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A Novel Lip Descriptor for Audio-Visual Keyword
Spotting Based on Adaptive Decision Fusion

Pingping Wu, Hong Liu*, Xiaofei Li, Ting Fan, and Xuewu Zhang

Abstract—Keyword spotting remains a challenge when applied
to real-world environments with dramatically changing noise.
In recent studies, audio-visual integration methods have demon-
strated superiorities since visual speech is not influenced by
acoustic noise. However, for visual speech recognition, individual
utterance mannerisms can lead to confusion and false recognition.
To solve this problem, a novel lip descriptor is presented involving
both geometry-based and appearance-based features in this
paper. Specifically, a set of geometry-based features is proposed
based on an advanced facial landmark localization method.
In order to obtain robust and discriminative representation, a
spatiotemporal lip feature is put forward concerning similarities
among textons and mapping the feature to intra-class subspace.
Moreover, a parallel two-step keyword spotting strategy based
on decision fusion is proposed in order to make the best use
of audio-visual speech and adapt to diverse noise conditions.
Weights generated using a neural network combine acoustic and
visual contributions. Experimental results on OuluVS dataset and
PKU-AV dataset demonstrate that the proposed lip descriptor
shows competitive performance compared to the state of the
art. Additionally, the proposed audio-visual keyword spotting
method based on decision-level fusion significantly improves the
noise robustness and attains better performance than feature-
level fusion, which is also capable of adapting to various noisy
conditions.

Index Terms—Keyword spotting, Audio-visual fusion, Visual
speech recognition, Noisy conditions.

I. INTRODUCTION

AUTOMATIC speech recognition (ASR) has gained wide
research attention in the past decades [1]–[3]. In some

scenarios, continuous speech recognition that performs a com-
plete transcription is not necessary since the key information
lies in only part of the input utterance [4]. Alternatively,
keyword spotting (KWS) deals with the identification of some
predefined words instead of the whole utterance and can obtain
fast access to the key information [5], [6]. Compared with
continuous speech recognition, KWS has the capability to cope
with situations where various disfluencies and artifacts make
the full-scale speech recognition difficult. Besides, without
entire utterances to decode, KWS also leads to less time
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Fig. 1: Primary modules of an AV-ASR system

complexity. Therefore, KWS is more suitable for special
applications like human-robot interaction (HRI).

For KWS, there are three typical approaches: HMM-filler
based KWS, phoneme lattice based KWS and large vocabulary
continuous speech recognition (LVCSR) based KWS [7].
The most common KWS approach is LVCSR-based KWS
which uses an LVCSR system to generate a word lattice and
then perform a search within the lattice for the keyword.
Although state-of-the-art KWS technology has achieved sig-
nificant progress and has been successfully applied to some
well-defined applications [8]–[10], its performance degrades
heavily when applied to real-world environments due to the
massive corruption of speech signals.

In order to improve the performance of ASR in the presence
of noise, numerous methods have been explored, one of which
employs the visual information of vocal organs during the
articulating process. Indeed, the intrinsic mechanism of both
human speech production and perception is bimodal [11].
When we communicate with others, we not only “listen” but
also “look”. Moreover, visual information is not affected by
the acoustic environment. Therefore, audio-visual automatic
speech recognition (AV-ASR) that combines visual speech
with acoustic speech, is widely investigated to improve noise
robustness [12]–[16]. Fig. 1 shows the basic diagram of AV-
ASR, including acoustic feature extraction, visual front end
design and audio-visual integration. Visual front end design
includes face detection, lip localization and visual feature
extraction.

While extensive research has been conducted on AV-ASR,
few studies address audio-visual keyword spotting (AV-KWS).
Ming Liu et al. designed an English-oriented audio-visual
word spotter based on feature-level fusion without any adap-
tion to various noisy conditions [17]. Shivappa proposed a hi-
erarchical audio-visual cue integration framework for activity
analysis in intelligent meeting rooms where KWS is merely a
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Fig. 2: Audio-visual KWS system showing parallel spotting strategy

small task used to evaluate the performance of beamforming,
without specific research on AV-KWS [18]. Additionally, there
has been a major focus on English-oriented audio-visual
isolated word recognition or connected word recognition, but
few studies have addressed AV-KWS. Furthermore, fairly little
attention has been paid to AV-KWS for Mandarin, which is
one of world’s major languages.

In this paper, a decision fusion based AV-KWS strategy is
proposed for Chinese Mandarin using a novel lip descriptor.
Fig. 2 shows the overall diagram of our AV-KWS system. This
paper is a refined and expanded version of our conference
proceedings paper [19]. The main contribution of this paper
is as follows: 1) For visual speech recognition, a novel lip
descriptor is proposed that represents robust and discriminative
shape and texture information aiming at suppressing large
intra-class variance. Specifically, the state-of-the-art method of
facial landmark localization is applied and a set of geometry-
based features is proposed based on the localized landmarks.
Also a spatiotemporal lip feature is proposed that represents
texture changes concerning similarities among them. 2) To
adaptively deal with diverse noise conditions and comple-
mentarily combine audio speech and visual speech, a parallel
two-step KWS strategy based on decision fusion is included.
Besides, weights generated using a neural network combine
acoustic and visual contributions.

The rest of this paper is organized as follows. In Section
II, a novel lip descriptor is presented which consists of the
shape difference feature (SDF) and the spatiotemporal lip
feature (STLF). In addition, facial landmark localization used
for lip region cropping is introduced. Section III presents our
adaptive audio-visual integration strategy based on decision-
level fusion. Issues in generating integrating weights using a
neural network based on stream reliability are also discussed.
Then, a parallel two-step keyword spotting strategy as well
as an additional step that deals with the time-overlapping
situation is described. Experimental results and discussions
are provided in Section IV. Finally, conclusions are drawn in
Section V.

II. VISUAL FEATURE EXTRACTION

Visual speech recognition (VSR), also known as lipreading,
is a task of recognizing utterances by analyzing visual record-
ings of a speaker’s talking mouth without any acoustic input
[20]. For both AV-ASR and VSR, visual feature extraction is
a key research topic and has drawn wide research attention.
A review of recent advances in visual speech recognition can
be found in [21]. Ziheng Zhou et al. proposed a generative
latent variable model to provide a compact representation of
visual speech data and obtained promising results [20]. In
earlier work [22], a practical lipreading system was developed
using a simple deterministic model with a low-dimensional
manifold, through which visual features extracted from frames
of a video could be projected onto a continuous deterministic
curve embedded in a path graph. Based on the proposed
method, speech videos can be normalized to a standard length.
In [23], a spatiotemporal descriptor based on local binary
patterns was used for describing isolated phrase sequences,
which was originally proposed for texture recognition. Yuru
Pei et al. presented a random forest manifold technique and
applied it to lipreading in color and depth videos [24], in which
multiple conventional features like local binary pattern (LBP)
and histogram of gradients (HOG) were employed. Gener-
ally, most work utilizes either geometry-based or appearance-
based visual features directly from other recognition tasks like
texture, face, and expression recognition without considering
the characteristic of talking mouths. Moreover, most work
overlooks the state-of-the-art approaches of facial landmark
localization, which can be used to accurately crop the region
of the talking mouth.

In the following subsections, first, an advanced facial land-
mark localization method is employed to promote the process
of visual feature extraction, which is crucially important for
visual feature extraction in VSR. Second, shape difference
features are presented to represent geometric information of
lips. Finally, a spatiotemporal lip feature is introduced to
capture textures and dynamics of lip movements concerning
the following two aspects in the process of speaking: 1)
individual variables containing personal identity information
leading to large intra-class variance, which are irrelevant to
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Fig. 3: Flowchart of lip region cropping (a): input utterance video, then perform the coarse face detection; (b): fast shape regression in a coarse to fine manner; (c): face alignment
and cropped lip regions.

VSR and need to be suppressed; 2) utterance variables includ-
ing texture, shape and dynamic changes of the mouth region
during speaking, which are the key resource to distinguish
different utterances.

A. Lip Region Cropping

Facial landmark localization locates fiducial points on a face
image, which is essential for tasks like face recognition and
face animation. As a classical method of facial landmark lo-
calization, the active appearance model (AAM) is customarily
used for the conventional visual front-end in AV-ASR. It is
an optimization-based method relying on a parametric model
that minimizes parametric errors in the training process. This
method is indirect and sub-optimal because smaller parameter
errors are not necessarily equivalent to smaller alignment
errors. Also, it is well known that AAM is highly sensitive to
initialization due to gradient descent optimization. In recent
related work [25]–[28], considerable improvements have been
made. In particular, a novel regression-based approach without
using any parametric shape models is presented in [26].
It shows extraordinary performance in both accuracy and
efficiency on three canonical databases BioID [29], LFPW
[30] and LFW87 [31]. Based on this approach, a face shape
or semantic facial landmark method is employed here for lip
region cropping instead of the conventional AAM.

Assume that a face shape S = [x1, y1, ..., xN , yN ]T consists
of N facial landmarks. Given a facial image, the goal of
face landmark detection is to estimate a shape S that is as
approximate as possible to the true shape Ŝ, i.e., minimizing
‖S− Ŝ‖. The basic shape regression framework is as follows.
First, boosted regression [32] is used to combine T weak
regressors (R1, ..., Rt, ..., RT ) in an additive fashion. Given
a facial image I and initial face shape S0, each regressor
computes a shape increment ∆S from image features and then
updates the face shape, which can be formulated as:

St = St−1 +Rt(I, St−1), t = 1, ..., T. (1)

Given N training examples
{

(Ii, Ŝi)
}N

i=1
, the regressors are

sequentially learned until a training error no longer decreases.
Each regressor Rt is learned as follows:

Rt = arg min
R

N∑
i=1

∥∥∥Ŝi − (St−1
i +R(Ii, S

t−1
i ))

∥∥∥ , (2)

where St−1
i is the estimated shape in previous stage. Com-

pared with [26], a smart restart approach [27] is added to

Fig. 4: Four types of shape representation: (a) the lip width and height; (b) shape
information in the vertical direction; (c) the outer lip contour; (d) the inner lip contour

predict previous failure cases. Referring to [26], [27], the two-
level cascaded regression and correlation-based feature selec-
tion are adopted in this paper. In regression preprocessing, a
rough face box is detected, then the landmark is estimated in a
coarse-to-fine manner as illustrated in Fig. 3 (b). Sequentially,
geometric centers of eyes and mouths can be detected. As a
result, the lip region is cropped depending on the mouth center
after normalizing the face using pre-defined ratio parameters
for the whole sequence as shown in Fig. 3 (c).

B. Shape Difference Feature
Since lip landmarks can be accurately detected due to the

efficiency of the shape regression model, a geometry-based
feature is concerned to precisely represent the shape, such
as lip width, height and contour. The feature named shape
difference feature (SDF) is proposed to take full advantage of
the derived landmarks.

Given M lip landmarks, four types of representations are
developed to comprehensively describe the lip shape here,
as shown in Fig. 4 by calculating the Euclidean distance
between two landmarks: (a) The lip width and height form
a vector denoted as d1; (b) All the vertical distances between
corresponding landmarks form a vector d2; (c) The outer lip
contour is represented by vector d3 including distances be-
tween outer circle landmarks and mouth center; (d) The inner
lip contour is represented by vector d4 including distances
between inner circle landmarks and mouth center. Denote
dt = [d1

T ,d2
T ,d3

T ,d4
T ]T as the feature vector from

the t-th frame. Concerning the interference from difference
of individual mouth appearances, the final shape difference
feature vector d is computed as:

d = [(∆d1)T , (∆d2)T , ..., (∆dT )T ]T ,

∆dt = |dt+1 − dt|, t = 1, ..., T ,
(3)

where T is the number of frames of the utterance video and |·|
means taking the absolute value of each element of dt+1−dt.

C. Spatiotemporal Lip Feature
The mouth appearances of different speakers uttering the

same word are diverse, which leads to large intra-class
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Fig. 5: Process of obtaining spatiotemporal lip feature

variance. To obtain a robust representation of texture and
dynamic changes in the detected lip region and to narrow
down intra-class distance, a spatiotemporal lip feature (STLF)
is proposed with the following steps: 1) parting each cropped
mouth region into K blocks and forming into K volumes by
putting corresponding blocks together in an utterance video;
2) extracting low-level features from sampling patches; 3)
employing locality-constrained linear coding (LLC) [33] to
encode low-level features into higher ones and implementing
the proposed mix pooling; 4) employing whitened principle
component analysis (WPCA) to narrow down intra-class vari-
ations. The overall procedure is illustrated in Fig. 5.

As an aid to illustration, we introduce the term texton here
which is defined as a mini-template that consists of a varying
number of image bases with some geometric and photometric
configurations [34]. To enhance textons and suppress Gaussian
noise, a difference of Gaussians (DoG) filter is first applied to
each cropped mouth region. Sequentially, the low-level patch-
based features pi ∈ RD, i ∈ {1, 2, ..., N} are extracted from
the volume, where D is the dimension of the feature vectors
obtained.

Locality-constrained Linear Coding (LLC): Although
the low-level patch-based features are able to capture subtle
textons in the mouth region, it is not optimal to use them
directly without coding since great similarities among textons
may result in low discriminability. To derive a more robust and
discriminative descriptor, LLC [33], a fast and effective coding
strategy is used to encode the low-level patch-based features,
which shows better performance than common coding schemes
such as vector quantization and sparse coding.

When it comes to coding, a codebook needs to be employed
and K-Means [35] is utilized. Denote the over-complete sub-
codebook as Bk, which is learned from the low-level patch-
based features in the corresponding volume k. Therefore, the
codebook B is constructed as follows:

B = {Bk|k = 1, ...,K},
Bk = [bk,1, bk,2, ..., bk,M ] ∈ RD×M ,

(4)

where M is the number of entries in the codebook and M �
D. Then, the low-level patch-based features can be encoded
using the following criteria, which has an analytical solution:

min
C

N∑
i=1

‖pi −Bkci‖2 + λ‖di � ci‖2,

s.t. 1T ci = 1,∀i,

(5)

where
⊙

denotes element-wise multiplication, ci is the re-
constructed vector, i.e., the code, C = [c1, c2, ..., cN ] the set
of codes and di ∈ RM is a locality adaptor which assigns
different proportion for each basis according to similarity
defined as:

di = exp

(
dist(pi,Bk)

σ

)
,

dist(pi,Bk) = [dist(pi, bk,1), ..., dist(pi, bk,M )],

(6)

where dist(pi, bk,j) is the Euclidean distance between pi and
bk,j and σ is used to adjust the weight decay speed of the lo-
cality adaptor. In (5), the item

∑N
i=1 ‖pi−Bkci‖2 representing

reconstruction error is minimized and the regularization term is
used to derive more discriminative reconstruction, generating
similar codes for similar textons. The analytical solution of
(5) is as follows:

c̃i = (Ci + λdiag(d)) \1, (7)

ci = c̃i/1
T c̃i, (8)

where Ci = (Bk − 1pT
i )(Bk − 1pT

i )T denotes the data
covariance matrix.

Mix Pooling: After deriving a set of high dimensional
codes, feature pooling is applied here to obtain statistical
information in each volume. This also improves the robustness
and makes subsequent calculations more orderly. Generally,
there are two common pooling strategies, namely sum pooling
and max pooling. Specially, the feature of the k-th volumes
can be obtained as:

sumpooling : xk =

T∑
t=1

∑
ci∈St

k

ci, (9)

maxpooling : xk = max
t∈[1,...,T ]

max
ci∈St

k

ci, (10)

where T is the number of frames of the utterance video, St
k

is the t-th frame from the k-th volume, and ci represents the
i-th code in St

k.
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Max pooling features can capture the salient properties
of a region [36], thus it can be employed in each divided
block. However, max pooling features among blocks in a
volume could result in losing dynamic information of the
talking process. Thus mix pooling is proposed to maintain
the dynamic information between frames in a volume while
obtaining salient textons in a block, which is defined as
follows:

mixpooling : xk =

T∑
t=1

max
ci∈St

k

ci. (11)

WPCA: As the feature vector xk derived in the above
step is of high dimension, a compact representation needs to
be explored. Commonly, principle component analysis (PCA)
is used to the reduce feature dimension by only preserving
the eigenvectors corresponding to large eigenvalues. Consid-
ering that there are great differences among utterances of
the same keyword by different people, PCA may have a
tendency to magnify the difference. To suppress the difference
from personal variations, whitened PCA (WPCA) is applied
through the following steps: 1) Map the feature xk to intra-
class subspace by calculating the intra-class covariance matrix
Ck ∈ RM×M of k-th volumes of all training examples.
2) Let Λ = {λ1, ..., λg} be the g largest eigenvalues and
V = [v1, ...,vg] be the corresponding eigenvectors. 3) Ob-
tain a compact representation yk for the k-th volume of an
utterance video as follows:

yk = diag(λ
−1/2
1 , ..., λ−1/2g )V Txk. (12)

Note that the features are multiplied by the inverse of the
eigenvalues, which suppresses the responses from larger eigen-
values. Therefore, the difference from individual variables, i.e.,
intra-class dissimilarity is reduced. Thus the feature vector for
all K volumes of an utterance can be represented as:

y = [y1
T ,y2

T , ...,yk
T ]T . (13)

We also apply WPCA to SDF which was introduced in the
previous subsection, and it remains the same notation d. So
the combination of two features can be represented as:

f = [dT , µ · yT ]T , (14)

where µ is an adjustment factor to balance the relative impor-
tance of two features. To select a proper µ, a method similar
to that in [37] is adopted.

III. PARALLEL TWO-STEP KWS STRATEGY BASED ON
DECISION FUSION

A. Adaptive Audio-visual Integration

For AV-KWS, the audio-visual integration module plays an
important role. Obviously, contributions of acoustic informa-
tion and visual information are different under various noisy
conditions. Therefore, the decision on how to fuse acoustic
and visual information significantly influences the final per-
formance. Generally, there are two broad fusion categories:
feature-level fusion and decision-level fusion [14]. Feature-
level fusion directly concatenates the features of the two

Fig. 6: Framework of feature-level fusion and decision-level fusion

modalities into a larger feature vector in a plain way, or it
adopts some appropriate transformations. Recognition is then
conducted using a single classifier based on the concatenated
feature vector as shown in Fig. 6 (a). Alternatively, in decision-
level fusion, audio and video modalities are integrated at the
classifier output level as shown in Fig. 6 (b). Specifically,
decision fusion is classified into three possible categories,
namely “early” integration (multi-stream HMM), “intermedi-
ate” integration and “late” integration integration. These three
categories respectively correspond to classification at state-
level, word-level and utterance-level [11].

Compared with feature-level fusion, decision-level fusion
approaches have important advantages in handling different
noisy conditions [11], [14]. Feature-level fusion concatenates
acoustic features and visual features into a larger feature vector
with higher dimensionality, thus more training data are needed
to ensure adequate probabilistic modeling. In contrast to
feature-level fusion, decision-level fusion can explicitly model
the reliability of two modalities, which is of great significance
since the discrimination power of the two modalities may vary
widely. According to differing noisy conditions, integrating
weights are relatively easy to generate. This facilitates control
of the contributions of the two modalities using decision-level
fusion, independently handling the two modalities.

In this paper, late integration of decision fusion is employed
in order to cope with different noise conditions and develop
a noise-robust AV-KWS system. Also, conventional AV-KWS
based on HMM is utilized, where acoustic HMMs and vi-
sual HMMs are respectively trained to provide corresponding
modality likelihoods of a given multi-media source. Integrated
scores can be obtained by linearly combining acoustic and
visual log-likelihoods of keyword candidates using the appro-
priate weights as follows [38]:

log p(OAV |λi) = γ log p(OA|λAi ) + (1− γ) log p(OV |λVi ),
(15)
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Fig. 7: Log-likelihoods of HMMs under different noisy conditions

where γ denotes the integration weight with a value between
0 and 1. OA and OV are the acoustic and visual feature
sequences of a keyword candidate while λAi and λVi are the
acoustic and visual HMM of keyword i. Items log p(OA|λAi )
and log p(OV |λVi ) represent the corresponding acoustic and
visual log-likelihood.

For a specific environment, an integration weight with a
constant value can be estimated according to optimal per-
formance under specified conditions. However, when audio-
visual environments change dramatically, a fixed integration
weight is insufficient to cope with the noise-varying con-
ditions. Confronted with diverse noisy conditions, a crucial
issue lies in obtaining adaptive integration weights based
on the reliabilities of two modalities [39]. Fig. 7 shows a
typical example of the output log-likelihoods given a speech
with different noise conditions. It can be observed that the
output log-likelihoods of each HMM in quiet environments
display great differences while small differences are noted
when environments are noisy. A large difference reflects less
ambiguity and larger certainty for recognition. Since the output
log-likelihood of HMMs can reflect current noisy conditions, it
has been commonly used as a reliability measure [40]. Various
forms of reliability measures based on log-likelihoods have
been implemented by researchers [41]–[43]. In this paper,
the average difference against the best hypothesis with the
maximum log-likelihood [42] is adopted as the reliability
measure:

D =
1

N − 1

N∑
i=1

(
max

j
Lj − Li

)
, (16)

where Li = log p(O|λi) is the output log-likelihood of the
i-th HMM and N denotes the number of HMMs.

Studies show that the average difference against the maxi-
mum log-likelihood (Diffmax) in (16) has the best recognition
performance under different noisy conditions from an overall
point of view [14]. Lewis and Powers pointed out that the
intrinsic errors of other dispersion forms in measuring reliabil-
ities leading to their inferiority to Diffmax [44]. Therefore, the
reliability measure of average difference against the maximum
log-likelihood is used in this paper.

A neural network is then utilized to map the two input relia-
bilities to the optimal weight. Regarding a keyword candidate
with a starting and ending time, corresponding reliabilities
of each modality (DA and DV ) can be effectually obtained.
Integrating weight γ can be calculated by the function f
modeled by the neural network for a given pair of acoustic,
visual reliabilities (DA, DV ) as follows:

γ = f(DA, DV ). (17)

In order to obtain adaptive weights for various conditions,
acoustic speech utterances with different SNRs and visual
speech utterances with different image resolutions are utilized
to train the neural network. The trained neural network can
generate the optimal weight of a keyword candidate for
different conditions, not limited to the conditions used for
training.

The precise training process proceeds as follows: (1) Cal-
culate DA and DV of a given labeled keyword (The keyword
in the utterance is artificially labeled). (2) Exhaustively search
the optimal weight over the space of [0,1] with a step of 0.01
and check whether the recognition result using the particular
weight value is correct. (3) Train the neural network using the
input reliabilities and the corresponding optimal weights.

B. Two-step Keyword Spotting Strategy

To determine the benefit of visual modality to KWS using
the adaptive weights, the conventional HMM-filler based KWS
is employed. This method is primarily used in application
fields such as dialogue systems, and command control and
information consultation. More specifically, our KWS system
applies the conventional two-stage strategy: picking out pos-
sible keyword candidates to include true keywords embedded
in unconstrained speech in the first stage, and rejecting false
alarms in the second stage. Since acoustic recognition per-
formance drops significantly in acoustically noise conditions,
the strategy of merely performing visual re-scoring on the
acoustic candidate is abandoned. Alternatively, a parallel two-
step recognition is introduced to complementarily make full
use of two modalities, as shown in Fig. 2.

Step 1: With the trained acoustic and visual keyword
HMMs as well as the filler models, acoustic and visual
keyword searching are first conducted in parallel on the tested
speech, generating a number of acoustic keyword candidates
as well as visual keyword candidates with the corresponding
log-likelihoods.

Step 2: For a keyword candidate obtained by either
modality with a starting and ending time, re-scoring based
on the other modality of the keyword is then performed since
acoustic keyword candidates may not be the same as the visual
ones, especially when acoustic environments are too noisy.
Therefore, each candidate receives an acoustic and a visual
log-likelihood.

With the corresponding acoustic reliability DA and visual
reliability DV being calculated, the trained neural network
takes DA, DV as input factors and outputs the optimal weight.
Next, integrated scores of keyword candidates can be obtained
by linearly combining the acoustic and visual log-likelihoods
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Fig. 8: Additional step to deal with the overlapping acoustic and visual candidates

using the estimated weights in (15). Finally, rejection is
implemented based on the integrated scores of each keyword
candidate to remove false alarms. Taking the background noise
into consideration, rejection based on likelihood ratio [45] (or
log likelihood difference) denoted as Lr is utilized due to its
robustness to noise, as follows:

Lr = log p(OAV |λi)− log p(OAV |Filler), (18)

where log p(OAV |λi) is the integrated log likelihood of the
keyword model λi and log p(OAV |Filler) is the integrated log
likelihood of the filler model. Similarly, log p(OAV |Filler)
can be calculated based on the filler model by linearly com-
bining corresponding acoustic and visual log likelihoods. The
candidate is accepted as a true keyword when its log likelihood
ratio is greater than a threshold, otherwise it is considered as
a false alarm and is rejected.

Conventionally, recognition result analysis is performed
by comparing it with an artificially labeled reference after
keyword verification. As depicted in Fig. 8, some acoustic
and visual keyword candidates are directly removed as false
alarms in the rejection step (case (2) in Fig. 8). For those
remaining candidates after rejection, an additional step should
be taken since acoustic and visual keyword candidates may
overlap in time. Therefore, a criterion is required to deal with
the situation. For each acoustic and visual keyword candidate
with a corresponding time region and integrated loglikelihood,
if the middle time point of one modality keyword candidate
falls within the time region of the other modality keyword can-
didate, it is regarded as an overlapping instance. Therefore, the
candidate with greater integrated loglikelihood is determined
to be the true keyword while the other is regarded as a false
alarm (case (1) in Fig. 8). For other cases (acoustic and visual
keyword candidates do not overlap in time), candidates are
directly determined to be true keywords (case (3), (4) in Fig.
8).

IV. EXPERIMENTS AND DISCUSSIONS

A. Visual Speech Recognition

This subsection describes experiments that are implemented
on a visual-only benchmark database OuluVS [23] to validate
the proposed visual features. OuluVS consists of 20 subjects
uttering 10 phrases five times with resolution of 720×576

TABLE I: Phrases in OuluVS dataset

C1 “Excuse me” C6 “See you”

C2 “Goodbye” C7 “I am sorry”

C3 “Hello” C8 “Thank you”

C4 “How are you” C9 “Have a good time”

C5 “Nice to meet you” C10 “You are welcome”

pixels. The phrases are listed in Table I. Visual speech
recognition here in particular is to classify the entire phrase.
For preprocessing, the lip regression model is applied and a
100×80 lip region is cropped off from each video frame. Due
to the difference of subjects’ speeds of utterance, the same path
graph based video normalization scheme in [22] is employed.
Concretely, all the utterances are normalized to be 30 frames
long. Experiments are carried out in the speaker-independent
way, that is the training and testing data are from different
subjects. Leave-one-subject-out is employed by training on
N − 1 (N is the total number of subjects in the database)
speakers, while testing on the remaining one. Moreover, an
SVM classifier is trained for each pair of phrases, then the
majority voting scheme is adopted to decide which phrase the
test utterance video belongs to.

Experiment 1: To evaluate STLF, several parameters first
need to be discussed. The DoG filter is set to σ = 2 while
the sampling patch size is set to 6× 6 pixels. The dimension
of WPCA is set to g = 60 while PCA with the same
dimension is also tested for an alternative way. To obtain a
favorable volume size, four segmentation ways, K = 2 × 2,
4 × 2, 5 × 2 and 8 × 4 are considered. Also, different
codebook sizes M = 64, 128, 512 and 1024 are evaluated.
In addition, to verify the proposed mix pooling strategy, max
and sum pooling are also implemented. As shown in Fig. 9
(a), the most advantageous segmentation way is 8×4 and mix
pooling achieves more favorable performance than the other
two pooling strategies. Mix pooling with 8 × 4 segmentation
achieves the highest recognition accuracy of 76.25%. This is
consistent with the previous hypothesis that the mix pooling
selects discriminative features in each frame through max
pooling while preserving the changes between frames through
sum pooling. From Fig. 9 (b), it can be seen that WPCA has
a more competitive performance than PCA, since it has the
ability of reducing intra-class variation. The codebook size is
set to 512 in the following discussions for a good tradeoff
between the performance and the efficiency.

Experiment 2: To explore the performances of SDF, STLF
and their combination, they are compared with state-of-the-art
lipreading methods proposed in [22]–[24]. Further, discrete
cosine transform (DCT), a conventional feature extraction
method in VSR, is also employed as an elementary baseline.
For STLF, the optimal parameters are adopted, that is using
8 × 4 segmentation, mix pooling and WPCA. In Table II
and Fig. 10, “SDF + STLF” represents concatenation of the
two feature vectors, where the adjustment factor µ is set
to 1.2 using coarse to fine procedure. For DCT, 13 most
important coefficients are utilized and their first and second
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Fig. 9: (a) Comparisons of STLF on OuluVS with different segmentations and pooling
strategies with codebook size M = 512 using WPCA; (b) Comparisons of STLF with
different codebook sizes and dimension reduction methods in segmentation 8× 4 using
mixpooling.

Fig. 10: Phrases recognition comparison of different features in the speaker-independent
way on OuluVS database

derivatives are included. More details of the employed DCT
can be found in [46]. Experimental results in Fig. 10 show that
the appearance-based feature STLF demonstrates a far more
competitive performance than the geometric-based feature
SDF. This is due to the fact that STLF extracts from the
pattern level intrinsically, where LLC retains the ability to
generate similar codes for similar textons, meanwhile mix
pooling preserves most salient features and WPCA reduces
the intra-class variance. Despite the accurate detection of
lip landmarks, SDF still largely contains interference due to
differing magnitudes of mouth opening, and differing speeds
and accelerations of mouth movements. However, we regard
SDF as a by-product of facial landmark localization. It is
not computationally expensive but can be used profitably as
a complementary feature. As Fig. 10 shows, label “C1” to
“C10” indicate different short sentences in Table I, where “C6”
denotes “See you” getting the poorest performance. This may
be caused by some quick pronouncing of “See” in the database
as no adequate feature is captured. In Table II, the combination
of SDF and STLF outperforms the methods proposed in [22],
[23] and nearly matches [24] while the performance of DCT
is far behind. Comparatively, Pei et al. [24] employed multi-
modal data HOG, LBP and trajectories shape as well as depth
information. Additionally, the computational complexity of
STLF is O(M + N), which is linearly related to the size of
the codebook and the number of sampled patches.

B. Audio-visual Keyword Spotting on PKU-AV

As only a few common databases are available for AV-ASR
[11], [21], [47] and the existing audio-visual databases are

TABLE II: Lipreading performances on OuluVS

Datasets Methods Accuracy (%)

OuluVS

DCT 37.09
SDF 54.35
STLF 76.25
SDF+STLF 87.55
Zhao et al. [23] 58.85
Zhou et al. [22] 81.30
Pei et al. [24] 89.70

Fig. 11: Exemplar video frames in PKU-AV

rarely concerned with AV-KWS of Mandarin, a novel audio-
visual database named PKU-AV is established to conduct
experiments considering AV-KWS of Mandarin.

This audio-visual database contains 20 subjects (12 male
Asians and 8 female Asians) and there are 300 utterances for
each subject. Concerning the integrated functions of the HRI
including such tasks as smile detection, gender recognition,
and age estimation recognition, 30 frequently used keywords
are defined. The 30 Mandarin keywords translated into English
are as follows: “Forward”, “Backward”, “Left”, “Right”, “Turn
around”, “Fast”, “Slow”, “Start”, “Stop”, “Continue”, “Pay
attention”, “Help”, “Gender”, “Age”, “Identification”, “Smile”,
“Expression”, “Hands up”, “Action”, “Tracking”, “Localiza-
tion”, “Photo”, “Display”, “Play”, “Record”, “Inquiry”, “Se-
lection”, “Function”, “Abstract”, “Update”. One example of a
full utterance including the keyword “Localization” is: “Please
carry out sound source localization”. In accordance with
the pronunciation characteristics of Chinese Mandarin, for
this KWS task, six consonantal and five vocalic visemes are
considered from 47 possible Chinese phonemes. Our database
is constructed with the addition of artificial acoustic noise.
First, an original database is collected in an acoustically quiet
environment under controlled normal light conditions. Video
images are collected at 20 frames per second with a resolution
of 640 × 480 under the restriction that the mouth region is
not occluded. Audio speech is synchronously recorded at the
sampling rate of 16 kHz and 16 bits per sample. Fig. 11 depicts
some representation video frames in the database.

To allow speaker-independent recognition, the database
PKU-AV is divided into three sets: (1) Training sets composed
of original AV data from 7 subjects are used to train acoustic
and visual HMMs. (2) Held-out sets consisting of AV data
from 6 subjects are utilized to train the neural network. The
noisy AV data has acoustic SNRs of 20dB, 10dB and 0dB by
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Fig. 12: FOM performances of different visual features for keyword spotting

addition of white noise. (3) Test sets composed of noisy AV
data from 7 subjects are used to evaluate performances of our
AV-KWS system under various conditions, including different
acoustic noise (white and babble noise) with different SNRs
(20dB, 15dB, 10dB, 5dB and 0dB) as well as various image
resolutions (“100×80”, “50×40” and “25×20”).

For all of the following experiments, the HMM-filler based
KWS method in [7] is employed and the commonly used
Mel-frequency cepstral coefficients (MFCCs) and its delta as
well as delta delta are extracted for acoustic features using
the HTK toolbox [48]. Extracted acoustic and visual features
are individually used to train corresponding HMM classifiers.
To illustrate, both acoustic and visual keyword HMMs are
trained based on the whole word since keyword dependence
can improve the performance [49]. Sub-word units are used as
corresponding filler models and each sub-word unit is modeled
with a 3-state HMM with each state containing eight Gaussian
components. Experimentally, the number of hidden neurons of
the neural network is set to six and figure of merit (FOM)
is utilized for measurement. FOM is defined as the average
percentage of correctly detected keywords as the threshold is
varied from one to 10 false alarms per keyword per hour [7],
[50]. For visual preprocessing, all the faces in PKU-AV are
successfully detected and the lip regression model is applied
to obtain a 100× 80 mouth region from each video frame.

Experiment 3: Performances of SDF, STLF and their
combination on PKU-AV are tested for keyword spotting
through HMM. For DCT, STLF and its combination with
SDF, the parameter settings are the same as in Experiment
2. Comparisons with previous methods [19] are also carried
out with the same experimental protocols to explore the
effectiveness of our proposed visual features. As shown in Fig.
12, both SDF and STLF outperform DCT while the improved
performance of STLF is almost the double that of DCT. The
combination of SDF and STLF achieves the optimal result
followed by STLF and ILBP-TOP proposed in [19]. Moreover,
it can be observed that the performance of individual STLF
outperforms that of LBP-TOP proposed in [23] and ILBP-
TOP, which demonstrates that STLF is a more compact and
discriminative representation. After combing STLF with SDF,
the performance is improved by about 5% as SDF contains
geometric supplementary information to STLF.

Experiment 4: In this experiment, the visual part and
the audio part are integrated based on the decision level.
Experiments are carried out to explore performances of the

TABLE III: Audio-only, vision-only and audio-visual perfor-
mances in terms of FOM (%) using different fusion methods

SNR(dB) 20 15 10 5 0

Audio-only 74.7 57.4 39.2 18.6 6.4

Vision-only 38.6 38.6 38.6 38.6 38.6

Feature-level AV [17] 77.2 65.9 49.2 40.9 37.5

Decision-level AV 80.5 69.1 58.2 43.7 40.8

audio-only, vision-only and audio-visual KWS using SDF,
STLF and their combination under various acoustic noise
conditions (white noise and babble noise). Fig. 13 indicates
that the performance of audio-only recognition significantly
degrades as speech becomes noisier. Vision-only performance
appears the same for all the SNR conditions, which can be
explained by the invariance of visual conditions. In addition,
the integration of acoustic and visual modality significantly
improves the noise robustness of the KWS system. Clean
speech utterances corrupted by white noise with SNR of
20dB, 10dB and 0dB are used to train the neural network.
And tests conducted on white noise and babble noise speech
utterances at various SNR conditions (20dB, 15dB, 10dB,
5dB and 0dB) show that this approach also works well for
untrained noise conditions including different noise levels as
well as noise types. Moreover, audio-visual KWS using STDF
demonstrates more robustness performance than using SDF
when SNR declines, while using their combination obtains
the most favorable result.

Experiment 5: Next, a comparison is made between the
AV-KWS performance based on decision-level fusion using
adaptive weights (using “SDF+STLF” as visual features) and
the feature-based audio-visual keyword spotter proposed in
[17] on the database (white noise corrupted acoustic speech
and original visual speech). Since very little work has been
implemented for audio-visual keyword spotting, this method
is compared to the most related one [17]. As shown in Table
III, this approach is more robust to noise than that of [17]. The
integrated audio-visual performance is at least equal to or bet-
ter than that of unimodality while the integrated performance
in [17] worsens compared to vision-only performance at SNR
of 0dB. An explanation of this phenomenon of the feature-
level fusion approach is that under extremely low SNR, the
audio information introduces harmful cues and may degrade
the overall performance of audio-visual fusion. To offset this,
the contribution of acoustic and visual modality is combined
using adaptive weights according to current SNR conditions in
the decision-level fusion method, which may complementarily
produce a better overall performance.

Experiment 6: Relatively free movement should be allowed
in a friendly face-to-face HRI, which may lead to different face
sizes concerning AV-KWS. In order to explore the influence
of face size changes on performance, experiments are carried
out on videos with different resolutions. Fig. 14 shows the
performances of audio-only KWS and AV-KWS on different
face size changes using combinations of SDF and STLF,
where “100×80”, “50×40” and “25×20” denote different
resolutions of the mouth region. It can be observed that the
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Fig. 13: Recognition performances of the audio-only, vision-only and audio-visual KWS system under white noise and babble noise conditions. (a) performance of white noise
condition using SDF, STLF and their combination. (b) performance of babble noise condition using SDF and STLF their combination.

Fig. 14: FOM performances of different image resolutions

performances of AV-KWS degrade along with the decline
of image resolution, which can be explained by the loss of
texture information as well as motion information. In addition,
performances of audio-visual KWS are more competitive
than those of traditional audio-only KWS, especially under
conditions with low SNR. Even when the image resolution is
down-sampled to “25×20”, audio-visual integration improves
the general performance compared to audio-only KWS. These
performances of different image resolutions caused by changes
of image size can be utilized to guide users to change positions
in a face-to-face HRI for more effective interaction. For
instance, when performance drops dramatically due to the
low image resolution, a reminder can appear that the current
situation is not optimal for interaction and the robot perhaps
should move closer to the user.

C. HRI in Real Environments

This AV-KWS system is also attached to a robot platform.
Nicknamed Pengpeng II, it is an HRI oriented mobile robot
system as depicted in Fig. 15. It is also used as a platform for
sound source localization [51]. In the HRI environment, there
are various kinds of noise in the hall including air-conditioning
noise, motor noise from the robot itself, human voices and so
on. In contrast to database experiments, the SNR cannot be
strictly controlled due to the complexity of noise.

Experiment 7: In the following experiment, three kinds of
noise intensity are estimated: weak noise with an average SNR

Fig. 15: HRI oriented mobile robot Pengpeng II

of 18.6dB, moderate noise with an average SNR of 11.2dB and
strong noise with an average SNR of 4.8dB. An EPD module
is also necessary for HRI in real environments. Therefore, a
GMM-EPD [52] is used for detecting speech activity. Ten
lab members participate in the experiment and each speaks
50 sentences including 10 keywords defined in PKU-AV. In
order to interact with the robot in a friendly way, the subjects
are expected to interact within a range of 1.0 to 1.5 meters
since our visual method has the capability to deal with low-
resolution images to a certain degree. Average performances
are shown in Table IV.

Table IV shows that performances of audio-visual keyword
spotting based on decision fusion degrade compared to ex-
periments on the database PKU-AV in similar SNRs. The
main reason for the drop in performance is the complexity of
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TABLE IV: True positive rate (TPR) and false positive rate
(FPR) of our audio-visual keyword spotting on Pengpeng II

SNR(dB) 18.6 11.2 4.8

TPR 70.2% 47.7% 32.5%

FPR 7.1% 5.8% 4.9%

both acoustic and visual conditions: various noise, illumination
changes, movements of heads, distance changes and so on.
Moreover, in strong noise conditions when audio information
is unreliable, visual speech recognition significantly improves
the performance in real environments.

V. CONCLUSIONS

In order to obtain more robust HRI under various noisy
conditions, this paper develops an audio-visual keyword spot-
ter using novel visual features. The state-of-the-art facial
landmark localization method is utilized to accurately crop and
align lip regions. To make full use of the detected landmarks, a
geometric feature SDF is designed as a complementary feature.
The proposed STLF takes lip texton similarities into account
and works to reduce intra-class variances. A parallel two-
step recognition, based on both acoustic and visual modality,
is also conducted in order to make the best use of the
two modalities under various conditions. Experimental results
validate the effectiveness of the proposed features as well as
their combination. In addition, this audio-visual integration
based on decision level improves the noise robustness of the
keyword spotter. This audio-visual keyword spotter’s ability to
deal with untrained noisy conditions including different noise
levels as well as noise types is strongly confirmed.
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