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ABSTRACT

Recently, an audio-visual speech generative model based on
variational autoencoder (VAE) has been proposed, which is
combined with a nonnegative matrix factorization (NMF)
model for noise variance to perform unsupervised speech
enhancement. When visual data is clean, speech enhance-
ment with audio-visual VAE shows a better performance than
with audio-only VAE, which is trained on audio-only data.
However, audio-visual VAE is not robust against noisy vi-
sual data, e.g., when for some video frames, speaker face
is not frontal or lips region is occluded. In this paper, we
propose a robust unsupervised audio-visual speech enhance-
ment method based on a per-frame VAE mixture model. This
mixture model consists of a trained audio-only VAE and a
trained audio-visual VAE. The motivation is to skip noisy
visual frames by switching to the audio-only VAE model.
We present a variational expectation-maximization method to
estimate the parameters of the model. Experiments show the
promising performance of the proposed method.

Index Terms— Robust audio-visual speech enhance-
ment, generative models, variational auto-encoder, mixture
mode, variational expectation-maximization

1. INTRODUCTION

Speech enhancement – or how to estimate clean speech from
a noisy signal – has attracted a lot of attention, both for single-
and multi-channel audio recordings [1–4]. Recently, gen-
erative models have been utilized for speech enhancement
[5–10]. Specifically, some works proposed to use variational
autoencoder (VAE) to model speech spectrogram, and then
perform speech enhancement by considering an NMF noise
variance model [5,6]. This is done in an unsupervised way. A
common characteristic of all these methods, which we refer
to as audio VAE (A-VAE), is the use of audio recordings only.

Audio-visual speech enhancement methods incorporate
also the visual information (video frames) associated with
the noisy speech, aiming to improve the quality of the en-
hanced speech signal [11–13]. Using the video modality is
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well-motivated by the fact that lips movements provide in-
formation about what is being uttered. As an audio-visual
extension of VAE-based methods of [5, 6], an audio-visual
VAE (AV-VAE) model has recently been proposed in [14],
training a VAE model conditioned on visual features, e.g.,
lips region of interest (ROI). For speech enhancement, AV-
VAE has been shown to outperform A-VAE specially in high
noise levels [14].

A critical problem with audio-visual methods is “noisy
visual data”, e.g., when speakers do not face the camera or
the lips are occluded. Specifically, the AV-VAE based speech
enhancement method presented in [14] uses clean visual data
to train the speech spectrogram prior. Therefore, it expects
clean visual data as well in the test (enhancement) phase for
unseen data. Otherwise, its performance could degrade below
audio-only methods, as we will see later in this paper.

The present work aims to provide a solution to the above-
mentioned problem. That is, to make AV-VAE speech en-
hancement robust against noisy visual data. To achieve this
goal, we propose a VAE mixture model consisting of a trained
A-VAE and a trained AV-VAE model. As said before, AV-
VAE yields poor results in the presence of noisy visual data.
However, the proposed mechanism would skip visual data
whenever it is not reliable, and uses the A-VAE model instead.
Importantly, the choice between A-VAE and AV-VAE is un-
supervised and must be done for every frame at test time. We
present a variational inference framework to tackle all these
issues. Experimental results on clean as well as noisy visual
frames are provided, demonstrating the effectiveness of our
method.

The rest of this paper is organized as follows. Section 2
briefly reviews the audio-only and audio-visual VAE-based
speech spectrogram modeling methods. Section 3 presents
the proposed mixture generative model. Sections 4 details
the inference and speech reconstruction steps. Finally, exper-
imental results are provided in Section 5.

2. VAE-BASED SPEECH SPECTRA MODELING

2.1. Audio-only VAE

In this section, we briefly review the VAE generative speech
model that was first proposed in [5]. Let sfn denote the



complex-valued speech short-time Fourier transform (STFT)
coefficient at frequency index f ∈ {0, ..., F −1} and at frame
index n ∈ {0, ..., N − 1}. At each time frequency (TF) bin,
we have the following probabilistic generative model, which
will be referred to as A-VAE:

sfn|zn ∼ Nc(0, σaf (zn)), (1)

zn ∼ N (0, I), (2)

where zn ∈ RL, with L � F , is a latent random vari-
able describing a speech generative process, N (0, I) is a
zero-mean multivariate Gaussian distribution with identity
covariance matrix, and Nc(0, σ) is a univariate complex
proper Gaussian distribution with zero mean and variance σ.
Let sn ∈ CF be the vector whose components are the speech
STFT coefficients at frame n. The set of non-linear functions
{σaf : RL 7→ R+}F−1f=0 are modeled as neural networks shar-
ing the input zn ∈ RL. These parameters are estimated using
variational inference by defining another neural network,
called encoder (inference) network, which approximates the
intractable posterior of zn given sn [5, 6, 15].

2.2. Audio-visual VAE

In the AV-VAE framework proposed in [14], the following
latent space model is considered, independently for all l ∈
{0, ..., L− 1} and all TF bins (f, n):

sfn|zn,vn ∼ Nc(0, σavf (zn,vn)), (3)

zln|vn ∼ N (µ̄l(vn), σ̄l(vn)) , (4)

where vn ∈ RM is an embedding for the image of the speaker
lips at frame n, and the non-linear functions {σavf : RL ×
RM 7→ R+}F−1f=0 are modeled as a neural network taking zn
and vn as input. Furthermore, the non-linear functions {µ̄l :
RM 7→ R}L−1l=0 and {σ̄l : RM 7→ R+}L−1l=0 , yielding zn’s
prior, are collectively modeled with a neural network which
takes vn as input. In a way similar to A-VAE, an encoder
network, approximating the intractable posterior of zn given
sn and vn, is defined and trained jointly with the decoder (3)
and prior (4) using a clean set of speech spectrogram frames
and the corresponding clean visual data, i.e., images of lips
region [14].

Now that both A-VAE and AV-VAE are trained for their
specific tasks, in the following, we present the VAE mixture
model to automatically select one of the two at inference time.

3. VAE MIXTURE MODEL

To make the speech enhancement robust to noisy visual data,
we propose an automatic selection mechanism between A-
VAE and AV-VAE. Ideally, such a mechanism would allow to
select the best-suited method at each frame: when visual in-
formation is clean, AV-VAE, and otherwise, A-VAE. We for-
malise this with a mixture model, named VAE mixture model

(VAE-MM):

p(sfn|zn,vn, αn) =
[
Nc(0, σaf (zn))

]αn

× (5)[
Nc
(
0, σavf (zn,vn)

) ]1−αn

,

p(zn|vn, αn) =
[
N (0, I)

]αn

× (6)[∏
l

N (µ̄l(vn), σ̄l(vn))
]1−αn

p(αn) = παn × (1− π)1−αn , (7)

where, αn ∈ {0, 1} is a latent variable specifying the compo-
nent of the mixture model that is used by the n-th frame, for
both sfn and zn. The prior distribution of αn is chosen as a
Bernoulli distribution with parameter π.

4. VAE-MM INFERENCE & LEARNING

The observed noisy microphone signal writes:

xfn = sfn + bfn, (8)

for all TF bins (f, n). Similarly as done in the previous
works [5–10], we use an unsupervised NMF-based Gaussian
noise model that assumes independence across TF bins:

bfn ∼ Nc
(

0, (WbHb)fn

)
, (9)

where Wb ∈ RF×K is a nonnegative matrix of spectral
power patterns and Hb ∈ RK×N is a nonnegative matrix of
temporal activations, with K such that K(F +N)� FN .

The set of parameters to be estimated is defined as Θ =
{Wb,Hb, π}. We use a variational expectation-maximization
(VEM) approach [16] to estimate these parameters. To do so,
the intractable posterior p(sn, zn, αn|xn) is approximated by
a variational distribution factorizing as follows:

r(sn, zn, αn) = r(sn) r(zn) r(αn). (10)

The variational factors in (10) are then estimated by mini-
mizing the Kullback-Leibler divergence between (10) and the
true posterior. The final update formulas for the variational
distributions are given below and are used in an alternating
optimization strategy. The details of the derivations are pro-
vided in a supporting document which is available online.1

4.1. E-sn step

The variational distribution of sn factorizes over f . For each
component, we obtain the following:

r(sfn) = Nc(mfn, νfn), (11)

1https://team.inria.fr/perception/research/
vae-mm-se/



where mfn =
γfn

γfn+(WbHb)fn
· xfn

νfn =
γfn·(WbHb)fn

γfn+(WbHb)fn

, (12)

γ−1fn =
∑

αn∈{0,1}

r(αn) · ηαn

fn , (13)

ηαn

fn = Er(zn)

[
1

σαn

f (zn,vn)

]
≈ 1

D

D∑
d=1

1

σαn

f (z
(d)
n ,vn)

,

(14)

and
{
z
(d)
n

}D
d=1

is a sequence sampled from r(zn). Moreover,

we have defined σαn

f (zn,vn) as follows:

σαn

f (zn,vn) =

{
σaf (zn) αn = 1

σavf (zn,vn) αn = 0
. (15)

4.2. E-zn step

For r(zn) we obtain the following result:

r(zn) ∝ exp
( ∑
αn∈{0,1}

r(αn) ·
[

log p(zn|vn, αn)+

∑
f

− log
(
σαn

f (zn,vn)
)
− |mfn|2+νfn
σαn

f (zn,vn)

])
. (16)

The above distribution cannot be computed in closed-from.
Nevertheless, we can draw samples from it using the Metropolis-
Hastings (MH) algorithm [16].

Let r̃(zn) denote the right-hand side of (16). At the itera-
tion m of the MH algorithm, given a current sample z

(m−1)
n ,

to obtain the next one, i.e., z(m)
n , we first draw a candidate

sample from a proposal Gaussian distribution centered around
z
(m−1)
n and with εI as the covariance matrix. The candi-

date sample, denoted z
(T )
n , is accepted by the probability p =

min
(

1,
r̃(z(T )

n )

r̃(z
(m−1)
n )

)
. If the sample is accepted, we set z(m)

n =

z
(T )
n . Otherwise, z(m)

n = z
(m−1)
n . The above procedure is re-

peated until the required number of samples is achieved. Fur-
thermore, the initial samples, obtained during the so-called
burn-in period, are discarded.

4.3. E-αn step

To update the variational distribution of αn, we can write:

r(αn) ∝ exp
(
Er(sn)·r(zn)

[
log p(sn|zn,vn, αn)+

log p(zn|vn, αn) + log p(αn)
])

(17)

which is a Bernoulli distribution with

πn = g
(
Er(sn)·r(zn)

[
log

p(sn, zn|vn, αn = 1)

p(sn, zn|vn, αn = 0)

]
+log

π

1− π

)
(18)

as the parameter, where g(.) denotes the sigmoid function de-
fined as g(x) = 1/(1 + exp(−x)). The above expression is
further simplified to the following:

πn ≈ g
( 1

D

D∑
d=1

∑
f

log
σavf (z

(d)
n ,vn)

σaf (z
(d)
n )

+ (19)

(
1/σavf (z(d)n ,vn)− 1/σaf (z(d)n )

)
·
(
|mfn|2+νfn

)
+∑

l

log σ̄l(vn) +
(z

(d)
ln − µ̄l(vn))2

2σ̄l(vn)
−

(z
(d)
ln )2

2
+ log

π

1− π

)
where the expectation with respect to r(zn) has been approx-
imated by a Monte-Carlo average.

4.4. M step

The parameters of the mixture model, that is, {Wb,Hb, π}
are estimated by optimizing the expected data log-likelihood,
which takes the following form:

Q(Wb,Hb, π) =
∑
(f,n)

−|xfn −mfn|2+νfn
(WbHb)fn

−

log (WbHb)fn + πn · log π + (1− πn) · log(1− π). (20)

The update formulas for Wb and Hb are then obtained by
using standard multiplicative update rules [17]:

Hb ← Hb �
W>

b

(
V � (WbHb)

�−2
)

W>
b (WbHb)

�−1 , (21)

Wb ←Wb �

(
V � (WbHb)

�−2
)
H>b

(WbHb)
�−1

H>b
, (22)

where
V =

[
|xfn −mfn|2+νfn

]
(f,n)

. (23)

The prior probability of αn is also updated as follows:

π =
1

N

N∑
n=1

πn. (24)

4.5. Speech enhancement

After the convergence of the VEM, the speech STFT frames
are estimated as their posterior means. That is, ∀(f, n):

ŝfn = Er(sfn)[sfn] =
γfn

γfn + (WbHb)fn
· xfn (25)

where all the involved parameters are set to their optimal val-
ues obtained in the VEM framework.

The complete speech enhancement algorithm is summa-
rized in Algorithm 1. Note that by setting ∀n : πn = π = 1
(respectively, ∀n : πn = π = 0), this algorithm reduces to
an A-VAE (respectively, AV-VAE) based speech enhancement
method.



Algorithm 1 VAE-MM for speech enhancement

1: Inputs:
• Learned A-VAE and AV-VAE models [14]

• Noisy microphone STFT frames x = {xn}N−1n=0

• Visual embeddings v = {vn}N−1n=0

2: Initialization:
• Initialize the NMF noise parameters Hb and Wb

with random nonnegative values, and set π = 0.5.

• Initialize the latent codes za = {zan}
N−1
n=0 (A-VAE)

and zav = {zavn }
N−1
n=0 (AV-VAE) using the corre-

sponding learned encoder networks with x and v.
Then, set z = {π · zan + (1− π) · zavn }

N−1
n=0 .

3: while stop criterion not met do:

• E-z step: Sample from (16) by the MH algorithm.

• E-s step: Update sn’s posterior by (12).

• E-α step: Update αn’s posterior by (19).

• M-step: Update the parameters using (21) – (24).

4: end while
5: Speech enhancement: using (25).

5. EXPERIMENTS

Dataset and models. We considered two trained VAE mod-
els: an A-VAE and an AV-VAE, from [14], which have been
trained on the NTCD-TIMIT dataset [18]. The test set in-
cludes about 1 hour noisy speech, along with their corre-
sponding lips ROIs, with six different noise types, including
Living Room (LR), White, Cafe, Car, Babble, and Street, with
noise levels: {−15,−10,−5, 0, 5, 10} dB.

Parameters settings. For the MH algorithm, similarly to
[6, 14], we run 40 iterations using ε = 0.01 for the proposal
distribution. The first 30 samples were discarded. The VEM
steps were performed for 200 iterations. We initialize mfn =

xfn and νfn = 0, ∀(f, n). The latent codes, z = {zn}N−1n=0 ,
were initialized as described in Algorithm 1.

Experimental protocol. In the following, we compare the
performance of A-VAE, AV-VAE, and the proposed VAE-
MM. First, we run the three methods on clean visual data.
In the second experiment, we randomly corrupt about 1/3 of
the total lips images per test instance. The occluded images
are created by randomly selecting sub-sequences of 20 con-
secutive video frames and adding to the associated lips im-
ages random patches of standard Gaussian noise. We used
two standard speech enhancement scores, i.e., the signal-to-
distortion ratio (SDR) [19] and the perceptual evaluation of
speech quality (PESQ) [20] scores. SDR is measured in deci-
bels (dB) while PESQ values lie in the interval [−0.5, 4.5]
(higher the better). For computing SDR, the mir eval Python
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Fig. 1: Speech enhancement performance for clean (top) and
noisy (bottom) visual data.

library was used.2 For each measure, we report the differ-
ence between the output value, i.e., evaluated on the enhanced
speech signal, and the input value, i.e., evaluated on the noisy
mixture.

Results. Figure 1 summarizes the results. First, as can be
seen, AV-VAE shows a much better performance than A-VAE
when visual data is clean. Second, in the case of the clean vi-
sual data, VAE-MM and AV-VAE show similar performances
in terms of SDR. In the PESQ measure, we see some small
drops in the performance of VAE-MM compared to that of
AV-VAE. For noisy visual data, AV-VAE’s performance drops
significantly. However, VAE-MM seems to have successfully
skipped the occluded lips images by switching to A-VAE. Its
performance is still better than that of A-VAE, as some of the
video frames contain clean and usable visual data.

6. CONCLUSION

In this paper, we proposed an audio-visual speech generative
model based on a VAE mixture consisting of a trained A-VAE
and a trained AV-VAE. Combined with an NMF model for
noise variance [5, 6, 14], the goal was to make audio-visual
VAE speech enhancement robust against noisy visual frames
by switching to A-VAE in an unsupervised way. We presented
a variational expectation-maximization approach to estimate
the parameters of the model as well as the clean speech. The
promising performance of the proposed method was demon-
strated through some experiments.

2https://github.com/craffel/mir_eval
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