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Abstract—Diagnosing problems in Internet-scale services re-
mains particularly difficult and costly for both content providers
and ISPs. Because the Internet is decentralized, the cause of
such problems might lie anywhere between a user’s device
and the datacenters hosting the service. Further, the set of
possible problems and causes is not known in advance, making it
impossible in practice to train a classifier with all combinations
of problems, causes and locations.

In this paper, we explore how machine learning techniques
can be used for Internet-scale root cause analysis based on
measurements taken from end-user devices. Using convolutional
neural networks, we show how to build generic models that
(i) are agnostic to the underlying network topology, (ii) do not
require to define the full set of possible causes during training,
and (iii) can be quickly adapted to diagnose new services. We
evaluate our proposal, DIAGNET, on a geodistributed multi-cloud
deployment of online services, using a combination of fault injec-
tion and emulated clients running within automated browsers.
Our experiments demonstrate the promising capabilities of our
technique, delivering a recall of 73.9%, including on causes that
were unknown at training time.

I. INTRODUCTION

Both on-line content providers and Internet service
providers (ISPs) allocate significant resources to troubleshoot
end-user problems, as even a small drop in their customers’
Quality of Experience (QoE) can strongly impact their rev-
enues and brand image [1], [2]. Unfortunately, pinpointing the
cause of a problem can be a tedious process, as the underlying
fault might lie anywhere between a customer’s home and
the final data center, and many of the locations involved are
neither controlled by the ISPs, nor by the content provider.
Worse, as services grow more complex and interdependent,
deciding whether a perturbation somewhere in the Internet
has caused a customer’s trouble is increasingly challenging,
leaving support teams to struggle to diagnose the root cause
of many incidents [3].

In this context, automating—even partially—the root-cause
analysis of end-user problems appears as particularly bene-
ficial to users, ISPs, and content providers, and numerous
prior works have proposed to exploit end-user devices and
equipment to this end [4], [5]. These works adopt two main
strategies. The first is to execute a set of predefined tests,
designed by experts, to identify outliers and propose a di-
agnostic [4]–[6]. These tests are capable of detecting known
configuration issues (DNS failures, aggressive firewall, low
quality uplink, . . . ) with high accuracy, but remain bound
to a limited set of problems (e.g. related to DNS, TCP or

DSL [7]) and cannot diagnose more distant Internet failures.
The second strategy uses a shared service status database
such as https://downdetector.com to distinguish between local
and distant faults. Unfortunately, such services offer only
a coarse-grained picture based on manual user reports and
cannot provide a precise root-cause diagnosis. More generally,
existing automated diagnostic solutions cover only a small and
specific part of the possible root causes of online incidents, and
fail at offering generic Internet-scale root-cause inference.

To overcome these limitations, we propose DIAGNET, a dis-
tributed platform for the root cause analysis of Internet-based
services. DIAGNET exploits novel convolutional techniques
derived from machine learning and image processing [8]–
[10], and apply these techniques to data collected from user
devices and opportunistically deployed probing servers called
landmarks. By relying on a neural network for root cause
inference, DIAGNET does not require any knowledge of the
low-level network fabric that connects its target services (such
as routers, switches, or peering policies), and can ingest
new types of network measurements without the need for
retraining. Doing so, DIAGNET can pinpoint root causes in
locations of the Internet it never encountered before, and can
easily be adapted to different types of online services with very
little retraining. The principles behind DIAGNET are further
not limited to end-user problems, and generalize easily beyond
Browser-based services, to distributed B2B APIs.

We carefully evaluate DIAGNET by injecting faults on a
deployment of realistic geodistributed services and clients.
Our experiment involves 4 cloud providers in 10 world re-
gions, interdependent services, and emulated users running
in automated browsers. We compare DIAGNET against state-
of-the-art inference methods and show that it consistently
overperforms its competitors in a dynamic context, which
is typical of today’s Internet services, while delivering close
to ideal performances in a static setting. In our evaluation,
DIAGNET yields an overall Recall@1 of up to 73.9%.

In the following, we first discuss the problem of Internet-
scale Root Cause Analysis in more detail (Section II), before
presenting DIAGNET (Section III). We then evaluate our
proposal on a geodistributed deployment alongside with two
baseline competitors (Section IV), we present related work
in Section V, and conclude (Section VI).
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II. PROBLEM STATEMENT AND GOALS

Measurements taken from end-user devices are inexpensive,
but the information they provide is limited. To infer some
accurate diagnosis from this information, we argue that a root
cause analysis system working at Internet-scale should meet a
number of key challenges.

A. Network and service agnosticism

Internet-services rely on a wide variety of systems, sub-
services, and networks to function properly. This includes data
centers, cloud-providers, content delivery networks (CDN),
along with diverse operators’ networks. The underlying net-
work topologies and distributed architectures of these systems
are complex, continuously evolving and often unknown. We
argue that an Internet-scale root cause analysis method should
not assume any prior knowledge regarding the architecture
of its targeted services (e.g. in terms of the cloud regions
they are deployed in, or the CDNs used), and regarding the
network topology on which they execute (e.g. in terms of
peering-points), a property that we call network and service
agnosticism. This largely departs from common root cause
analysis relying on network tomography [11]–[13], bespoke
methods for data centers [14], [15] and Software-Defined-
Networking [16], [17].

Root cause analysis requires however some location in-
formation to pinpoint the area (e.g. cloud region, point of
presence, autonomous system1) in which a root cause is likely
to be located. Our choice in DIAGNET is to rely on landmark
servers to provide this location information while eschewing
a precise knowledge of the underlying network. Landmark
servers are easy to deploy, cheap to run and maintain, and
can provide a good overview of the network health provided
they are present in multiple and diverse vantage points. The
intuition is that if there is a sufficiently wide deployment of
landmarks, some of these landmarks will be located in the
topological vicinity of targeted services, or in the path towards
them, thus offering indications on the location and family of
the incident impacting a user.

B. Anomaly disentanglement

By providing measurements from all over the Internet,
landmark servers are bound to record a constant stream of
anomalies (a drop in bandwidth here, a high latency there).
Most of these anomalies will however be unrelated to a
particular end-user’s problem with a particular service: long
delays between Paris and Brussels are unlikely to explain
why a Korean student cannot access her university’s web-site.
An internet-scale root-cause analysis service should therefore
be capable of separating spurious outliers from actual causes
when analyzing an incident, a property we have dubbed
anomaly disentanglement.

Disentangling real causes from coincidental effects is how-
ever far from trivial without any detailed knowledge of a

1On the Internet, an autonomous system (AS) is a management entity in
charge of a part of the Internet, usually controlled by some operator.

service’s internal organization (the fact that the Korean web-
site does not use any resource in Europe for instance), or of the
network topologies it executes on (packets circulating in Korea
do not normally go through any Paris-Brussels link). Our
intuition in DIAGNET is that a learned inference model should
be able to autonomously discover these hidden relationships,
by inferring the internal dependencies within a service and
within the network from past observations.

C. Location agnosticism

Historically, diagnostic tools operating on Wide-Area Net-
works have exploited the precise location of every user device
(also called client in the following) accessing the service to
pinpoint failures accurately [18], both at a geographical (from
neighborhood to country) and topological level (from subnet
to ISP). Obtaining such detailed data from every end-device
can be difficult and even undesirable as users might refuse to
share their location out of privacy concerns.

In DIAGNET, we propose to circumvent the need for precise
location information altogether, and argue instead that a root
cause analysis model should be location-agnostic: the same
single model should apply to every end-user device that
participates in the root-cause analysis service. However, we
believe it is acceptable to have distinct models for distinct
services, since they are definitely less numerous than possible
client profiles while being possibly very diverse. We show in
Section III how this level of expressiveness can be achieved
by revisiting multi-layer perceptrons and convolutions in the
context of network diagnosis.

D. Root cause extensibility

Because we make very few assumptions on the underlying
network, and do not use detailed location information of the
clients, the granularity of the measurements we obtain is
closely related to the deployment of our landmark servers.
Many factors can however alter the availability of these
landmarks (e.g. failures, maintenance or saturated capacity).
Conversely, if the system contains a very high number of
landmarks, individual clients cannot be expected to probe
every landmark in order to keep overheads low. As an extreme
example, it would require at least 99,000 landmark servers to
cover every autonomous system2, a number clearly too high
for comprehensive probing.

To address these issues of scale and dynamicity, we require
our generic root cause analysis system to be extensible: trained
models should be able to consume measurements from a
varying number of landmarks, depending on their availability
at a given time. This property allows for easy maintenance
of the landmarks fleet. Since the location of a plausible root
cause is directly inferred from landmarks, the better landmarks
cover the Internet the more precise the resulting inference can
be expected to be. A root cause extensible model should still
however provide accurate results even when only a subset of
landmarks is available. This implies a number of choices in
the design of our proposal to avoid frequent model retraining.

2Data from Regional Internet Registries as of January 1, 2021



III. DIAGNET

A. Overview

The general organization of DIAGNET is shown in Figure 1.
DIAGNET combines software probes deployed within the
browsers of end-users (called clients, more on this below) with
dedicated landmark servers. Clients and landmarks continu-
ously produce network measurements, which are combined
with ground-truth information (obtained using either fault in-
jection, as in our evaluation, or by some external post-mortem
analysis of past incidents) to train a root-cause inference model
using machine learning techniques. This inference model is
then provided to clients as an online analysis service, and used
to diagnose failures of online services consumed by clients.

More concretely, each client produces measurements by
actively probing ` landmark servers, implemented as a set
of stateless public HTTP services that can be provided by
different ISPs or third parties, similarly to the Speedtest global
network (https://www.speedtest.net/speedtest-servers). In our
implementation, we leverage modern web browser capabilities
to fetch TCP statistics, latency and throughput information
from the landmark servers (for a total of k metrics per
landmark server and per client), to which we add some local
system features measured on the clients themselves (e.g. client
CPU and memory load). Within a browser this can either be
implemented as a JavaScript that is fetched when accessing
the online service or as a browser extension. We opted to
collect only a limited set of metrics in our prototype, but
additional metrics could easily be added. More detail on the
implementation of our infrastructure can be found in [19].

The measures collected by a client ci form a vector of
m measures xi = (xi,j)1≤j≤m ∈ Rm (k × ` measures
from the ` landmark servers, plus the local client metrics).
They provide the features that are fed into the root cause
analysis service. (In the following we use the terms measure
and feature interchangeably.) We assume clients also collect
the Quality of Experience (QoE) perceived by their users
through a binary indicator, that records whether a user is
experiencing a problem or not for a given service. This
QoE information might be manually provided by users, or
automatically estimated. It can be as simple as a page load
time or can rely on a method that calculates it [20]. From that
data, and assuming that a client ci is encountering some QoE
degradation, DIAGNET processes the vector xi of measures
collected by ci, and outputs a list of probable root causes
using its learned inference model, ranked according to their
likely impact on the incident being diagnosed.

In DIAGNET, a root cause diagnosis combines a (possibly
coarse-grained) location with a fault family, e.g. “abnormal
jitter within the AWS US east coast region” or “high latency
within local network”. In practice, we use individual land-
marks to represent remote locations (e.g. a landmark deployed
in AWS’s east coast region will represent this region), and
equate fault families with the network and local metrics we
collect (e.g. ‘upload bandwidth’, or ‘CPU load’), as these met-
rics capture relatively well the behavior of the infrastructure

Client
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Fig. 1. Toy example of a topology for an online-service relying on a CDN
and a backend. Clients can evaluate links (solid lines) by actively probing
landmark servers (dashed lines). Probes are sent to a root cause analysis
service, which builds and shares the root cause inference model.

on which services execute. As a result, the space of possible
root causes of an incident is precisely that of the features we
collect: `× k features represent remote root-causes, made up
of a remote location (landmark) with a network metric, while
the local features capture local root causes.

B. The DIAGNET inference model

At the core of DIAGNET’s analysis service lies its inference
model, which we implement using a combination of neural
network techniques (notably non-overlapping convolutions and
pooling layers), and an attention mechanism [10], [21], [22],
a technique derived from image-based classifiers that is able
to relate a prediction to its inputs.

DIAGNET’s inference model exploits the fact that the root
causes we seek to predict correspond to the set of features it
consumes. This connection between inputs and outputs allows
us to decompose the prediction process in two simpler steps:
In a first step, we only predict the family of encountered
fault(s) without any information on their location (what we
call a coarse prediction in the following). The number of
fault families c is fixed (corresponding to network and local
metrics), and the resulting prediction is a small-size vector
y ∈ [0, 1]c of probabilities. We use the following fault families
in our prototype: nominal (non-faulty); uplink latency for
gateway malfunction; remote link latency, link jitter, link loss
and link download/upload bandwidth for end-to-end issues
not related to the local uplink; and local load for client
device overload. This set of fault families covers all problems
generally investigated in the networking literature that can be
linked to metrics obtained by users. As c (the dimension of
coarse predictions) is low (c � m), we can build accurate
inference models for fault families with a reasonably low
number of ground-truth samples. Intuitively, coarse predictions
help us disentangle features showing hidden relationships. For
instance, a high TCP latency often leads to a degraded through-
put [23]: in that case, the coarse prediction should return
the latency as the root cause of the problem (“remote link
latency”), rather the bandwidth (“link download bandwidth”).

In a second step, DIAGNET uses the vector y ∈ [0, 1]c

of predicted coarse predictions to return to the input feature
space of dimension m and locate the fault, in effect equating
the final predicted classes with the space of input features. We
use an attention mechanism for this step, a machine learning
technique that is able to compute the weight of each input

https://www.speedtest.net/speedtest-servers


feature in the coarse model’s prediction, usually without the
need for any additional training.

The global architecture of DIAGNET’s inference engine is
depicted in Fig. 2. The coarse prediction phase involves the
steps of 1 separating landmark features from local features,
2 processing the landmark features with a specific type of
convolutional neural network (detailed in Section III-C), 3

4 processing all features with a fully-connected network and
obtaining the final coarse prediction (detailed in Section III-D).
The second phase involves the step of 5 returning back to
the input features via attention mechanisms (Section III-E).

C. Non-overlapping convolutions with pooling

In image analysis, convolutional neural networks [8] have
been used with considerable success to classify images. Their
convolutional layers extract patterns over multiple pixels by
applying small filters over each pixel and its neighbors. We
borrowed this idea of pattern extraction to extract common
patterns between different landmarks, with some differences.

First, in contrast with image pixels, we want to combine
measures of different nature (linked to “fault families”, such
as latency and bandwidth). For a landmark λ, and a client
ci, we note xi[λ] ∈ Rk the vector of measures (e.g. latency,
throughput) recorded by ci w.r.t the landmark λ. For example,
xi,1[λ] might store the RTT (Round Trip Time) from ci to
λ, and xi,2[λ] the throughput. In this first phase, we seek to
extract recurring patterns from each landmark in isolation. To
this aim, we apply a set of f non-overlapping convolutions to
each client/landmark measure vector xi[λ]. These convolutions
are commonly parameterized by a kernel K ∈ Rf×k and a bias
b ∈ Rf . Formally:

∀λ ∈ {1, . . . , `},F[λ] = K.xi[λ] + b.

At this stage, the `×k landmark features have been projected
into a new feature space of dimension f (the number of filters).
Since the K and b parameters are shared for every landmark,
we believe that common patterns between landmarks are
learned: our model shall hopefully extract useful information
about the underlying network architecture. Nevertheless, it is
still required to return a vector which size is independent of
the number of available landmarks. We thus leverage global
pooling layers [9], a popular mechanism to support variable-
size inputs and ensure good generalization in image analysis.
In our case, we apply a global function Ω on every landmark’s
convolution feature element-wise:

F =

`

Ω
λ=1

K.xi[λ] + b,F ∈ Rf

We define this process as a new kind of neural network
layer and call it “LandPooling” by reference to landmarks.
An illustration of this landmark-flattening process is depicted
in Fig. 3. We note that any commutative function that can be
applied with a generic number of arguments can be chosen
for Ω. We explored several combinations of hyperparameters
and kept the best configuration listed in Table I.
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Fig. 2. Architecture of DIAGNET. 1 Landmark features are first separated
from local features and 2 fed in the LandPooling layer with multiple parallel
global pooling operations. 3 A hidden fully-connected layer is applied after
concatenating the LandPooling output with local features. 4 The coarse fault
prediction is obtained by applying a series of non-linearities. 5 Finally, an
attention model is applied on the coarse prediction to return to the feature
space and propose a fine-grained fault localization.
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Fig. 3. Overview of the non-overlapping convolutional layer with pooling
(LandPooling). For each landmark λ, the k features of that landmark xi[λ]
are transformed to a new feature space F[λ] of size f through a shared kernel
K. To return a fixed-size output of size f , the results for the ` landmarks are
combined through a global Ω function, such as maximum, average or others.

D. Tailoring to specific services

Similarly to classical classification tasks relying on convolu-
tional architectures, we add a multi-layer perceptron after the
LandPooling mechanism presented in the previous subsection.
The main purpose of these additional layers is to increase the
expressivity of DIAGNET, by permitting a non-linear combi-
nation of the results of the global pooling and the local features
resulting in coarse fault predictions. As illustrated in Fig. 2,
this perceptron (also called “Fully-Connected layers”) accepts

TABLE I
NOTATIONS AND HYPERPARAMETERS

` Total number of landmarks (10)
f Number of convolutional filters (24)
k Number of features per landmark (5)
m Number of features per sample (`× k + local features = 55)
c Number of coarse fault families (7)
Ω Global pooling operations (min, max, avg, variance, p10, . . . , p90)
xi = (xi,j)1≤j≤m, input sample of client ci
yi = (yi,j)1≤j≤c, coarse predictions for client ci
γ̂i = (γ̂i,j)1≤j≤m, predicted features usefulness for ci

2 hidden layers (512 × 1), (128 × 1) with ReLUs;
optimizer: SGD with Nesterov (learning rate = 0.05, decay = 0.001)
Auxiliary model: Random Forest
(Gini impurity criterion, 50 estimators, maximum depth = 10)



multiple inputs: the global pooling functions Ω1, . . . ,Ωω along
with the “local features” that are independent of available
landmarks. This additional expressivity is necessary to model
the dependencies between services and input features. By
default, DIAGNET uses one single general set of final fully-
connected layers to diagnose multiple services.

However, such general model could demonstrate irregular
performance if the set of monitored services is very diverse:
not all Internet services have the same network requirements
and dependencies. For example, while the latency is critical
in multiplayer games, it might intuitively not be the case for
video streaming systems where the available bandwidth is
usually the bottleneck. It is thus possible to build one spe-
cialized DIAGNET model per service to improve its accuracy,
by learning a dedicated set of fully-connected layers for that
service. We detail and evaluate this property in Section IV-F.

E. Fine-grained inference via attention mechanisms

To offer a fully extensible model, we need a mechanism to
evaluate the importance of each input feature (each possible
root cause) in the coarse-grained fault prediction. There exist
techniques to directly evaluate such importance in simple
models (e.g. decision trees), but it is well-known that this
kind of attention evaluation is non-trivial for neural networks.
While some generic techniques are applicable to any black-
box model including ours [21], we instead propose to compute
the gradients of the coarse predictions with respect to the
input features. This method has already been tested in image
analysis with great success [10], [22], and takes advantage
of the fact that we can observe the internal weights and
architecture of the coarse model (white-box setup). Given a
coarse prediction y = (yj)1≤j≤c ∈ Rc (step 4 of Fig. 2), we
first compute the ideal label vector y? that would have been
given during the training for the input sample. (For readability
we removed the i indices of all notations.)

∀j ∈ {1, . . . , c}, y?j =

{
1 if max(y) = yj
0 otherwise

We define L?(y) = −
∑c
j=1 y

?
j log yj = − log yargmax(y)

the cross-entropy loss that is minimal for the ideal label vector.
By applying a single backpropagation step as done during the
training phase, and thanks to the complete knowledge of the
coarse model architecture, we can compute the gradient of this
loss function with respect to the input features. We make the
assumption that each partial derivative ∇j = ∂L?

∂xj
represents

the usefulness of each feature j. It must be normalized
according to the absolute value of ∇j to account for both
positive and negative derivatives.

γ̂i,j =
|∇j |∑
k |∇k|

(1)

In our early experiments, we observed that the attention
mechanism (Equation 1) used alone as a predictor of root
causes gave inaccurate results. This is because a pure gradient-
based backpropagation does not fully exploit the information
provided by the multi-layer perceptron ( 4 in Fig. 2). To

Algorithm 1: Multi-label score weighting
input : Predictions γ̂ and coarse predictions y
output: Tuned predictions γ̂′

B Isolate the best coarse prediction
1 φ← argmax(y)
2 p← {indices of features with same family as φ}

B Compute the relative weight
3 w ← yφ∑

yi
; s←

∑
j∈p γ̂j

4 if s = 0 ∨ s = 1 then γ̂′ ← γ̂ B Extreme case
5 else
6 foreach j ∈ p do γ̂j ′ ← γ̂j

w
s

B Bonus

7 foreach j /∈ p do γ̂j ′ ← γ̂j
1−w
1−s

B Penalty

overcome this problem, we give a bonus to the most relevant
root causes that belong to the same family fault as the most
probable coarse cause returned by the coarse prediction. For
instance, if the model predicts a remote link latency problem,
we use this hint to increase the predicted usefulness of every
latency-related feature while penalizing other features. The
weighting mechanism is shown in Algorithm 1.

Given a coarse prediction vector y, the algorithm first
selects a set of features p related to the most significant
class in y (in practice of the same family) at line 2. In
our implementation, we manually assign each feature to a
coarse class. Then, a ratio w is computed between the model’s
confidence in its coarse prediction and the sum s of related
features’ usefulness (line 3). The tuned γ̂′ are computed
in line 6 and line 7. By construction, Algorithm 1 always
returns a normalized vector.

F. Ensemble model averaging

The architecture of Fig. 2 is designed to naturally extend
to new landmarks without retraining. As a result, however, it
loses information compared to more direct methods such as
random forests. To further boost our solution, and reap the
benefits of both worlds, we use ensemble model averaging as
a last optimization step, a popular method to combine mul-
tiple specialized models [24]. We average the tuned attention
predictions with another prediction from an auxiliary model,
designed to be simpler and specialized in known root causes.
We chose a random forest approach as our auxiliary model
and give more insights about this choice in the next section.

We briefly formalize this last optimization. Let U be the
set of unknown landmark’s features, not seen during training.
Let γ̂′ and α̂ be the prediction obtained from the tuned
attention mechanism and the auxiliary model, respectively. We
define wU , the probability that the root cause is explained by
an unknown landmark’s features, as predicted by the tuned
attention mechanism. Since wU ∈ [0, 1] by definition, the final
prediction of DIAGNET after model averaging is given by

wU γ̂
′ + (1− wU ) α̂ with wU =

∑
j∈U

γ̂′j



IV. EVALUATION

To evaluate DIAGNET, we deployed a multi-cloud geo-
distributed network of clients, online services, and landmark
servers. In this section, we present our methodology and
introduce baselines offering similar properties as DIAGNET.

A. Experimental setup

a) Deployment: In order to train and evaluate the root
cause analysis models, we deploy one landmark and multiple
clients in each of the ten regions listed in Fig. 4. Three of
these regions (GRAV, SEAT, SING) also host mock-up online
services to evaluate the QoE with diverse setups (Table II).
Some services only require a single HTML file, while others
download resources from distant regions. (Recall that the
nature of individual services, and hence the relations between
regions and services are hidden during model training.) Region
locations are chosen to benefit from both the diversity of a
worldwide multi-cloud deployment and the proximity of co-
located regions for fault localization. At the time of writing,
our experimental pipeline was made of roughly 5,000 lines of
Python and Go code. We used Tensorflow 1.13.1.

b) Landmark features: Live network metrics are obtained
by querying each landmark through HTTPS endpoints [19]. To
estimate download and upload throughputs, we measure the
duration of large GET and POST HTTP requests. We avoid
the classic overhead of HTTP requests for RTT estimation by
upgrading the connection to WebSocket. Finally, we use the
getsockopt linux syscall on each landmark server to make
raw TCP statistics available to landmarks’ clients. We mainly
extract the ratio of reordered and retransmitted packets from
these statistics.

c) Methodology: Clients periodically fetch network fea-
tures from landmarks and visit mockup services to evaluate
their QoE from window.performance JavaScript timings,
both operations using an automated Chromium browser. Each
client also periodically estimates the RTT to its local network
gateway. We inject artificial network faults in each cloud
region using Linux tc Network Emulator rules, a realistic
and popular emulation method for reproducible experiments.
QoE information was then used to flag samples as “nominal”
or “faulty” with the (known) root-cause ground-truth as class
label for model training. As presented in Section III-D, we
first trained a general DIAGNET model based on 8 mockup
services, and then built a specialized model for each service by
retraining only the last fully-connected layers. All the scores
presented in this evaluation section are computed using the
specialized models. We give more details about this method
in Section IV-F, along with an evaluation of training cost.

d) Root cause extensibility: We trained and tested root
cause models on two different sets of landmarks to assess
the extensibility capabilities. For all experiments in this paper,
three landmarks were “hidden” during training: EAST, GRAV
and SEAT, named new landmarks and denoted by ? in this
paper, as opposed to known landmarks (the remaining seven).
We chose these landmarks due to their immediate proximity to
the mock-up services and several injected faults, and limited
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SERVICE DEPENDENCY
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Fig. 4. Locations of landmarks and services in our multi-cloud experimental
deployment. We deployed emulated clients in every location (region). EAST,
GRAV and SEAT landmarks were hidden during training.

the availability of their features to model evaluation only. In
doing so, we reduced the quality of the measures available to
training, and made faults located close to the hidden landmarks
particularly hard to detect, as neither these faults, nor the
measures they impact most are used to train the models.

e) Dataset: We ran our experiment during the last two
weeks of December 2019, using different hours of day and
days of week to ensure large coverage of traffic and conges-
tion patterns between cloud providers. 213,000 of “nominal”
samples along with 30,000 “faulty” samples were collected
during our experiment. 80% of each kind of samples were used
for training, while the other 20% were reserved for testing.
We injected the following 6 families of faults in regions
involving services (SEAT, BEAU, GRAV, AMST and SING),
leading to diverse fault scenarios: (i) download bandwidth
shaping (capped at 8 Mbits/sec), (ii) additional service latency
(50 msec), (iii) additional gateway latency (50 msec), (iv)
additional jitter (up to 100 msec), (v) increased packet loss
(8%), (vi) large CPU stress (impacts Chromium’s navigation).

Faults were uniformly distributed between regions and fam-
ilies to avoid bias towards more frequent root causes. In some
scenarios, we injected multiple faults at the same time, but at
most one fault was the real root cause for QoE degradation in
a given region. In many cases, we observed that the QoE was
not degraded despite the injected fault(s). For instance, the
QoE of a small HTML website was not affected by shaped
bandwidth or CPU stress. We flag these samples as “nominal”.

As explained just above, 3 landmarks out of 10 were hidden
during training: samples with faults at these landmarks were
forced to appear only in the testing set. Of these samples with
"hidden faults", a fraction did not exhibit any QoE degradation,
and were therefore flagged as “nominal”, resulting at the end
in 23% of the testing samples with degraded QoE to involve
faults in hidden regions that were not seen at training time.

B. Comparison baselines

We propose two baselines that use common classification or
outlier detection models and offer the same three key proper-
ties as DIAGNET, namely location and topology agnosticism,
along with root cause extensibility.



TABLE II
ONLINE SERVICES USED IN EXPERIMENTS.

Service Description

1. single Static HTML page with no dependency
2. script.far Requires a JS file in BEAU
3. script.cdn Requires a JS file from nearest region
4. image.local Loads a 5MB image from same server

(using the same HTTP connection)
5. image.far Loads a 5MB image from BEAU
6. image.cdn Loads a 5MB image from nearest region

a) Extensible Random Forest Classifier: A random forest
ensemble classifier is built by constructing a large set of
small decision trees. The final classification is done through
a majority vote on trees outcomes. This method has been
previously used in failure classification in NetPoirot [25],
showing great accuracy. To train an extensible random forest,
we naively set the features dimension to the maximum possible
size, and we set to zero the missing landmarks values in
each sample. We also add a special “unknown” output class,
selected when the given sample is classified as “nominal”. We
evenly redistribute the score obtained for this special class to
every other class: this allow non-trained faults to have a non-
null score in the final prediction. This model is used as-is in the
ensemble averaging optimization presented in Section III-F.

b) Extensible Naive Bayes Classifier: We propose an-
other approach for extensibility, based on the merger of several
probability distributions. Using Bayes theorem and making
the “naive” assumption that the value of one feature is not
dependent from other features, it is easy to compute the pos-
terior probability that one sample belongs to a class Ck given
the estimated prior and likelihood probabilities. Equation 2
presents the application of the Bayes theorem for classification.

P (Ck | xi) ∝ P (Ck)

m∏
j=1

P (xi,j | Ck) (2)

To add a basic support for model extensibility, we adapt the
classic model in the following way. First, it is highly probable
that one particular root cause Ck has not been seen during
the training phase, and the prior probability for class k is
unknown. Thus, we define the prior probability of each class
Ck as P (Ck) = 1 for every root cause. This also has the
positive side-effect of canceling bias with unbalanced datasets.
Then, we use a Kernel Density Estimation (KDE) [26] function
to construct the likelihood probabilities P (xi,j | Ck). In
contrast with the more common Gaussian model, the KDE
increases the expressivity of this baseline model. Finally, we
build generic aggregate likelihoods for unknown features or
new classes. For each measure family t collected in landmarks
(such as uplink latency or download bandwidth), we build a
generic likelihood P (xi,t | Ct), defined as the union KDE of
the measures for every landmark available during training.
This generic likelihood is used when no specific likelihood is
available for a given feature or class.
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Fig. 5. Recall values for failures near new and known landmarks, for different
levels of recall k. DIAGNET consistently overperforms its competitors on
new landmarks, while delivering close to ideal performances on known ones.
By comparison RANDOM FOREST works perfectly for known landmarks,
but degrades starkly on new ones, while NAIVE BAYES offers reasonable
performance with new landmarks but is lost on known landmarks.

C. Recall evaluation

The final goal of root cause analysis is to return a ranked
list of probable causes. We use the Recall@k metric for model
evaluation: for a set of known real causes and a ranking
method, the Recall@k is the number of correctly predicted
causes within the first k ≥ 1 causes divided by the total
number of causes. A high recall would demonstrate that a
method of ranking (model) can be useful to users, being able
to quickly pinpoint the real root cause of a QoE degradation
among a set of possible causes. In our setup, we argue that
it is acceptable to return the expected cause within the first
k ≤ 5 predictions from 55 possible root causes.

Fig. 5 shows the Recall@k for two types of fault: faults
injected near new landmarks in (a), and faults injected near
known landmarks in (b). (As a reminder, new landmarks’
features are hidden during training.) DIAGNET offers the best
recalls for faults near new landmarks (a), thanks to its attention
mechanism that fully exploits the information coming from the
new features without additional training. Our proposal also
shows close to ideal results for faults injected near known
landmarks (b), thanks to the “hybrid” mode of operation
offered by ensemble averaging (Section III-F). The combined
Recall@1 for DIAGNET (including faults near known and new
landmarks) is 73.9%, a very good score given the high num-
ber of probable root causes. By contrast, RANDOM FOREST
works perfectly for known landmarks, but its recall degrades
dramatically in the case of new landmarks; the described
extensible random forest model essentially gives completely
random predictions in this second case. By contrast, NAIVE
BAYES shows extremely poor results for known landmarks,
with its best score reached for high values of k in (a). This is
due to a severe bias towards new features that systematically
get high prediction scores even for known failure types.

Fig. 6 presents each recall per family of fault and per
location. We clearly see NAIVE BAYES’s bias towards some
fault families and new landmarks GRAV and SEAT. DIAGNET
is the only model showing good recalls for every family of
fault near both known and new landmarks regions.
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Fig. 6. Recall per fault family (top) and fault region (bottom). Regions hidden
during training are indicated with a star ?. Again, RANDOM FOREST gives
best results for known landmarks, but DIAGNET is the only solution able to
adapt to the different scenarios, with close to optimal results for local faults.
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Fig. 7. Performance of the coarse classifier, with details for samples including
known and new landmark’s faults. The coarse classifier’s accuracy is 0.70 ±
0.013 for faults near new landmarks and 0.85± 0.005 for faults near known
landmarks (ratio of correct predictions over evaluated samples).

D. Evaluation of DIAGNET’s coarse classifier

To shed light on the results just presented, and validate
the design of DIAGNET’s convolutional neural network, we
evaluated the F1 score of DIAGNET’s coarse classifier (cor-
responding to step 4 in Fig. 2) for each fault family. As
explained in Section III-E, the output of this coarse classifier is
used by the attention mechanism and eventually averaged with
the random forest classifier to provide the final classification.
Thereby, we expect this coarse classifier to be critical for the
final root cause ranking.

Fig. 7 presents separately the results for samples containing
faults near known landmarks, and those with faults near new
landmarks. As expected, samples with faults close to known
landmarks are overall better classified than samples with faults
close to unknown landmarks. The F1 scores also show that
some fault families are easier to classify than others (Latency,
Uplink and Load). Overall scores demonstrate the value of
DIAGNET’s convolutional neural network.

E. Effect of client diversity

To validate the location agnosticism property of DIAGNET,
we gradually increase the location diversity of participating
clients. (Put differently, we vary the number of regions with
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Fig. 8. Comparison of models’ performance for new landmarks with in-
creasing diversity of clients (we modified the number of regions with active
clients). DIAGNET can scale very well for landmarks unseen during training.

active clients submitting samples.) The results of that ex-
periment are shown in Fig. 8, with the aggregate Recall@5
for all families of faults near newly-introduced landmarks.
For completeness, we note that we measured the Recall@5
for every possible combination of active clients to eliminate
potential discrepancies between configurations. The key take-
away is that DIAGNET is able to give the best predictions for
all scenarios of client diversity, showing great stability. Our
results hint that DIAGNET is truly able to distinguish between
dissimilar clients (e.g. clients in America vs. Asia or Europe).

In contrast, the NAIVE BAYES model prefers to handle few
regions at a time. This is explained by the KDE merge process
of this baseline: with more diverse clients, merged KDEs are
“flattened” and converge to uniform distributions, biasing the
model towards unknown features as seen in Fig. 5 and Fig. 6.
RANDOM FOREST is less sensitive to client diversity, with
only a slight recall increase probably due to the larger number
of available training samples.

F. Training cost of new service models

To remove the need for the complete retraining of DIAGNET
when new online services are being added, we assume that the
weights learned in the non-overlapping convolution are shared
between services, as they extract global network features; and
that the final layers of DIAGNET capture the behavior of each
service. We now give the details of the DIAGNET learning
procedure, that has been used in the whole evaluation section
and is based on that assumption. We first train a general
model on a subset of eight initial services, taking the union
of services’ problems as the expected model output. Then,
we freeze the weights of the non-overlapping convolution,
and optimize the weights of the final layer for each of a set
of additional services, not contained in the original set. This
leads to one specialized model per additional service. With the
hyperparameters from Table I, the general model must learn
215,312 parameters while specialized models hold 65,664
trainable parameters (the remaining 149,648 parameters are
set to their value in the general model).

Learning losses on training and validation sets are plotted
in Fig. 9 through learning epochs, for the general model and
for a subset of service models. We consider that the training
is done when the validation loss is no longer decreasing (an
indication of overfitting). Although the training time on the
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Fig. 9. Evaluation of model transferability: after building a general model on
8 services chosen uniformly at random (a), it is possible to build specialized
models for other services while freezing convolutional kernels (b). A relatively
low loss rate is quickly reached for most services.

general model is higher (around 20 learning epochs), service
models converge in less than 5 epochs on average. This
indicates that specialized service models per service are easy
to learn once one global model exists. On a commodity laptop
using the CPU only, it takes 32 seconds to train the general
model and 4 seconds to train each service model. Root causes
are inferred in 45 ms on average.

G. Accuracy with simultaneous faults

The critical task of a root cause model is to find the
correct root cause when multiple simultaneous anomalies are
detected. DIAGNET uses specialized models for each web
service: some services might be impacted by a given anomaly,
when other services might not. To evaluate this property,
we simultaneously injected two latency faults near the BEAU
and GRAV regions and quantified the number of predictions
towards each region. Fig. 10 gives the detailed results for
DIAGNET’s general model (a) and for the specialized model
of each service (b). The results for the general model are
quite poor, with a confusion between BEAU and GRAV regions
and a lot of other faults predicted. Specialized models provide
sharper predictions, with a recall of 76% for the latency root
cause near BEAU, 28% for the latency root cause near GRAV—
a region unseen during training—and 71% when both faults
are actually root causes. This analysis confirms the benefit to
specialize models for each monitored service.

V. RELATED WORK

Root cause analysis solutions either rely on passive or active
measurements. Passive measurement relies on existing traffic,
does not introduce any overhead and is therefore used in large-
scale systems [18], [27]. Depending on the setup, different
sources of measurements are available such as local system or
router insights [25], [28], [29], request path annotations [30],
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Fig. 10. Predicted root causes for general and specialized DIAGNET models,
with simultaneous injected faults (latency near the BEAU and GRAV regions).
Depending on the evaluated service, the relevant root cause(s) causing the QoE
degradation is either one of the two injected faults or both (y-axis). GRAV
metrics were not used during training (?). Overall, the specialized models
(lower chart) deliver better predictions for all 3 combinations of relevant faults.

[31], routing monitors [32] or more recently from Internet
background radiation [33]. Still, passive observations fall short
in low-traffic environments with little information about the
underlying network architecture and no control over routing
paths [34]. DIAGNET leverages active probing to perform
accurate root cause analysis from end-devices alone, that have
a very narrow view of the underlying network topology. We
note that our method can also be used in conjunction with
passive monitoring for bootstrapping a system [18] or testing
hypotheses [35].

Numerous works have been performed in enterprise net-
works and datacenters, where the full network topology is
known (e.g. Clos-like topologies or SDN-driven networks [16],
[17], [36]). This topology information allows network to-
mography techniques to be applied [11]–[15], [37], [38],
pinpointing faulty links or components accurately at scale
despite complex dependencies between components [39].

From a metrics perspective, root cause analysis tools are
often specialized towards a set of metrics and thus a narrow set
of faults. For example, some focus on poor TCP statistics [11],
[14], [25], on invalid BGP announcements [28], [32] or
Virtual Hard Drive failures [39]. Netalyzr [4] and Fathom [5]
collect end-user connectivity statistics to propose automated
troubleshooting using predefined expert rules. By contrast,
our work keeps a generic approach. Nevertheless, the specific
metrics of the aforementioned methods are complementary and
could be used as additional input features if available.

Regarding machine learning methods, belief networks have
been used [40], [41] to model the complex dependencies
between network components and online services. However,
such methods require many approximations in the modeling
to remain tractable, while being very sensitive to errors in
topology identification [42], [43]. Random forest models are
also known to perform well in understanding network failures,



as demonstrated by NetPoirot [25]. In contrast, DIAGNET
supports variable number of input features (landmarks) using
convolutional neural networks. DIAGNET relies on the good
expressivity of non-linear models to learn features dependen-
cies. It ensures a low training cost by proposing generic models
applicable to multiple network configurations and services
without complex dependency modeling.

Crowd-sourcing measurements and root cause analysis is a
promising approach, where multiple vantage points share their
results to better estimate fault root causes [18], [41], [44], [45].
Distributed Hash Tables (DHT) have historically been used
for that purpose [46], [47], ensuring the scalability of such
decentralized systems. This line of work is complementary to
DIAGNET: while we currently assume that the analysis process
and data collection is handled by a centralized location, DHTs
or other distributed system approaches could be used to
distribute the root cause analysis service.

VI. CONCLUSION

Root cause analysis at the scale of the Internet is rec-
ognized as a hard problem given the decentralized design
of the network. In this work, we have proposed DIAGNET,
a generic and extensible root cause analysis method based
on active landmark probing. DIAGNET does not depend on
prior network topology or service knowledge which makes it
practical for end-users that have a very limited view of the
Internet topology past their gateway. The inference model of
DIAGNET relies on a new type of convolutional network and
attention mechanism, along with several optimizations (multi-
label score weighting and ensemble model averaging). While
we demonstrated that Random Forest models can be very
insightful when diagnosing in a static setting and that Naive
Bayesian approaches can also be leveraged for some faults
in more dynamic settings, DIAGNET shows good results in
all scenarios, i.e. it can diagnose local and remote failures in
static and dynamic network settings, even with very diverse
participating clients from across the globe.
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