
HAL Id: hal-02535021
https://hal.science/hal-02535021

Submitted on 7 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tile & Merge: Distributed Delaunay Triangulations for
Cloud Computing

Laurent Caraffa, Pooran Memari, Murat Yirci, Mathieu Brédif

To cite this version:
Laurent Caraffa, Pooran Memari, Murat Yirci, Mathieu Brédif. Tile & Merge: Distributed Delaunay
Triangulations for Cloud Computing. IEEE Big Data 2019, Dec 2019, Los Angeles, United States.
�10.1109/BigData47090.2019.9006534�. �hal-02535021�

https://hal.science/hal-02535021
https://hal.archives-ouvertes.fr

Tile & Merge: Distributed Delaunay Triangulations
for Cloud Computing

Laurent Caraffa
Univ. Paris-Est,

LASTIG ACTE, IGN, ENSG,
F-94160 Saint-Mande, France

laurent.caraffa@ign.fr

Pooran Memari
CNRS-LIX

École Polytechnique
Palaiseau, France

memari@lix.polytechnique.fr

Murat Yirci
Univ. Paris-Est,

LASTIG GEOVIS, IGN, ENSG,
F-94160 Saint-Mande, France

murat.yirci@ign.fr

Mathieu Brédif
Univ. Paris-Est,

LASTIG GEOVIS, IGN, ENSG,
F-94160 Saint-Mande, France

mathieu.bredif@ign.fr

Abstract—Motivated by the needs of a scalable out-of-core sur-
face reconstruction algorithm available on the cloud, this paper
addresses the computation of distributed Delaunay triangulations
of massive point sets. The proposed algorithm takes as input
a point cloud and first partitions it across multiple processing
elements into tiles of relatively homogeneous point sizes. The
distributed computation and communication between processing
elements is orchestrated so that each one discovers the Delaunay
neighbors of its input points within the theoretical overall Delau-
nay triangulation of all points and computes locally a partial view
of this triangulation. This approach prevents memory limitations
by never materializing the global triangulation.

This efficiency is due to our proposed uncentralized model
to represent, manage and locally construct the triangulation
corresponding to each tile. The point set is first partitioned
into non-overlapping tiles, then we construct within each tile
the Delaunay triangulation of the local points and a minimal
set of replicated foreign points in order to capture the simplices
spanning multiple tiles. Inspired by the star splaying approach
for Delaunay triangulation computation/repair, communication
is limited to exchanging points of potential Delaunay neighbors
across tiles. Therefore, our method is guaranteed to reconstruct,
within each tile, a triangulation that contains the star of its
local points, as though it were computed within the Delaunay
triangulation of all points.

The proposed algorithm is implemented with Spark for the
scheduling and C++ for the geometric computations. This allows
both an optimal scheduling on multiple machines and efficient
low-level computation. The results show the efficiency of our
algorithm in terms of speedup and strong scaling on a classical
Spark configuration with both synthetic and real use case
datasets.

Index Terms—Computational Geometry, Delaunay, Cloud
computing, Spark.

I. INTRODUCTION

The need to compute the Delaunay triangulation (DT) of
extremely large point sets in Rd is present across a large
variety of application domains, ranging from computer graph-
ics [FLP14], multimedia [TO00], pattern recognition [XY03],
fluid simulation [ATW13] and computer vision [HKLP09] to
geology [KM09], [WMRL17] and astrophysics [SOJ14].

Given a point set, the DT has the nice feature of being
well defined and unique (in non-degenerate cases) in any
dimension. It guarantees reasonable triangle shapes (at least
in 2D) which yields a decomposition of space in rather

compact triangles, which is paramount for precise numerical
computation.

In the Geo-spatial domain, photogrammetric and LiDAR
sensors are now routinely acquiring massive 3D point clouds
and the computation of their 3D DTs is a common pre-
processing step for higher level workflows such as surface
reconstruction [LPK09], [CBV16].

In addition, with the explosion of deep learning and more
particularly graph neural networks [ZWa19], the computation
of large scale DT combined with efficient data storage be-
comes mandatory to consider large-scale learning on graphs.

This well-studied computational geometry problem [BY98]
is now facing the availability of more and more massive
point sets, which asks for scaling out to out-of-core, parallel
and distributed methods. This article aims to bridge the gap
between efficient single-node DT algorithms and large-scale
application on the cloud in a unified framework.

A. Related Work

Many algorithms have been presented to compute the DT of
massive point sets. Some algorithms have been developed for
only specialized platforms whereas others target a group of
systems with certain architectural properties such as shared
or distributed memory [FS17]. Specialized platforms may
be completely unique or have restricted configurations. For
instance, the algorithm proposed by Chen et al. [CCW06]
requires the number of processing elements (PE) to be powers
of two. In the shared memory systems (e.g. multi-core CPUs),
the main memory of the system is accessible to every PE. On
the other hand, for the distributed memory systems, each PE
possesses its own main memory, e.g. computational clusters.
Generally, algorithms designed for shared memory systems
[BBK06], [BMPS10] are more effective due to the relatively
fast communication between the PEs via the shared memory.
On the other hand, algorithms designed for distributed memory
systems [SOJ14] are not bounded by the size of the shared
memory but by the total number of PEs, their total available
memory or their disk space, which can be extended relatively
easily, and therefore they can operate on larger data sets.

Distributed and parallel computing is not the only way
of dealing with large data sets. Out-of-core algorithms can
process data that is too large to fit into a computer’s main

(a) Tiling of the input point cloud : the original grid tiling is shown on the
point cloud in color. Grid tiles are merged based on a quad-tree, illustrated
by the bounding boxes of the merged tiles.

(b) Local Delaunay triangulation.

(c) Extreme points broadcast.

(d) Star splaying iterations. Red arrows show the exchanges of points
between tiles.

Fig. 1: Example of the full pipeline in 2D. In figure 1c and 1d,
only main triangles (in blue) are shown. Foreign triangles are
not shown.

memory at one time [Vit01]. Agarwal et al. [AAY05] proposed
an out-of-core approach for the computation of constrained
DT. Isenburg et al. [ILSS06] presented a two step out-of-core
algorithm. The first step passes over the input data set three
times, and gathers spatially coherent points into buckets. In
the second step, points from buckets are streamed into an
incremental insertion algorithm. The constructed triangles /
tetrahedra are classified as finalized if their circumcircles /
circumspheres are guaranteed to remain empty. The finalized
triangles / tetrahedra are saved to disk, therefore, only the
unfinalized parts of the triangulation remain in the memory,
which reduces the memory requirements of the algorithm.
The algorithm is very efficient for 2D data sets such that

: Local vertices, : Foreign vertices, : Redundant foreign vertices,
: Local cells, : Mixed cells, : Foreign cells.

Fig. 2: The structure of the distributed triangulation: 2a is the
full triangulation, 2b shows in color the DT of a supset of the
local points of the bottom left corner tile. These extra points,
denoted as foreign points are called redundant if they are not
adjacent to a local point. Simplices may be categorized as local,
mixed or foreign, 2c shows the tile after simplification, by
removing redundant foreign points from the local triangulation.

it can process 11GB of LiDAR points in 48 minutes using
70MB memory, but the performance decreases with 3D surface
point clouds, for which the memory requirements grow due to
the increasing number of unfinalized tetrahedra (as very large
circumspheres may exist).

The authors of [PMP14] that provides one of the most
efficient DT algorithm on a dedicated architecture, introduces
Spark-DIY [CLCN∗18], a “A Framework for Interoperable
Spark Operations with High performance Block-Based Data
Models”. As OpenMp-MPI architecture is fast, the lack of fault
tolerant processes and genericity becomes too disadvantageous
regarding to the application and the infrastructures available
on frameworks like Spark [ZXW∗16].

It is against that background that a highly distributed
algorithm that can be easily deployed on Spark framework
is proposed in this article. Without being optimal in message
passing by using Spark-DIY, the proposed method shows very
good results on scalability tests regarding the number of points
or the number of cores with synthetic and real data sets.

Next, an overview of the proposed method is outlined. In
section II, the algorithm is introduced with the theoretical guar-
antees. Then, section III presents the evaluation. Finally, the
results of our method are shown and discussed in section IV.

B. Overview of the Proposed Method

This algorithm is based on the star playing approach
[She05]. The star of a point is composed of its adjacent
points and simplices in the overall triangulation. Star splaying
maintains independent stars for each point (which may initially
be inconsistent : Point A may think he is a neighbor of B, but
B may disagree) and iteratively shuffles points between stars
until they are all made consistent and converge to the stars
of the overall DT. In our approach, as both the input and the
computation are distributed, the output DT is itself distributed
as well into tiles. The proposed approach ensures that all these
tiles encode the overall DT in a distributed way, but this overall
triangulation is never materialized at any single location.

S 1
1→

2

S
1

2→
1

S 1
2→

3

S
1

3→
2

S n
1→

2

S n
2→

3

S
n

3→
2

P r
1

P r
2

P r
3

P r
4

P r
5

P1 T 0
1

C0
1

P 0
1

S0
1

T 1
1

S1
1

Tn
1

Sn
1

C
∞
1

P2 T 0
2

C0
2

P 0
2

S0
2

T 1
2

S1
2

Tn
2

Sn
2

C
∞
2

P3 T 0
3

C0
3

P 0
3

S0
3

T 1
3

S1
3

Tn
3

Sn
3

C
∞
3

Tn+1
2

Tn+1
3

Tiling

Delaunay Ins;Simp;Splay Ins;Simp;Splay F inalize

Ins;Simp;Splay

: Point set, : DT, : Union operator,
: Memory and Disk persistence, : Disk persistence, : No persistence,

: Active, : Inact, : Node, : Processing step.

Fig. 3: Proposed distributed Delaunay triangulation workflow in Spark. P r denotes the input point set, accessible through
chunks P r

k , Pi the tiled point, T 0
i the local triangulation of the tile, S0

i→all the first broadcasted point set, Sn
i→j the point set

sent from tile i to tile j, Solid (resp. dashed) red arrows show active (resp. inactive) connections between two tiles. C0
i the

finalized cells after the first triangulation and C
∞
i the unfinalized cells at the end. Dashed boxes denote geometrical processing

transformations (e.g. Ins;Simp;Splay denotes an insertion following by a simplification and starsplaying). The color of the
node represents the Spark persistence level.

Figure 1 shows an overview of the algorithm. The input of
the algorithm is a point set, that may be stored in multiple files
or databases across multiple computers due to massive storage
requirements and to benefit from distributed computing. For
this article, we process a 120Go LiDAR point cloud of 1.98
billion of points distributed across 12.000 files stored on the
Hadoop distributed filesystem (HDFS) [SKRC10].

First, the point set is tiled with a distributed octree approach
that consists in choosing a maximum depth of an octree
decomposition and then grouping leaf ids while the union
of merged tiles do not pass a limit number of points (see
figure 1a). The local DT of each tile is computed (see
figure 1b). Cells where the circumsphere is inside the bounding
box are finalized (i.e extracted and stored), and a point that is
only incident to finalized simplices is removed as its Delaunay
star is already known. The extreme points of each tile are
then extracted and broadcasted to all tiles and inserted with
the local points. We call it foreign vertices (see figure 2, 1c).
Redundant foreign vertices in the local triangulation can be
removed (see figure 2). At this time, a first approximation of
the neighbor connections is defined by the remaining foreign
vertices in each triangulation (see figure 1d). A connection
exists between two tiles when a point has a neighbor with a
different tile id. To this point, the iterative scheme starts with
a splaying approach that propagates foreign neighbor points
and discovers new neighbor relations until no extra point has
to be sent (see figure 1c). The result of the algorithm is a set
of finalized cells.

As the proposed approach is already functional in concrete
applications with classic I/O that belong on C++ code. Because

RDDs handle natively String type and communicate with
external applications by stream, the straightforward approach
is to store triangulations and point set serialized in Strings
and provide an interface that serializes/deserializes String
streams in C++ for communication. With this approach, the
Spark scheduler is still aware of the data to optimize the
scheduling over the cluster. Thanks to the C++ implementation,
steps that require geometry processing remain fast.

This approach is distinguished by many aspects:
• An out-of-core algorithm based on a fully distributed data

structure that provably computes the distributed DT with
no bottleneck as the number of executors grow linearly
according to the data.

• An hybrid Spark / C++ implementation with evaluations
that show the efficiency of our method in terms of
speedup on a generic Spark configuration.

• A result that can be directly used with the Spark GraphX
framework [GXD∗14] for large graph processing.

II. TILE AND MERGE

A. Definitions

Given a point set P , we note the partition PI = (Pi)i∈I its
decomposition into |I| disjoint subsets Pi, where I denotes a
discrete set of tile indices. We can define the primary tile of
a point p ∈ P as the unique tile i ∈ I such that p ∈ Pi.

In dimension N , a cell refers to a N+1-simplex, which is a
set of N+1 vertices (a triangle in 2D, a tetrahedra in 3D...). A
triangulation is a set of cells which geometry covers the convex
hull of its vertex points. We note Delaunay(P) the DT of the
point set P , and DelaunayIns(P, T) the DT resulting from

the insertion of the point set P into the DT T . We define a
tile-triangulation Ti of tile i as a triangulation of a superset
of points Qi ⊇ Pi. A distributed triangulation is defined
as the set of triangulations TI = (Ti)i∈I . We denote a point
p ∈ Pi as local in Ti and foreign in Tj if j 6= i. By extension,
a simplex is classified as local (resp. foreign) in Ti if all its
points are local (resp. foreign) in Ti, and mixed otherwise
(see figure 2). Finally, we introduce the notation Star(p, Ti)
to denote the subcomplex of Ti induced by p ∈ Pi and all its
neighbors in Ti. To simplify notations, a star will be treated
as a set of cells (and likewise a cell as a set of vertices) : e.g.
{p} ∪ Neighbors(p, T) =

⋃
c∈Star(p,T) c. Note that, unless

otherwise specified, all triangulations will be Delaunay [BY98]
in the following sections.
Triangulation distribution: Given a triangulation T =
DT (P) and a point-partitioning PI , we define the distributed
triangulation TI as (DT (Qi))i∈I , where Qi corresponds to
the local points Pi and their foreign Delaunay neighbors in
T : Qi = Pi ∪

⋃
p∈Pi

Neigbors(p, T). Ti is then a local
view of T , as it encodes the neighborhood of its local points:
Star(p, T) = Star(p, Ti) if p ∈ Pi.

Conversely, given a distributed triangulation TI of a point-
partitioning PI , the overall triangulation T may be de-
fined as the union of all local and mixed cells: T =⋃

i∈I
⋃

p∈Pi
Star(p, Ti).

Delaunay Simplification: Since Ti is responsible to provide
a local view of the overall triangulation through the stars
of its local points Star(p, Ti), with p ∈ Pi, its foreign
simplices may be discarded without modifying the local stars.
The proposed Delaunay simplification operator removes all
foreign points that are not adjacent to any local point, and
thus disjoint to all local stars. These are denoted as redundant
foreign points. There might remain foreign simplices (so-
called auxiliary simplices) which ensure that the simplified
triangulations cover the convex hull of their point sets. We
introduce Simplify(Ti) the action of removing the non-
adjacent foreign point (figure 2).

B. Algorithm

The proposed algorithm may be decomposed into four main
steps (see figure 1 for the overall algorithm and figure 3 for
the pipeline overview).

First, the tiling step (line 2) is performed on the whole
input point set P . Chunks of the input point set P are
processed in parallel to produce partitions according to an
oracle function TileId(p), which is here limited to a grid
partitioning (e.g., in 2D, TileId(x, y) = (bxs c, b

y
s c), where s

is the grid size). Shown in figure 1a but omitted in algorithm 1
and figure 3 for brevity, the grid-based tiles are then merged in
a quadtree/octree procedure until they meet a point size limit.

Then the DT of each tile is performed (line 5). The output
of this process is both a first set of finalized cells C0

i and sets
of points P 0

i that are incident to at least one non-finalized cell.

At this point, the initialization of the iterative scheme
starts by broadcasting and inserting the extreme points of non

Algorithm 1: Tile and merge
Input: Point set P
Output: Distributed DT of P : T∞I = (T∞i)i∈I

// Point cloud tiling
1 for each point p ∈ P do in parallel
2 i← TileId(p)
3 Pi ← Pi

⋃
{p}

// Local tile triangulations
4 for each tile i ∈ I do in parallel
5 T 0

i ← Delaunay(Pi)

6 C0
i , C

0

i ← Finalize(T 0
i)

7 P 0
i ←

⋃
c∈C0

i
c

8 S0
i→all ← ExtremePoints(P 0

i)

// Star splaying initialization
9 for each tile i ∈ I do in parallel
10 R1

i ←
⋃

j 6=i S
0
j→all

11 P 1
i ← P 0

i ∪R1
i

12 T 1
i ← Simplify(Delaunay(P 1

i))
13 (S1

i→j)j 6=i ← StarSplay(R1
i , T

1
i)

// Star splaying iterations
14 n← 2
15 while ∃i, j ∈ I such that Sn

i→j 6= ∅ do
16 for each tile i ∈ I do in parallel

17 Rn
i ←

(⋃
j 6=i S

n−1
j→i

)
\ Pn−1

i

18 Pn
i ← Pn−1

i

⋃
Rn

i

19 Tn
i ← Simplify(DelaunayIns(Rn

i , T
n−1
i))

20 (Sn
i)j 6=i ← StarSplay(Rn

i , T
n
i)

21 n← n+ 1

22 for each tile i ∈ I do in parallel
23 Cn

i , C
n

i ← Finalize(Tn
i)

24 T∞i = C0
i ∪ C

n

i

25 return T∞I = (T∞i)i∈I

finalized cells S0
i→all with the non finalized points of each tile

P 0
i . By simplifying each tile triangulation T 1

i , the remaining
foreign points give a first approximation of the connections
between tiles : points S1

i→j are adjacent to points of tile j
in the local stars of T 1

i , such that communication is required
between i and j to make their common stars consistent.

We define Si→j =
⋃

pk∈Ti
the point set sent from tile i to

tile j during the shuffling step such as pk ∈ (Star(Ti, p) ∀p ∈
Ti)k 6=j∧k 6=j . We define Si =

⋃
j Si→j the set of point sent

from tile i and Rj =
⋃

j Si→j the set of point receives at
tile j. We finally introduce the function StarSplay(Ti) =
(Si→j)j 6=i.

We say there is an active connection between two tiles at
an iteration if Sn

i→j 6= ∅ and inactive connection if Sn
i→j =

∅ ∧ ∃m such as ∀ m < n, Sm
j→j 6= ∅. A special case is to

gather the tile-triangulations into a single overall triangulation

by enumerating all local cells and deduplicated mixed cells
(e.g., by only reporting the cells from the smallest primary tile
of all its incident vertices). We call this cell main and note it
Cf and introduce Finalize(T) the function that extract the
finalized cells.

Finally, the scheme iterates while the number of active
connections is not null (line 15). The shuffled points received
by each tile Rn

i are inserted into the current triangulation Tn−1
i

followed by a simplification (line 19). The new exchanged
point set Si→j can be computed. In each tile, a list of points
that has already been sent is saved. Thus, only points that has
not been sent yet are shuffled (line 17). In this way, the number
of inactive connections increases with respect to the number of
iterations until the number of active connections being empty.
At the end, main cells that have not been finalized during the
first triangulation are dumped.

III. EVALUATION

The proposed approach is evaluated on a Spark cluster with
28 cores and 100Go memory. 1

In this section, we analyze the strong scaling ability that
shows how the algorithm scales according to the cluster
configuration (see figure 4). We use 3 different data sets:
points generated from i) a normal distribution, ii) a uniform
distribution and iii) from LiDAR acquisitions. For these tests,
the clock starts when point sets are generated / loaded from
HDFS and stops when all the finalized cells of the triangulation
are persisted on cluster nodes.

The main parameter of the proposed approach is the max-
imum number of points per tile that is allowed during the
tiling construction. According to the efficiency of the local DT
implementation and the cost of the communication between
executors caused by the transfer of non-finalized cells, the
higher the number of points per tile during the first trian-
gulation (line 5), the faster the algorithm. To handle a large
amount of points per tile, we need to limit the number of
simultaneous triangulations performed at the same time. To
do that, the number of partitions of P is set to the number of
tiles. It follows that a core will never process more that one
triangulation at the same time without passing the result to the
scheduler and limit the memory footprint.

A stress test is realized to evaluate the maximum number of
points that can handle each tile without running out of mem-
ory. For that, we increase the number of points triangulated
from a uniform distribution on a 4x4x4 grid (64 tiles) step by
step. With a uniform distribution, we have an upper bound of
the maximum number of points processed at the same time.
In this configuration, after 3M points per tiles, memory issues
appear.

To test the strong scaling capabilities of the proposed
approach. A triangulation of 300M points with normal and

1As a comparison, the m5 series of the Amazon EMR service dedicated to
general usage provides 4Go for 1 core. The m5.4xlarge setup is 16 cores for
64Go of RAM and the m5.8xlarge is 16 cores for 128Go of RAM for $0.8/h
and $1.6/h respectively in August 2019.

uniform distribution is processed with different cloud config-
urations: a varying number of executors (7,4,2 and 1) and,
for each executor, a varying number of cores (4,3,2,1) plus 1
executor with 1 core configuration for a fixed 12Go of RAM
per executor in every cases. The total number of cores is
thus the number of executors times the number of cores per
executor. The result is shown on figure 4. As our application
is fully distributed, we compare it to the perfect scale factor
of 1. The scale factor is defined by t1core

n∗tncore
.

With one core, it takes 9351s to process the 300M of points
for the normal distribution data set and 18332s for the uniform.
It gives around 1.9 and 1 million points processed per-minute.
This is a very suitable result on the fact that the algorithm is
tuned to work with less than 4Go of memory per core and
performs multiple I/O.

For a fixed number of executors, the time constantly de-
creases with a minimum scale factor of 0.4 for the normal and
0.35 for the uniform distribution. It means that for a given
number of cores, the time decreases by at least 0.35 times
the number of cores. The scale factor globally increases after
adding a third core. With four cores per executor, the scale
factor remains stable and above 0.5 for every configuration.
This result highlights the fact that adding only one executor
to a single executor configuration has a significant cost while
adding more that one executor re-increase the scale factor. The
scale factor is the most important with 2 cores per executor.
This is probably the consequence of a biggest memory to core
ratio.

1 4 8 12 16 20 24 28

0:00
10:00

30:00
45:00
60:00

120:00

Number of executors (nb of cores)

Ti
m

e(
m

m
:s

s)

N-4core/ex N-3core/ex N-2core/ex N-1core/ex N-Perfect-Strong-Scaling

U-4core/ex U-3core/ex U-2core/ex U-1core/ex U-Perfect-Strong-Scaling

Fig. 4: Strong scaling on processing and persisting the DT ac-
cording to the number of cores with 4,3 and 2 cores/executors
(12Go Ram/executors) on a 300 millions of points test set
generated with the normal(N) and uniform(U) random distri-
bution.

IV. RESULTS

The biggest point set processed with this approach is a 1.98
billion point cloud triangulation of a 6km2 with a 2cm spatial
resolution in 2h20 on 28 cores configuration (figure 5). All
the finalized simplices have been written on the HDFS after
4h11min for a total of 400Go ply files. The heterogeneous

Fig. 5: Result of the proposed approach on 1.98 billion of
points 6km2 with 2cm spatial resolution. This figure shows
the whole scene. Only finalized cells during the last step are
shown. Triangles of the same tile have the same color.

distribution of the point cloud implies a sparsity of the data
set with high density area while other places are empty of
point. This case is well handled by the octree structure that
allows a good distribution of the point across the tiles.

V. CONCLUSION

This article presents a new approach for the distributed com-
putation of the Delaunay triangulation. Scientific contributions
are multiple: A new tiling and merge approach is proposed
based on a distributed tiling representation of the triangulation.
Each tile is guaranteed to provide a local view of the global
triangulation. An iterative process based on a star splaying ap-
proach makes them consistent. This pipeline is fully distributed
and then limit the peak memory footprint. This approach
is experimentally validated with an implementation on the
Spark Framework coupled with efficient C++ executables for
computational geometry routines. It shows both good scaling
according to an increasing number of cores and number
of points. Unlike more hardware-dedicated algorithms, this
framework can easily be deployed on a Spark cluster and
integrates well a full production pipeline for distributed 3D
surface reconstruction from LiDAR point clouds.

REFERENCES

[AAY05] AGARWAL P. K., ARGE L., YI K.: I/o-efficient construction
of constrained delaunay triangulations. In ESA (2005), vol. 5,
Springer, pp. 355–366.

[ATW13] ANDO R., THÜREY N., WOJTAN C.: Highly adaptive liquid
simulations on tetrahedral meshes. ACM Trans. Graph. 32, 4
(July 2013), 103:1–103:10.

[BBK06] BLANDFORD D. K., BLELLOCH G. E., KADOW C.: Engineer-
ing a compact parallel delaunay algorithm in 3D. Proceedings
of the twenty-second annual symposium on Computational ge-
ometry - SCG 06 (2006).

[BMPS10] BATISTA V. H., MILLMAN D. L., PION S., SINGLER J.: Parallel
geometric algorithms for multi-core computers. Computational
Geometry 43, 8 (Oct 2010), 663–677.

[BY98] BOISSONNAT J.-D., YVINEC M.: Algorithmic geometry. Cam-
bridge university press, 1998.

[CBV16] CARAFFA L., BRÉDIF M., VALLET B.: 3d watertight mesh gen-
eration with uncertainties from ubiquitous data. In Proceedings
of Asian Conference on Computer Vision (ACCV’16) (Taipei,
Taiwan, 2016), no. 7727 in LNCS, Springer.

[CCW06] CHEN M.-B., CHUANG T.-R., WU J.-J.: Parallel divide-and-
conquer scheme for 2D Delaunay triangulation. Concurrency
and Computation: Practice and Experience 18, 12 (2006), 1595–
1612.

[CLCN∗18] CAÍNO-LORES S., CARRETERO J., NICOLAE B., YILDIZ O.,
PETERKA T.: Spark-diy: A framework for interoperable spark
operations with high performance block-based data models. In
BDCAT (2018), IEEE Computer Society, pp. 1–10.

[FLP14] FUETTERLING V., LOJEWSKI C., PFREUNDT F.-J.: High-
performance delaunay triangulation for many-core computers.
In High Performance Graphics (2014), pp. 97–104.

[FS17] FUNKE D., SANDERS P.: Parallel d-d Delaunay triangulations
in shared and distributed memory. 2017 Proceedings of the
Ninteenth Workshop on Algorithm Engineering and Experiments
(ALENEX) (Jan 2017).

[GXD∗14] GONZALEZ J. E., XIN R. S., DAVE A., CRANKSHAW D.,
FRANKLIN M. J., STOICA I.: Graphx: Graph processing
in a distributed dataflow framework. In Proceedings of the
11th USENIX Conference on Operating Systems Design and
Implementation (Berkeley, CA, USA, 2014), OSDI’14, USENIX
Association, pp. 599–613.

[HKLP09] HIEP V. H., KERIVEN R., LABATUT P., PONS J.-P.: Towards
high-resolution large-scale multi-view stereo. In Computer
Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Con-
ference on (2009), IEEE, pp. 1430–1437.

[ILSS06] ISENBURG M., LIU Y., SHEWCHUK J. R., SNOEYINK J.:
Streaming computation of Delaunay triangulations. ACM SIG-
GRAPH 2006 Papers on - SIGGRAPH 06 (2006).

[KM09] KAUFMANN O., MARTIN T.: Reprint of “3d geological mod-
elling from boreholes, cross-sections and geological maps, appli-
cation over former natural gas storages in coal mines”[comput.
geosci. 34 (2008) 278–290]. Computers & geosciences 35, 1
(2009), 70–82.

[LPK09] LABATUT P., PONS J.-P., KERIVEN R.: Robust and Efficient
Surface Reconstruction From Range Data. Computer Graphics
Forum (2009).

[PMP14] PETERKA T., MOROZOV D., PHILLIPS C.: High-performance
computation of distributed-memory parallel 3d voronoi and
delaunay tessellation. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage
and Analysis (2014), IEEE Press, pp. 997–1007.

[She05] SHEWCHUK J. R.: Star splaying: An algorithm for repairing
Delaunay triangulations and convex hulls. In Proceedings of
the Twenty-first Annual Symposium on Computational Geometry
(New York, NY, USA, 2005), SCG ’05, ACM, pp. 237–246.

[SKRC10] SHVACHKO K., KUANG H., RADIA S., CHANSLER R.: The
hadoop distributed file system. In Proceedings of the 2010
IEEE 26th Symposium on Mass Storage Systems and Technolo-
gies (MSST) (Washington, DC, USA, 2010), MSST ’10, IEEE
Computer Society, pp. 1–10.

[SOJ14] STARINSHAK D., OWEN J., JOHNSON J.: A new parallel
algorithm for constructing voronoi tessellations from distributed
input data. Computer Physics Communications 185, 12 (Dec
2014), 3204–3214.

[TO00] TEKALP A. M., OSTERMANN J.: Face and 2-d mesh animation
in mpeg-4. Signal Processing: Image Communication 15, 4
(2000), 387–421.

[Vit01] VITTER J. S.: External memory algorithms and data structures:
dealing with massive data. ACM Computing Surveys 33, 2 (Jun
2001), 209–271.

[WMRL17] WANG Y., MA G., REN F., LI T.: A constrained delaunay dis-
cretization method for adaptively meshing highly discontinuous
geological media. Computers & Geosciences 109 (2017), 134–
148.

[XY03] XIAO Y., YAN H.: Text region extraction in a document image
based on the delaunay tessellation. Pattern Recognition 36, 3
(2003), 799–809.

[ZWa19] ZONGHAN WU AND SHIRUI PAN AND F. C. A. G. L. A. C. Z.
A. P. S. Y.: A comprehensive survey on graph neural networks.
CoRR (2019).

[ZXW∗16] ZAHARIA M., XIN R. S., WENDELL P., DAS T., ARMBRUST
M., DAVE A., MENG X., ROSEN J., VENKATARAMAN S.,
FRANKLIN M. J., GHODSI A., GONZALEZ J., SHENKER S.,
STOICA I.: Apache spark: A unified engine for big data
processing. Commun. ACM 59, 11 (Oct. 2016), 56–65.

