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Parasites have evolved various behavioral adaptations to
find hosts and locate sites of infection within them (Combes
1991; Esch and Fernandez 1993). In many complex parasite
life cycles, parasites have been shown to modify the behavior
of their intermediate hosts to enhance the probability of pre
dation by the definitive host (Bethel and Holmes 1973; Camp
and Huizinga 1979; Barnard and Behnke 1990; Combes
1991). It has been predicted (Combes 1991) that a new cat
egory of parasites, unable to modify the behavior of their
intermediate host, will favor their transmission through pref
erentially infecting hosts previously infected by a debilitating
parasite. Thus, through so called hitch-hiking such parasites
would benefit from the efficient mechanisms of "favoriza
tion" (Combes 1991).

In the amphipod Gammarus insensibilis, infective larvae
(i.e., cercariae) of Microphallus papillorobustus (Trematoda,
Microphallidae) systematically migrate into the amphipod's
brain, encyst in the cerebroid ganglia (Rebecq 1964) and
consequently strongly alter their host behavior by inducing
a positive phototactism, a negative geotactism and an ab
errant-suicidal evasive behavior (Helluy 1983a,b). Infected
individuals, named 'mad gammarids', are more vulnerable
than uninfected ones to predation by aquatic birds, the de
finitive hosts of M. papillorobustus (Helluy 1983a,b). Mar
itrema subdolum is another microphallidae trematode, sym
patric and syntopic with M. papillorobustus, with a similar
life cycle involving the same intermediate and definitive
hosts (Helluy 1983a). Unlike M. papillorobustus, M. sub
dolum always encysts in the amphipod abdomen and, in
addition, is unable to favor its own transmission to the de
finitive host since it never alters the host behavior (Helluy
1983a).

The aim of the present study was to analyze several as
pects of the M. subdolum lifecycle to evaluate the evidence
for hitchhiking. We first analyzed for the two trematode
species the frequencies of infection in the molluscan first
intermediate hosts (Hydrobia acuta and H. ventrosa). Then,
we examined in the field the distribution of the two trem
atode parasites in the population of the amphipod host. Fi
nally, the mechanisms underlying infection processes were
studied in the laboratory, through recording the behavior of
the amphipod host and of the cercariae of the two parasite
species.

MATERIALS AND METHODS

First Intermediate Hosts

A large sample of Hydrobia was randomly sampled at the
Thau lagoon (Southern France, 43°25'N, 3°35'E) during
March 1995. Cercarial emission allowed us to detect infected
individuals. Cercariae of M. papillorobustus and M. subdolum
were identified following the description of Rebecq (1964).
To avoid confusion related to morphoanatomical criteria,
identification of infected molluscs (H. acuta and H. ventrosa)
was based on three electrophoretic loci (Pgm EC 2.7.5.1, Mpi
EC 5.3.1.8, and PepB 3.4.13, substrate Leu-Gly-Gly), pre
viously. found to be diagnostic. Electrophoresis techniques
used are described in Pasteur et al. (1987). We compared the
frequencies of infection of each mollusc species by each trem
atode species.

Second Intermediate Host

To analyze the ecological association between the two par
asites in the second intermediate host, a large sample of G.
insensibilis (li = 567) was collected during spring 1994 in
the Thau lagoon, following the methodology described in
Thomas et al. (1995). Gammarids were randomly sampled in
the aquatic vegetation and in no more than 40-cm water depth.
All individuals were preserved in alcohol (70%), measured
in length, and dissected to count metacercariae of M. pap
illorobustus and of M. subdolum. Gammarids were placed in
five length classes ranging from 4 mm to 13 mm. Estimation
of the ecological association between the two parasites was
addressed through computing in each length class the cor
relation coefficient for binary data (r<jo) described in Janson
and Vegelius (1981).

Behavior of Amphipods

We collected a new sample of 181 G. insensibilis in the
Thau lagoon during spring 1994. The behavior of uninfected
gammarids (n = 81) and gammarids infected by M. papil
lorobustus (n = 100) was analyzed through checking their
location each minute during 30 min in a water column
(length: 40 em, width: 5 cm, height: 35 cm) filled with aerated
sea water (38°/%0). From these data, we computed the mean
height of each gammarid in the water column. We then com-
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TABLE I. Proportions of H. acuta and H. ventrosa infected with
M. papillorobustus and M. subdolum.

TABLE 3. Proportion of swimming versus crawling cercariae of
M. subdolum and M. papillorobustus.

Hydrobia acuta
Hydrobia ventrosa

M. papillorobuslus

11(34%)
21 (66%)

M. subdolum

48 (46%)
56 (54%)

Swimming cercariae
Crawling cercariae

M. subdolum

342 (26%)
966 (74%)

M. papillorobustus

122(14%)
731 (86%)

pared (Mann Withney U-test) infected and uninfected gam
marids as regard to the mean water height.

Behavior of Cercariae

Behavior of cercariae produced by infected molluscs H.
acuta and H. ventrosa, was analyzed by determining their
vertical distribution in a water column (diameter: 9 em, ver
tical height: 30 em), Several infected molluscs were put in
a wide-mesh (1 mm) cage placed in the middle of the water
column for 20 h. To limit the possible bias induced by dead
cercariae, we changed the water every two hours after col
lecting the bottom (0-1 em, crawling cercariae) and the top
fraction (2-29 em, swimming cercariae) of the water column
separately. The two fractions were filtered to trap cercariae
(pore size: 0.22 urn). After staining (2g KI, l g I, 100 cc
water), cercariae appeared in red and were counted. We con
ducted this experiment once for each parasite species. This
procedure permitted the comparison of, at a given time, the
proportion of swimming cercariae of the two trematode spe
cies. Statistical tests followed Siegel and Castellan (1988)
and Sokal and Rohlf (1981).

RESULTS AND DISCUSSION

Both M. subdolum and M. papillorobustus rely on the same
two mollusc species, H. acuta and H. ventrosa, as first in
termediate hosts. In the field, the frequencies of infection of
each mollusc species by either trematode were similar (Table
1, Fisher exact test P = 0.31), suggesting that the life cycles
of the two parasites are parallel.

There was a close association between the two trematode
parasites in their amphipod hosts. Occurrence of metacer
cariae of M. subdolum was positively and significantly as
sociated with that of M. papillorobustus (Table 2). The ob
served association between the two parasites in gammarids
could be generated by an heterogeneity in the distribution of
infected snails. In such a case, the positive association would
result from a passive phenomenon. However, we do not favor
this hypothesis for the following reasons: the snails are in
fected through the excrement of several bird species (larids,
small waders, at least 23 species; Rebecq 1964). The depo-

TABLE 2. Ecological association within five size classes of the
hosts between abdominal metacercariae of M. subdolum and cere
bral metacercariae of M. papillorobustus in G. insensibilis.

sition of the excrement probably follows a uniform spatial
pattern over the sampling zone. The eggs undergo a slow
development involving a dispersing phase during 10 days
before reaching the miracidium stage that infects molluscs.
Moreover, once infected, snails do not start releasing cer
cariae in the water until several weeks have passed, a time
during which snails are likely to move along the substrate.
Finally, the association is significant within the five different
length classes of gammarids, suggesting that the phenomenon
is not due to spatial or temporal association of the two par
asites in the first intermediate host. This positive association
between the two trematodes within gammarids might result
from M. papillorobustus cercariae infecting preferentially
gammarids previously infected by M. subdolum. Although
the resulting benefit for M. papillorobustus would be unclear
in this scenario, we cannot exclude this hypothesis. Another
possibility is that M. subdolum preferentially infect "mad
gammarids."

Overall, gammarids infected by M. papillorobustus pre
ferred to swim closer to the surface (on average at 13 em
depth) as compared with uninfected ones (on average at 26
em) (Mann Withney U-test, U = 1378, P < 0.001). In our
experimental conditions, the proportion of cercariae swim
ming, versus those crawling, was significantly greater for M.
subdolum (26%) than for M. papillorobustus (14%) (Fisher's
exact test, P < 0.0001, Table 3). Thus, cercariae of M. sub
dolum display a better ability to swim in the water column
and are probably more likely to be transported toward the
surface by the vertical turbulent diffusion processes (Millet
and Cecchi 1992). Due to this behavioral trait, cercariae of
M. subdolum are probably more likely to encounter modified
photophilic gammarids and to increase their probability of
transmission by hitch-hiking.
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Natural populations sometimes display genetic features
that do not fit a priori expectations based on current biological
knowledge. Marine bivalves are a good example. Most live
in large populations and display external fertilization fol
lowed by a long, planktonic, larval phase (Barnes 1986),
allowing extensive dispersal. These characteristics should re
sult in (1) Hardy-Weinberg equilibrium (HWE); and (2) ge
netic homogeneity over large distances. However, the first
prediction is challenged by the repeated observation of het
erozygote deficiencies, the origin of which remains unknown
(reviews in Zouros and Foltz 1984; Gaffney et al. 1990).
Hypotheses mainly fall into three categories. First, homo
zygotes may have a selective advantage during the larval
phase. Second, part of the polymorphism may not be detected,
due to aneuploidy, null alleles, or gel misscoring. Third, the
individuals sampled may not originate from a single, ran
domly fertilized gametic pool.

To test both predictions, population genetic studies must
therefore deal with fine-grained heterogeneity in space (mi
crogeographical structures) and time (temporal structures).
Such studies are scarce in marine organisms (see e.g., John
son and Black [1984] for temporal structures and Koehn et
al. [1973] for microgeographical structures) and have yielded
inconsistent results. Indeed, reliable results are difficult to
obtain as: (1) genetic differences, if any, may be small, im
plying large sample sizes; (2) given that genetic diversity in
bivalves is high (Sole-Cava and Thorpe 1991), powerful sta
tistical tests are required to avoid pooling alleles; (3) indi-

vidual age is generally unknown, resulting in low temporal
resolution. We here circumvent these difficulties as our total
sample size is 2855 individuals (analyzed at nine polymor
phic loci); we use exact tests for HWE and genetic differ
entiation, unbiased and more accurate than F-statistics or X2

based tests (Raymond and Rousset 1995a); and the species
studied (Spisula ovalis) displays annual shell lines, allowing
identification of annual cohorts.

We analyze the microgeographic and temporal structures
in natural populations of S. ovalis to address the following
questions: (1) Is there any significant heterogeneity in space
and time? (2) To what extent can the mixing of successive
cohorts contribute to observed heterozygote deficiencies
(temporal Wahlund effect)? (3) To what extent can the mixing
of individuals from sites very close to each other contribute
to these deficiencies (microgeographical Wahlund effect)? (4)
Can the observed patterns be explained by some amount of
biparental inbreeding?

MATERIALS AND METHODS

The surf clam S. ovalis (Bivalvia: Mactridae) inhabits sub
tidal sandflats along the European Atlantic coasts. Sexes are
separate, and the planktonic larval life may last up to several
weeks, while the adult lifespan can reach 10 years. Individ
uals were dredged at three sites (A, B, C) in the Glenans
Archipelago (Brittany, France; 47°25'N, 4°00'W). All dis
tances between sites are about 1 km. Each site was sampled
on three occasions: on April 1, 1993, May 5, 1994, and May
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