foa® Poc®) Pec(?) Per( "
Pga(2) Pac(2) Pga(2) Par(2)
Pra(2) Prc(2) Pra(2) Prr(2)

From the above consideration, P(2) = P(1)2 = M? and in general P(k) = P(1)* and
P(n 4+ m) = P(n)P(m). The importance of the last equality will become clearer in the
next section. Thus, in a discrete time process, by knowing the matrix M, the transition
probabilities P(k) can be derived for all possible k values. Hence, M = P(1) is sometimes
called the generator matrix for discrete-time Markov chains. Putting it all together, we
obtain:

Py (k) = P(X (k) = j|X(0) = 1) = [M*], | ()

,J
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3 Continuous Time Markov chains

A natural generalization of the above discrete time Markov chain is to replace the number
of generations with a continuous parameter ¢ that measures time. Indeed, such a process in
which ¢ can have any value in the interval [0, c0) is termed a continuous time Markov chain.
Similar to discrete processes, X (t) represents the state of a specific site at time ¢. Here,
we would like to compute not only P(1) and P(2) but also, say, P(2.335). To understand
how such a matrix can be computed, we recall that for the discrete Markov process we had
P(t1 +t3) = P(t1)P(t2) = P(t2)P(t1). This is also true for continuous time Markov chains,
i.e., it is true for every two time points t; and t5. From this, we obtain:

P(t1 +t2) — P(t1) = P(t1)P(t2) — P(t1) = P(t1)(P(t2) — I) (6)

where [ is the identity matrix. Note that P(0) = I since P;(0) = P(X(0) = i|X(0) =
i) = 1 and similarly, P;;(0) = 0 for all ¢ # j. The above equations imply that for any ¢, # 0:

Pty +t2) — P(t1) _ P(t1)(P(t2) — 1) (7)

to to

We can then write t instead of ¢; and At instead of t3. When At approaches zero, we
obtain:

lim = lim — Jim ppy B0 = PO

. /
A0 At A0 At A0 At = P(t)P(0)

(®)

where the last equality stems from the definition of the derivative at time zero. The left
side of the above equation is the definition of the derivative at time ¢, and thus:

P'(t) = P(t)P'(0) )

We note that in the equation above we made use of the concept of matrix derivative: if
for a matrix P(t) each element of a matrix is a function of ¢, then in P’(t) each element is the
derivative of the corresponding entry of P(¢). P’(0) is a fixed matrix called the instantaneous
rate matrix, and is often denoted as @ = P’(0).

As will be detailed below, given @ we can compute the transition probability matrix P(t)
for any time interval ¢, and thus @ is often termed the generator matrix of the continuous
Markov process. The elements of each row in P(¢) sum to 1:

Poi(t) +Pot)+ Ps(t)+ -+ P n(t)=1 (10)

where n is the number of possible states (four for nucleotides). Deriving both sides of
this equation with respect to ¢, we obtain:

Pia(8) + Plo(t) + Pla(t) + -+ + Pl (t) =0 (11)
Specifically, for ¢ = 0, we obtain:

Pi/,l(o) +Pi/,2(0)+P¢/,3(0) +"‘+P¢/,n(0) =0 (12)
Since Q = P’(0) we obtain

Qi1 +Qig+Qiz+ - +Qin=0 (13)
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Thus, the elements in each row of ) sum to zero. For ¢ # j, P; ;(t) is an increasing
function of ¢: it is zero for ¢ = 0 and non-negative for ¢ > 0. Thus, each non-diagonal
element, Q; ; = PL’ j (0) is non-negative and represents the instantaneous transition rate from
state ¢ to state j, while each diagonal element, @);; is negative and equals to the negative
sum of all other elements in that row. ();; represents the total instantaneous transition rate
away from state 3.

Eq. 9 above is in fact a differential equation in a matrix form:
dP(t)

dt
The solution to this equation, subjected to the boundary condition P(0) = I is

@t)?  (Qt)?
]

We will note that this power series always converges. Computing matrix exponentials

= P(t)@Q (14)

P(t) =9 =T+ Qt +

N (15)

is a well-studied topic in numerical analysis and will not be discussed here. However, for
certain types of simple models, a closed-form solution for P(t) can be obtained directly.
Below we derive the P(t) matrix for the simplest nucleotide model, the Jukes and Cantor
(JC) model.

4 The Jukes and Cantor model

The simplest continuous time Markov model for nucleotides assumes that the transition
probabilities between each two different nucleotides is the same: f(¢). In a matrix form,
P(t) is:

1=3f(t)  f(t) f(®) f(t)

po_ | 10 130 f0 g

f(t) f@)  1=3f1)  f@)

f(t) f(@) f@)  1-3f

By the definition of @) for this model we obtain:
=3f"(0)  f'(0) f(0) £(0)

f1(0)  =3f(0)  f'(0) f(0) (17)
f) o) =3f(0)  f(0)

) f1(0)  f(0) —=3f(0)

If we denote f/(0) as o we obtain:

Q=P(0)=

-3« « « o
o —3« « «
= 1
Q o o —3« « ( 8)
o « « —3a

The stochastic process generated by this matrix (and assuming equal frequencies for
all nucleotides) is called the Jukes and Cantor model (Jukes and Cantor, 1969). Applying
Eq. 14 to the JC model, we obtain:

L=3f)  f@) ft) f(t)

d [y 1=3f@)  f(t) f(t)

dt ft) [y 1=3f1) Q)
ft) ft) @) 1=3f@1)

1.1:5
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1=37@)  f(®) f() f(#) —8a o o o«
_ f(t> 1 - 3f(t) f(t) f(t) . @ —3a @ @ (19)
F(#) ) 1=3f1)  f() a a =3a a
@) f@) f) 1=35() a a a =3

If we focus only on the element in the first row and second column of the left side of

44*77)

this equation (and marking all the other elements as and use the definition of matrix

multiplication we obtain:

* fU(E) x o+ 1=3f@) f(&) f@) F(t) * ok k

* * * % _ * * * * * —3a * % (20)

% ko * * * * x o k%

x ok k * * * * * x o k%
which yields:
f')=(1=3f®)a+ f(t)(=3a) + f(t)a+ f(t)a (21)
Which, after simplification, results in the following regular differential equation:
df(t
PO _ o - a5 (22)
This equation can informally be written as:

df (t)
——— = addt 23
1—4f@) (23)
Integrating both sides yields:
In(1—4f(t
”(_74]0()) —at+C (24)
Isolating the term f(t), we obtain:

1 €—4at—4C

ft)=7-——7F— (25)

Recall that f(t) is in fact P; ;(¢) for i # j. Given that f(0) = 0 (because P(0) = I), we
obtain that C' = 0 and thus

1 674at

1t =7-5 (26)

Similarly, since P; ;(t) is 1 — 3f(¢) we obtain:

e—4at

1

_J) 4 4

Pi,j (t) - 1 3e—dot
el

ifi#j,

ifi=j
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5 Likelihood functions and matrix normalization

In the JC model, given the o and ¢ parameters, we can simulate an initial sequence and
let it evolve, in silico. We can also write explicit probabilistic expressions for evolutionary
scenarios. We start with a nucleotide sequence composed of a single position, in which the
character A is observed. The probability of starting with A according to the JC model is
P(A) = 0.25 since the JC model assumes equal probabilities for all nucleotides. Of note,
this implies that out of all simulations starting with a sequence of a single position, on
average 1/4 would start with the character A. Now, consider the case of a position in which
the ancestral character is A and the descendant character, after time t = 0.5, is C. We
graphically denote this scenario by:
A

0.5

C

The probability of simulating such a scenario under the model is P(A) - P4,¢(0.5). If
we consider the two sequences as our data, D, and the model as M, we can denote this
probability by P(D|M), i.e., the probability of the data given the model and its parameters.
This is called the likelihood of the model. Consider now the more complicated case in which
the sequence ACGGT evolved to ACGAC, again along time ¢ = 0.5. The likelihood of the
model is the product of the probabilities of each position in the data:

(P(A)-Pa,4(0.5))-(P(C)-Pc,c(0.5))-(P(G)-Pg,c(0.5))-(P(G)-Pg,4(0.5))-(P(T)- Pr,c(0.5))
(28)

Note that the product of probabilities reflects the assumption that given the model
parameters, the tree and its branches, positions evolve independently of one another. This
assumption is a clear oversimplification of the biological reality, but it is included in the vast
majority of models employed in molecular evolution since it allows rapid computation of
the likelihood function. Under the JC model, the likelihood depends on both ¢ and « (each
P, ;(t) term depends on both ¢ and «). We can thus term it L(¢, a).

When examining natural biological sequences, we do not know the values of the para-
meters that gave rise to them. As common in many statistical applications, inferring these
values often involves finding the parameter values that maximize the likelihood function.
These values are called MLEs: maximum-likelihood estimates. Note however that there
are infinitely many (¢, ) pairs that maximize the likelihood function. This is because in
all these expressions, t and o always appear together as a single term, at. Thus, we can
always multiply a by a constant value, and divide ¢ by this same constant value and the
likelihood would remain unchanged. This is a well-known phenomenon in statistics and
such models are termed non-identifiable, i.e., there is no one-to-one mapping between the
likelihood function and a set of model parameter values. Note that this non-identifiability
is not restricted to the JC model; from Eq. 15, we see that P(¢) depends on Qt. Thus, we
can always multiple @ by a factor and divide ¢ by that same factor, and the P(t) function
(and consequently the likelihood function) would remain unchanged. However, in spite the
infinite number of MLE (¢, ) pairs, we can uniquely infer their product «t. For the above
example, and using the JC model, at = 0.19 maximizes the likelihood function.

1.1:7
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We will now see that the at product is also related to the average number of substitutions
when sequences evolve for ¢ units of time.

For continuous time evolutionary Markov processes, d, the expected number of substi-
tutions along a branch of length ¢, can be computed by the following expression:

d= ftZP(w Qi (29)

We do not show the derivation of this formula here. For the above JC model, this yields
d = 3at. This suggests that we can choose any one of the pairs (¢,«) that maximizes
the likelihood function, compute d based on this pair, and obtain the expected number of
substitutions along the branch associated with the MLEs. Alternatively, we can set a = 1/3,
and that would imply that d = ¢. The resulting JC model is:

e—4t

1

4 4
P jt) = 1 et

i+

if i #j,
(30)

ifi=j

This can be generalized beyond the JC model as according to Eq. 29, d would be equal
to t if

Z P(i)- Qi = —1 (31)

We can always multiply the ) matrix by a fixed factor so that Eq. 31 holds. This is called
matrix normalization and, following this procedure, estimates of ¢ would in fact correspond
to the expected number of substitutions along a branch of length ¢, rather than to time.

6 Reversibility, homogeneity and stationarity

Time reversibility of a Markov process imposes the following equation:
P(i) - Py j(t) = P(j) - P;i(t) (32)

This suggests that the probability of starting with character A and ending up with char-
acter C along a branch of length ¢ is the same as the probability of starting with character
C and ending up with character A (along the same branch). More generally, it suggests that
when we have two sequences and we assume that the first is the ancestor and the second is
the descendent, the probability of obtaining the two sequences would have been the same if
we had rather assumed that the first is the descendent and the second the ancestor. Even
more generally, we can choose the “oldest” (ancestral root) point anywhere along the branch
t. This point divides the branch t into two segments ¢; and to = (¢ — t1), each of which
connects the sequences to that new root. Reversibility enforces that the likelihood func-
tion becomes invariant to the position of the root, i.e., it would remain the same regardless
of our choice of t;. We show it here for the very simple case of two single character sequences:
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The division of the branch between the sequences defines the simplest bifurcating tree.
The likelihood computation along the tree is given by summing over all possible states x of
the root:

> P(z)- Pra(t1) - Pro(ta) (33)

Using the reversibility condition for the first two terms we obtain:

D P(A) Pau(tr) - Prc(tz) (34)

We can take the first term outside the summation:

P(A)Y -Pau(tr) - Pucl(ta) (35)

Using the Markovian property, we can simplify the equation to:
P(A)PAL'(tl + tz) (36)

We thus see that the likelihood depends on the total length of two branches, suggesting that
one can move the root position as long as the total length remains fixed. This means that
we can set one branch to zero and the other one to t; + t2 and the likelihood would remain
unchanged, i.e., one sequence can be considered ancestral to the other one:

A
t1 +to

C

For an unrooted tree with three taxa, it is possible to place the root at any point along
each one of the three branches. The same argument that shows that all root positions
results in the same likelihood for two sequences holds also for this case, and in fact, the
reversibility condition makes all rooted trees that are derived from the same unrooted tree
equally probable. This suggests that when assuming a reversible model, it is impossible to
infer the location of the tree root. However, reversibility allows very efficient algorithms for
inferring branch lengths and thus, for searching for the tree with the highest likelihood, by
using the so called pulley principle (Felsenstein, 1981).

If we look at a discrete (or continuous) time Markov chain, we are often interested in the
probabilities of being at a specific state after the chain has been running for a long time. In
some cases, we find that as ¢ approaches infinity, P(t) converges to a specific form in which
all rows are identical, such that P(co) = 7 - I, and 7 is a row vector of size n, in which 7; is
the probability of reaching character i after infinite amount of time. Moreover, the vector of
probabilities 7 is unchanged by the transition matrix P(1), i.e., 7- P(1) = w. Such cases are
called stationary chains and m is a unique vector of stationary probabilities. Once the chain
reaches stationarity, it remains in stationarity. The JC model, for example, has stationary
probabilities of exactly 0.25 for each character.

Homogeneity means that a single () matrix characterizes the entire evolutionary process.
In contrast, branch heterogeneous models assume that different branches of a tree have
different () matrices.

1.1:9
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Currently, the vast majority of phylogenetic studies assume models that are reversible,
stationary, and homogenous. However, it is clear that such models are oversimplification
of reality in many cases. For example, bacterial genomes vary substantially in their GC
composition across homologous regions, in clear violation of these assumptions (Galtier and
Lobry, 1997).

7 Basic models of nucleotide substitutions

As stated above, in the JC model, which is represented by the simplest nucleotide transition
probabilities (see Eq. 27), it is assumed that the instantaneous substitution rates between
all pairs of different nucleotides are identical, which implies that the stationary frequencies
equal 0.25. There is, however, ample empirical evidence that substitution probabilities vary
among nucleotide pairs. A plethora of extensions to this basic modeling scheme have been
developed over the last 50 years, each implying different hypotheses regarding the pattern of
nucleotide evolution. The Kimura two parameters model (K2P, Kimura, 1980) alleviates the
often unrealistic assumption that transitions (a substitution between two pairs of purines or
between two pairs of pyrimidines) and transversions (a substitutions between a purine and
a pyrimidine or vice versa) are equiprobable. This has resulted is the following Q matrix,
where « is the rate of transitions and 3 is the rate of transversions:

—a— 203 8 «o 8
qrep)=| 0 T P (37)
5 o 5 —a-2p

As for the JC mode, matrix normalization introduces a constraint on the matrix, i.e.,
given a specific « value, one can compute the § value. In fact, it is possible to rewrite the
K2P matrix, following normalization, using a single parameter: the transition-transversion
rate ratio. Which of the infinite many possible transition-transversion rate ratios should
be used? The one that maximizes the likelihood function. We call this parameter “free”,
because it is estimated using likelihood based on the analyzed data. While other types of
parameterizations are possible, each capturing a different biological aspect, the richest model
possible, under the assumption that substitution rates are symmetrical (i.e,, Q;; = Q;,; for
all ¢ and j) is captured by a matrix with six parameters (five free parameters) and is denoted
as the SYM model (Zharkikh, 1994):

R o )
—B-b— 5
QISY M) = ﬁ b A I ; (38)
y ¢ 0 —y—e—n

Because the JC, K2P, and SYM matrices are symmetrical (Q; ; = @, for all ¢ and j)
the stationary frequencies of all nucleotides are equal to 0.25. As stated above, biological
dataset are often characterized with biased nucleotide frequencies. An important extension
to such models relies on non-symmetrical matrices that can results in any desired stationary
nucleotide frequencies, denoted by m. To this end, three additional free parameters are added
to the model: 74, 7o, and 7g, representing the frequency of A, C, and G (the frequency of T,
7 is constrained such that the sum of all probabilities is 1). Incorporating these parameters
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into the JC, K2P, and SYM models resulted in an expanded set of models, termed F81
(Felsenstein, 1981), HKY (Hasegawa et al., 1985), and the General Time Reversible model
(GTR, Tavaré, 1986), respectively, and in general, models that incorporate this possibility
are usually denoted by “+F”. To retain the time reversibility property, such models take the
following general form

—... pme amg 7T
QIGTR] = Bra —... Odmg enr
ara Ot —... NTT
YA €Tc NG — ...

(39)

Note that the model is time reversible because it satisfies m;Q); ; = 7;Q;,; for all ¢ and j.

8 Basic codon models

The models detailed above all assumed that the only possible characters are the four DNA
nucleotides, i.e., we use an alphabet of size four. When protein-coding nucleotide sequences
are analyzed, the transition rates are highly influenced by the effect they exert on the encoded
protein. In this case, transition rates between codons I and J may depend on the type of
nucleotide substitution, the type of amino-acid replacement, and by codon usage (i.e., the
frequency of the target codon). The use of codon models was originally developed around
the same time by Goldman and Yang (1994) and Muse and Gaut (1994), see also Chapter
4.5 (Lowe and Rodrigue, 2020). The model is generally represented by a 61 x 61 codon rate
matrix, which describes the instantaneous substitution rate from codon I = 714973 to codon
J = j1j273. This matrix assigns different rates to nucleotide substitutions at the three codon
sites according to their type and effect on the coded amino acid:

Qi i T T I and J differ by one synonymous substitution at codon site k
Qr,; =1 7(Ar,Aj)a,, .75 I and J differ by one nonsynonymous substitution at codon site k
0 I and J differ by more than one nucleotide
(40)

Here, 7 is the frequency of codon J and «, j, is the substitution rate between nucleotide
i, to nucleotide jj, which can be parameterized based on any time reversible nucleotide
substitution model, such as GTR or HKY. r(A;, Ay) is the replacement rate between the
amino acids A; and A; encoded by codon I and J, respectively. Note that to maintain
the reversibility property, r(Ar, Ay) should be equal to r(Ay, Ar). In the model originally
suggested Goldman and Yang (1994), (A, As) was dependent on two components: (1) the
physiochemical distance between the amino acids A; and A;, as measured by the matrix
provided by Grantham (1974), and (2) on a free parameter that accounts for the intensity
of selection acting on the encoded protein. In the MG model of Muse and Gaut (1994),
r(Ay, Ar) was represented simply by the selection-intensity parameter w, which specifies the
nonsynonymous to synonymous substitution rate ratio:

Qi T I and J differ by one synonymous substitution at codon site k
Qr,; = way,j, 7y I and J differ by one nonsynonymous substitution at codon site k& (41)
0 I and J differ by more than one nucleotide
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9 Basic amino-acid models

The analysis of sequences at the amino acid level requires an instantaneous rate matrix of
dimension 20 over 20. If the substitution rate between each pair of amino acids is con-
sidered a free parameter, 190 parameters need to be estimated from the analyzed data (189
after matrix normalization), which is both computationally demanding and requires large
amounts of data for accurate inference. Thus, for protein sequences, a pre-computed matrix
is usually used for which the parameters were inferred based on a very large protein dataset.
For example, Dayhoff et al. (1978) curated an atlas of all the available protein sequences
at that time, and estimated the substitution rates based on a maximum-parsimony-like
procedure. When more data became available and when inference procedures improved,
updated matrices were inferred, e.g., the JTT, the WAG, and the LG matrices (Jones et al.,
1992; Le and Gascuel, 2008; Whelan and Goldman, 2001). In addition, matrices for specific
datasets were also introduced: mtREV for mitochondrially encoded proteins (Adachi and
Hasegawa, 1996), cpREV for chloroplast encoded proteins (Adachi et al., 2000), and simil-
arly, matrices for different secondary structures or surface accessibility (Koshi and Goldstein,
1995). These matrices are considered empirical because they are based on averaging sub-
stitution rates across many datasets. This is in contrast to the above mechanistic models,
in which the model parameters were chosen to reflect certain assumptions regarding the
substitution pattern and are estimated for each dataset. Of note, these matrices can be
decomposed into two components:

Q=51 (42)

where S is a symmetrical matrix describing the amino-acid exchangeability component and
the diagonal matrix II represents the amino-acid stationary frequencies. These 20 amino acid
frequencies can be estimated from each analyzed data (the “+F” option), and thus, amino-
acid models are often a mix between a component estimated based on a very large sequence
compendium (the “S” component) and a dataset-specific component (the stationary amino
acid frequencies).

10 Among-site-rate-variation

The above models assume the exact same stochastic process at each sequence site. This
should not be taken to mean that all positions would experience the same number of sub-
stitutions. Due to the stochastic nature of the evolutionary process, given a phylogenetic
tree and a specific model, by chance alone, some sequence sites experience more substitu-
tions than others. These differences in the number of substitutions per site follow a Poisson
distribution (Yang, 1996). However, it is now well established that the distribution of the
number of substitutions per site in real biological data is substantially different from what
can be expected by chance alone, i.e., different from a scenario in which all positions evolve
exactly under the same stochastic model. For example, for a given dataset, there is often
an excess of invariant positions (i.e, they are fully conserved and experience no substitu-
tions along the phylogeny), compared to data simulated assuming a constant model across
sites. Branch lengths reflect the number of substitutions averaged over all sites. Thus, if
the average number of substitutions per site across the entire tree is high, sites that exper-
ience no substitutions are expected to be extremely rare. However, in protein sequences,
for example, there are many more invariant sites than the expected number. These sites
are usually those that are critical for maintaining the function or structure of the protein,
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so that purifying selection removes most of the mutations that appear at these positions.
Models that aim to capture the observed variability of substitution rates among different
sites are called among-site-rate-variation (ASRV) models. To understand how they work,
we first introduce the concept of site-specific evolutionary rate. Consider a site that evolves
along a branch of length ¢, say under the JC model. Because the branch lengths are indic-
ative of the average number of substitutions per site, a site that evolves along a branch of
length t is expected to accumulate half the number of substitutions compared to a site that
evolves along a branch of length 2¢. Consider the case, in which in a specific position the
ancestor character is A and the descent character is C. The likelihood of these data given
a branch length of 2¢ is P4 ¢(2t). An equivalent way to think of this case is of a character
evolving along a branch of length ¢, with a site-specific rate of 2. In general, the likelihood
of a scenario in which sequence Aj, As, ..., Ay evolves into the sequence By, Bs, ..., By
along a branch of length t and with site specific rates r1, ra, ..., ry is:

N
H Py, (ri - 1) (43)

In general, the site-specific rates are unknown. One possibility would be to assign each site
with its own rate parameter. This, however, would result in inevitably large number of
parameters that have to be estimated from the data, and would generally result in inferior
inferences (Mayrose et al., 2004). Instead, we can assume that these rates are taken from a
limited set of values ry, ro, ..., 7%, with corresponding probabilities wy, wa, ..., wg. Thus,
these rates are sampled from a discrete distribution. We can then compute the likelihood
while averaging over all possible rates:

N k
HZPAz‘Bi(Tj 't) C Wy (44)

i=1j=1

The question then becomes how to choose these rates and their probabilities. Tamura and
Nei (1993) were the first to suggest that, for pairwise sequences, rates are gamma distributed.
Yang (1993) showed how to compute the likelihood of a tree assuming the rates are sampled
from a continuous gamma distribution. Later, Yang (1994) showed how assuming the rates
are sampled from a discretized version of the gamma distribution can speed up computations.
By far, the discrete gamma distribution is the most widely used ASRV distribution. The
gamma distribution with parameters o and 3 has mean «/f3 and variance «/3%. Usually,
the unit 1 gamma distribution is used such that = 8 and the mean rate over all sites is 1.
Models incorporating this possibility thus include a single additional parameter, «, and are
usually denoted by “+G”. In the discretized version of these models, it is common to choose
the representative rates, such that each has equal probability 1/k (Yang, 1994). While
alternative approaches for the discretization of the gamma distribution, based on Laguerre
quadrature for example, were suggested (Felsenstein, 2001; Mayrose et al., 2005), these are
rarely used. Additionally, several alternatives to the gamma distribution were proposed.
First, an additional category, specific for invariant sites was proposed, generating the G+1I
model (Gu et al., 1995). Second, Kosakovsky Pond and Frost (2005) suggested to discretize
the gamma distribution into categories based on quantiles estimated using a discretized
beta distribution. Third, Mayrose et al. (2005) suggested that a mixture of several discrete
gamma distributions better captures ASRV compared to using a single gamma distribution.
Finally, Yang (1995) suggested a free parameter distribution, in which both the rates and
their probabilities are parameters which are estimated using maximum likelihood. While
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this distribution is highly flexible and can well approximate data-specific characteristics,
it is also very parameter rich. Introducing ASRV into probabilistic evolutionary models
was shown to increase the accuracy of tree inference and branch lengths as well as many
downstream applications that rely on evolutionary models such as molecular dating (Yang,
1996) and quantifying site specific conservation scores (Mayrose et al., 2004). For a review
regarding modeling ASRV, see Yang (1996) and Pupko and Mayrose (2010).

11 Mixture models

The above models assume that a single ) matrix represents the evolutionary dynamics
across all sites. However, the selective forces and possibly the mutation processes may vary
among sites, and in this sense, such models may be an oversimplification of the evolutionary
process. It is possible to alleviate this restriction by assuming that there are several possible
instantaneous rate matrices Q1, Q2, ..., @n and that each site is associated with one of
these matrices. In case we do not know the matrix that is associated with each site, we
compute the likelihood by averaging over all possible matrix assignments, weighted by their
probabilities:

k
P(D|M) = P(D|M;)P(M;) (45)

Jj=1

where M is the model defined by using the matrix ¢);. This is very similar to likelihood
computations that incorporate site-specific rates , as detailed in the previous section, where
here we average over the various () matrices rather than averaging over the possible rate
categories. Both of these cases are considered mixture models (Zhang and Huang, 2015).
Mixture models are widely used to describe codon evolution. While in the MG codon model
described in Eq. 41 a single w parameter is assumed for all sites, it is clear that the type and
intensity of this selection coefficient vary, with some sites experiencing purifying selection
(w < 1) while some sites evolve neutrally (w = 1) or possibly, under positive selection
(w > 1). Mixture models allow modeling this variability in selection intensity directly. A
set of possible w values is assumed, which results in a set of () matrices. The likelihood is
then computed using the above formula for mixture models. Various mixture models were
suggested for codon models, in which the w values vary according to either a free, a gamma
or a beta distribution (Yang et al., 2000). Using these models it is possible to test for the
presence of positive selection, by contrasting the likelihoods of a null mixture model that
allows only Q matrices with w < 1 and an alternative mixture model that also includes a @
matrix with w > 1. Such models are also often used to infer the posterior estimates of w for
each site, thus revealing sites that evolve under specific selection regimes (Cannarozzi and
Schneider, 2012).

12 Gene family models

The above models consist of continuous time Markov chains of nucleotide, amino acid and
codon sequences. However, Markov models were also developed to describe the evolutionary
dynamics of gene families. The simplest form of such models allows the analysis of phyletic
patterns, in which the dataset is a matrix representation of gene family presence and absence
across a set of genomes, in which each row represents a genome, each column represents a
gene family, and the ¢, 7 entry in the matrix is 1 if a member of gene family j is present in
genome 4 and 0 otherwise. The states of such a model are binary {0, 1}, and thus, a two by
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two () matrix is used to model the evolution of these characters. In such a matrix, A = Qo1
is the gain rate and p = Q1o is the loss rate:

T 0

We note that a gain event may reflect either de-novo emergence of a gene family or cases of
gains by obtaining a copy of a gene via horizontal gene transfer. We also note that a ‘1’ to
‘0’ transition reflects the loss of all copies of a given gene family. Using this rate matrix, it
is possible to derive explicit formulae for P;;(t) (Ross, 1996). Imposing reversibility on such

a matrix, i.e., mpA = mp results in the condition p = Amp/7; and we obtain an alternative
representation:

ol el 2T 2)m[T 2]

)\770/71’1 —)\71'0/71'1 o —T0 o —70

Here, rg is a scaling parameter. Modifying its value would only change the total number of
transitions along the phylogenetic tree but not the relative number of gains and losses. If we
impose the constraint that branch lengths reflect average number of substitutions along the
tree, we should enforce ), m;Q; ; = —1, which for this case yields ro = 1/(2mo71) and since
mo+ w1 = 1, this model has only a single free parameter: 7. The above model was used and
extended in various studies. Hao and Golding (2006) assumed that the gain and loss rates
are equal, thus ensuring that the size of the genome does not vary much during evolution.
Cohen et al. (2008) extended this model by allowing unequal gain and loss rates as well as
introducing rate variation among gene families using a discrete gamma distribution. In such
a model, the rate varies but the gain and loss rate ratio is assumed to be identical among all
gene families. Subsequent development alleviated this assumption of fixed gain and to loss
ratio by introducing mixture models (Cohen and Pupko, 2010; Spencer and Sangaralingam,
2009). One interesting aspect of such models is the need to correct for unobservable data
when analyzing empirical data. Consider a case where the ancestral gene family was lost in
all its descendants. In the phyletic pattern, this corresponds to a column of zero, reflecting
a gene family that is absent from all present-day genomes. However, in empirical data,
columns of zero are never observed because phyletic patterns are constructed by homology
searches among present-day genomes. Felsenstein (1992) already noted and suggested a
solution for this problem when analyzing restriction site presence-absence data. Specifically,
the likelihood of the observed data for a specific gene family (D) is in fact conditioned on
not being a column of zeros. Let Cy and C'. be the events “a column of zeros” and “not a
column of zeros”, respectively. We obtain:
P(D&CY) P(D)

POIC)="pcr) = 1=P(Cy) e

Thus, the desired probability, P(D) is the product of the conditional probability and the
probability of a column not made entirely of zeros. The latter can be easily estimated by
computing the probability of the complementary event—a column of zeros. In the above
continuous time Markov models, the state “1” represents one or more copies. Instead, it is
possible to extend such models to explicitly account for the number of copies in each gene
family. In theory, the number of states is infinite but in practice a pre-defined upper bound,
M, is used to transfer the state space into a finite state Markov chain, such that the last
state includes all values equal or above that number. In this case, the data are coded over
the alphabet 0, 1, 2,..., M. The rate matrix in this case is a variant of a birth death model
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(Ross, 1996), where the birth rate, A, and the death rate, J, are the rates of a single gene
gain or loss:

A j=idl
Qij =06 j=i-l (49)

0 otherwise

Here too, several extensions have been proposed that allowed for: (i) de novo emergence
of a gene family, as specified by the birth-death-innovation model (Csurés, 2010; Karev
et al., 2003; Librado et al., 2012; Spencer et al., 2006), (ii) the possibility of whole genome
duplication (Rabier et al., 2014), (iii) dependence of the gain and loss rates on the number of
gene families (Spencer et al., 2006), and (iv) accounting for differential sequencing coverage
and quality of annotations across genomes (Han et al., 2013).

13 Indel models

While probabilistic substitution models are now routinely used when reconstructing phylo-
genetic trees or searching for positive selection, for the inference of multiple sequence align-
ments, ad-hoc methods are commonly employed. This difference stems from the fact that
modeling insertion and deletion (indel) events is more challenging compared to modeling
substitutions, mainly because incorporating indel events within the likelihood function viol-
ates the assumption that different sites evolve independently, which is required for efficient
likelihood computations. In a breakthrough paper, Thorne et al. (1991) developed the first
probabilistic model that includes indel events (the TKF91 model). Unlike substitution mod-
els, in which the number of states in the Q matrix is 4, 20 or 61 (for nucleotides, amino
acids, or codons), in TKF91, the sequences need to be considered as whole and cannot be
seen as “independent columns”. Thus, the number of states is exponential in the length
of the sequence. This large number of possible states makes direct exponentiation of an
explicit @@ matrix impossible. To reduce the complexity of the model, the TKF91 model
assumes that ; ; = 0 if the length difference between sequences i and j is greater than
one. This assumption implies that longer length differences are the outcome of several in-
del events of length one. While this assumption is clearly unrealistic from what we know
of indel mutations, it was made in order to make computations with this model feasible.
The introduction of Bayesian integration techniques in TKF91 as well as advanced dynamic
programming algorithms further enhanced the ability to compute with such a probabilistic
indel model. The TKF91 was extended by the same group of researchers to allow longer
indels (TKF92, Thorne et al., 1992). However, to overcome computational challenges, it
was assumed that overlapping indels never occur through evolution, which is again biologic-
ally unrealistic. A full long-indel model was developed by Miklos et al. (2004). While this
model allows indels of any size and overlaps, it is extremely computationally intensive and
cannot be applied for more than a handful of sequences. Recently, Levy Karin et al. (2018)
introduced significant accelerations to this long-indel model and demonstrated that using
such an indel model results in more accurate pairwise alignments compared to widely-used
alignment programs, such as MAFFT (Katoh and Standley, 2013), which do not rely on an
explicit probabilistic model. Statistical alignment algorithms aim at the joint inference of
trees and alignments using probabilistic models (Steel and Hein, 2001). Current tools for
statistical alignments such as BaliPhy (Redelings and Suchard, 2005) rely on hidden Markov
Models (HMMs), which are also probabilistic-based indel models. However, implicitly, in
HMM-based models there is a distinct Markov model for each tree branch. In contrast,
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the indel models presented above describe a single process over the whole tree, in which a
single set of model parameters is shared among all tree branches. While indel-based mod-
els currently lag behind substitution-only models, their development holds the promise to
dramatically change various molecular-evolution applications, such as sequence alignment
algorithms, the characterization of indel evolutionary dynamics in various genes and lin-
eages (Chen et al., 2009; Levy Karin et al., 2017a; Lunter, 2007), algorithms for simulating
sequences (Cartwright, 2005; Fletcher and Yang, 2009) as well as downstream analyses such
as tree inference and molecular dating.

14 More sophisticated models

With the increased availability of sequence data and the increased computational resources,

the development of more sophisticated inference procedures of sequence evolution has un-

dergone accelerated evolution in itself. A very partial list of influential directions in model
development includes:

1. models that account for variation of the process among tree branches. Such model
include, for example, codon models that allow for positive selection only on a subset
of tree branches (see Yang et al. (2002); Chapter 4.5 [Lowe and Rodrigue 2020]) and
models that allow the rate of evolution to change along the tree, e.g., the covarion
models (Galtier, 2001);

2. more sophisticated mixture models, which allow averaging over a set of empirical amino-
acid matrices (Quang et al., 2008) or sampling amino acid matrices using a Bayesian
approach (see also Lartillot and Philippe (2004); Chapter 1.4 [Lartillot 2020]);

3. models that integrate protein structure information with sequence evolution (Choi et al.,
2007);

4. models that integrate trait information with sequence evolution (Lartillot and Poujol,
2011; Levy Karin et al., 2017b);

5. models in which the substitution rate continuously evolves (Lartillot and Poujol, 2011);

6. models that allow different partitions of the datasets to evolve under different sets of
parameters (Nylander et al., 2004; Lanfear et al., 2016).
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