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Abstract

In this paper we propose a new method to reduce the
size of Breiman’s Random Forests. Given a Random
Forest and a target size, our algorithm builds a lin-
ear combination of trees which minimizes the training
error. Selected trees, as well as weights of the linear
combination are obtained by mean of the Orthogonal
Matching Pursuit algorithm. We test our method on
many public benchmark datasets both on regression
and binary classification and we compare it to other
pruning techniques. Experiments show that our tech-
nique performs significantly better or equally good on
many datasets[[] We also discuss the benefit and short-
coming of learning weights for the pruned forest which
lead us to propose to use a non-negative constraint on
the OMP weights for better empirical results.

Key words: pruning, random forest, OMP.

1 Introduction

Random Forest [Bre01] is an ensemble learning method
for supervised classification or regression, which con-
sists in growing a large number of random trees whose
output is combined according to some majority vote
or average. In the seminal paper on Random Forests
[Bre01] it is shown that an increase of the trees number
does not cause overfitting but gives instead an asymp-
totic bound for the generalization error. As a result,
the good performance of Random Forest is often ob-
tained at the cost of heavier and less interpretable mod-
els. A common approach to overcome these problems
is to reduce the size of the Random Forests by mean
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of pruning techniques [KS12| which denotes, broadly
speaking, the process of building a small Random For-
est of size K from an initial Forest of size L > K.

In the rest of this Introduction, we summarize
the classification of pruning techniques as proposed
in [KS12], then we focus and describe some result per-
taining to a subclass of such techniques before intro-
ducing our proposed method.

1.1 Classification of forest pruning

techniques

The survey [KS12] proposes to classify Forest pruning
methods in two different categories called dynamic and
static, which we describe here.

Dynamic pruning. Dynamic pruning techniques
conceive pruned forest online: they do not require the
preliminary construction of a large set of L trees but
instead create the pruned forest of size K from scratch
by adding at each step a new tree if it satisfies some
criterion which takes into account the current state of
the forest [KS12, BAHI2]. Although these techniques
achieve the final goal of producing a forest of limited
size, we esteem that they are not actually pruning for-
est and are out of the scope of this paper.

Static pruning. Static pruning approaches are
based on the Overproduce and choose paradigm. Tech-
niques from this family start with a large set of L trees
and then build the pruned forest of size K <« L us-
ing an iterative process by optimizing a given criterion
until the desired size is reached. The techniques are
classified as either forward, if the final forest is con-
structed from an empty set by iteratively adding new
trees to it, or backward if the pruned forest is obtained
by removing trees one after the other from the large
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initial set.

1.2 State of the art in static pruning of
random forests

As described in Section [I.1] static pruning approaches
are iterative algorithms that use an evaluation crite-
rion on trees at each step in order to select the trees
that should be either added or removed to the pruned
forest. The essential difference between state of the art
techniques resides in the choice of the aforementioned
criterion. Such criteria essentially build on two salient
features that single trees of random forest are expected
to incorporate: a high predictive performance together
with a significant mutual decorrelation, also known as
diversity in ensemble learning methods [BK10].

In [YLLL12] and [ZW09], the authors remove trees
of the forest that have the lowest impact on the margin
— e.g. the confidence of the forest in its correct classi-
fications — and the accuracy of the forest, respectively.
That is, they essentially focus on the prediction per-
formance of trees in the forest. Conversely to [ZW09],
in [CNMCKO04] the authors propose to make positive
selection of trees with replacement, so that they im-
prove the prediction accuracy of the forest at each time
step. Finally, the authors of [HYXLOT7] also perform
an accuracy based forward selection before removing
those classifiers added after the peak value on valida-
tion accuracy. These papers build on the intuition that
pruning on the basis of accuracy should give good per-
formance but, as said above, it is known that discrep-
ancy is also a core feature of ensemble models [AP95].
Following this line of thinking, in [ZW09] the authors
propose to remove trees with maximum average corre-
lation to other trees in the forest, hence increasing their
overall diversity. However, one can think of combining
both criteria together —accuracy and diversity — in or-
der to get the best of both worlds. This is the approach
by [EMEI5], where diversity between classifiers is ob-
tained by mean of clustering techniques and [Rok09],
where a measure of mutual-information is used to com-
bine the accuracy of trees with the inter-tree mutual
agreement for selection.

1.3 Contributions

We propose a static pruning approach with forward
search by using the Orthogonal Matching Pursuit
(OMP) algorithm [PRK93]. In a nutshell, the novelty
of our approach resides in a two-step procedure: first
we build a dictionary by using the prediction vectors
of the individual trees as atoms; and then we apply

OMP in order to select a subset of K atoms (and by
extension, trees) whose combination approximate well
the true labels of the considered data. Actually, in ad-
dition to selecting trees, OMP gives also the coefficient
of that linear combinaison. As we will see in Section
these coefficients strongly contribute to the quality
of our solution. This approach aims at maximizing the
prediction accuracy of the forest with the beneficial
side effect of encouraging de-correlation between trees,
which happens in the core functioning of OMP.

The rest of the paper is organized as follows. In
Section [2] we set the notation and we describe how
we use the OMP algorithm in the context of Random
Forest. In Section [3| we relate the experiments that we
conducted with further analysis of the effects of weights
on the pruned random forest results. We conclude in
Section 4 by discussing the results presented in this
paper as well as potential future directions.

2 OMP Forest

2.1 Notations

The Random Forest algorithm trains a collection of
L independent decision trees {t; : X — Y}£, C T
to achieve the task of predicting the correct value
y € Y from a given x € X. We note t(x) the vector
of all tree votes such that t(x) = [t1(x)...t5(x)]"
The Random Forest estimator f : 7 x X — ) com-
bines an activation function ¢ and a linear combina-
tion of the votes cast by the underlying decision trees:
f({t},,") = o (w't(:)). The function o defaults to
the identity function for regression (¥ := R) and the
sign function for binary classification () := {—1,+1}).
The weights are set to Vi : w; := % as the importance
of all trees are usually deemed equal, however arbitrary
values can be used.

We can now define a pruned forest decision function
in this framework as

fx ({051, ) == o (wTt() st [wlo = K (1)

with K the size of the pruned forest. Thus, the problem
of pruning a forest is converted into finding the indices
of the optimal K non-zero values in the weight vector
w.

2.2 Selecting Trees with OMP

Let X € RV*4 be a matrix of stacked observation vec-
tors and Y € RY the vector of corresponding true la-
bels. Let t;(X) := [t;(x1)...tL(xn)] be the predic-
tions vector of the tree t; on all the data set X. Thus,



the matrix of the prediction of a set of trees {t;}~ , for
that dataset can be defined as:

T:= [tl(X),...7tL(X)]. (2)

As before, a Random Forest produces its decision based
on a linear combination of votes hence the predicted
labels associated with X are Y = o (Tw).

In this work, we propose to achieve the pruning of
Random Forests with respect to the training accuracy
using the mean square error criterion: ||[Y—Y/||%. With-
out loss of generality, we drop the o function in as
to simplify the problem into finding:

argmin | Tw — Y|, s.t. [wlo < K
weRL

3)

where the £y constraint achieves the pruning objective,
i.e. the K elements of w with non-zero values indicate
which trees to keep in the pruned forest. As the prob-
lem of Equation (3)) is known to be NP-hard [DMA97]
we propose to use the OMP algorithm [PRK93] which
is one of the most adapted algorithm for this task.

Despite its difficulty, the problem of Equation
has attracted a lot of attention and is at the center
of many signal processing research problems. Indeed,
just a few years after Davis Geoff and his co-authors
introduced this problem in [DMA97], many different
techniques were proposed to give it an approximate
solution. Among them, two greedy algorithms have
stood out: the Matching Pursuit [DMA9T] and its
improved counterpart, the Orthogonal Matching Pur-
suit [PRK93|.These two algorithms became famous for
their very simple and intuitive form but also for their
strong theoretical guarantees [Tro04, [GV05]. In this
work, we focus our attention on the OMP algorithm
which has proven better than MP in many case and
which has this pleasant orthogonality property, as we
will see later how we benefit from.

In the following, we use the signal processing termi-
nology and call T the dictionnary and its columns the
atoms; We note that the atoms must be normalized for
the OMP algorithm to work.

Orthogonal Matching Pursuit is an iterative algo-
rithm that selects a new atom at each time step to
refine its solution. For a given time-step 7 > 0, we de-
note by w, the current solution and by r. the residual:

r, =Y - Tw,. (4)

OMP stores the atom which has the largest inner prod-
uct with the residual r, and then project the target vec-
tor y onto the span of selected atoms These steps are
repeated until the desired number of atom is obtained.
The overall procedure is summarized in Algorithm

Roughly speaking, the OMP algorithm increases by
one the set of non-zero indexes of w at each time step
and then re-compute the best coefficients of the linear
combination. We remark here that the residual is al-
ways orthogonal to all selected atoms and then the next
chosen atom should be somewhat a different atom from
the previously selected ones. In the context of forest
pruning, this last claim provides further justification
as to why OMP is beneficial for this task: not only
the algorithm focus on finding a linear combination of
trees that approximate well the true labels, it also en-
courages diversity between trees.

Algorithm 1 Orthogonal Matching Pursuit [PRK93]

Input: K,Y,T:=[t1(X),...,t.(X)]

Output: w, an approximate solution of Problem
1: I‘o,Wo,)\ = Y,O,@
2: for 7=0,..,K do
3: 1" € argmax |(t:(X),r.)]

ie{1,...,L}
4 A=AU{(t:(X)}
5: wri1 €  argmin  ||Y — Tw]|3
WE]RL s.t.
Tw € span())
6: Try1 = Y — TWT+1
7: end for

8: return w,4;

2.3 OMP and Random Forests from
the Gradient Boosting perspective

As previously mentioned, the key intuition on apply-
ing OMP to forest pruning is that the resulting forest
should contain good enough classifiers while providing
some diversity among the selected trees. This proce-
dure enjoys good theoretical error bounds on the train-
ing set due to the greedy nature of OMP and the choice
of the minimization objective in Eq 3l Alas, results on
the generalization error are not as straightforward.

In this section we argue that under certain condi-
tions which are to be defined, applying OMP to an en-
semble of random trees results in a (gradient) boosting
procedure, and this equivalence allows our proposed
method to inherit generalization error bounds from re-
cent works on gradient boosting.

To the best of our knowledge, the link between OMP
and ensemble methods has yet to be fully studied, how-
ever several authors have pointed out the connection
between Boosting and Matching pursuit [LRKT18],
[Eri01]. In a nutshell, [Eri01] cast boosting as a co-
ordinate descent approach in the function space. The
goal of the method is then to find at each iteration



the direction providing the steepest descent. This is
equivalent to applying Matching Pursuit on a carefully
chosen dictionary and signal.

More formally, let T := {t|t : X — YV} be a set of
weak classifiers (we voluntarily abuse notation and use
T to define a matrix as in and a set of function
here). Thus, the goal of boosting algorithm is to find
£* € lin(T) := {t[t(X) = > _cr @s8(X), as € R} such
that:

f* = arg min £(Y, £( X)),
felin(T)
where £ : YV x YN — R is an arbitrary loss function.
In the rest of this section, we consider the case where
{ is the least squared loss function. The boosting al-
gorithm builds the solution fj in a greedy fashion, by
seeking the classifier which correlates the most with the
steepest descent direction, given by

_Vf(X)g(Ya f(X))lf(X):fk_l(X) =Ty (5)

where the definition of ry is given in . Thus, at
each iteration k, the two following steps are repeated
to select the new weak classifier and the coefficient, and
to update the solution:

t*, " = argmin {(ry, at(X)),
teT;acR

(6)

fk(X) = fkfl(X> + Oé*t*(X).
By carrying out the computation of @, one gets

1
t* = argmin =||ry — at(X)|[3
teT 2

1 1
(@) arg min §||rk||§ — (rg, at(X)) + 5042
teT

= arg max |{rg, t(X))|
teT

1
o = argmin —a(rg, t(X)) + —a? = (ry, t(X))
aER 2

where (a) holds because the atoms are normalized.
Besides, as we are looking for the classifier pointing
at the steepest descent direction, the scalar product
(rg, t(X)) is essentially positive [MBBF00].

This equivalence is extremely interesting for our
pruning approach. By setting the function space T
as the ensemble of all the base trees trained by the
random forest and the loss as the squared-error one,
then applying MP on this setting results in performing
a boosting procedure.

In the general case, this equivalence does not carry
over from Matching Pursuit to Orthogonal Matching
Pursuit, however there is one particular case when this

equivalence holds. Indeed, if Assumption [I] holds, then
[Tro04l [GV05] proved that OMP and MP converge to
the same solution, which is the optimal one. Conse-
quently, OMP is also equivalent to Gradient Boosting.

Assumption 1. For a giwen dictionary T =
[t1,...,t7] € RY*E and a target vector Y, there ex-
ists a vector w such that: ||wl|lp = K < L; Y = Tw;
and K <3 (st + 1)

In the context of forest pruning, this assumption
claims that there exists a subset of K forest that can
exactly recover the true label for every example in the
training set. Since Random Forests produce an impor-
tant number of random trees, Assumption [I] doesn’t
seem to be unreasonable.

This boosting-like nature of forest pruning with
OMP allows us to use theoretical guarantees on the
generalization error of the resulting classifier. In
[CMS19], the authors propose a general learning set-
ting for gradient boosting. In particular they study
the case where a regularization term on the weak clas-
sifier is injected at each step of the gradient boosting
procedure. In other terms, the choice of the descent
direction is limited to a subspace of all the possible di-
rections. This is exactly the setting of the boosting-like
procedure we built with OMP and Random Forests.
The authors gave a bound on the generalization error
of the constructed classifier. Hence, since this con-
structed classifier is the same classifier constructed by
OMP, the generalization error bound provided in The-
orem 2 of [CMS19] is also applicable to OMP, and by
extension to the method proposed in this paper.

3 Experiments

In this Section, we start with describing the experi-
mental setting then we describe our results on many
datasets with a particular attention on the impact of
weights on the performance.

3.1 Experimental setting

Datasets. Experiments have been conducted on 11
datasets for regression or binary classification. A sum-
mary of the used datasets characteristics is available in
Table [I] along with the size of the base forest for each
dataset.

Competing methods. We compare our technique
to multiple state of the art pruning forest methods.
Following the classification presented in Section [I.2]



Dataset name

Acronym Size Dimension

Task (score metric) Base Forest size

Boston house prices [BKW80)] Bos. 506 13 Regression (MSE) 100
Breast cancer [MSW95] B.C. 569 30 Binary classification (Accuracy) 1000
California housing [PB97] CH. 20640 8 Regression (MSE) 1000
Diabetes [EHJT04] Diab. 442 10 Regression (MSE) 108
Diamonds [Dial Diam. 53 940 9 Regression 429
Gamma [BCGT04] Gam. 19 020 11 Binary classification (Accuracy) 100
Kin8nm [Cor96] Kin. 8192 8 Regression (MSE) 1000
King-Rook vs. King-Pawn [Sha87] KR-KP 3 196 36 Binary classification (Accuracy) 1000
LFW pairs [HMBLMOS] LFW 13233 5828 Binary classification (Accuracy) 1000
Spambase [CL98| Sp. B. 4601 57 Binary classification (Accuracy) 1000
Steel Plates [Bus98| St. P. 1941 33 Binary classification (Accuracy) 1000

Table 1: Datasets characteristics. Experiments used a 60-20-20% split for train-validation-test.

and Section we use Ensemble [CNMCKO04] as a
forward, accuracy based pruning; Zhang Predictions
[WZ09] as backward, accuracy based pruning; Zhang
Similarity [WZ09] as backward, diversity based prun-
ing; and finally Kmeans [FGE15] which is forward and
both an accuracy and diversity based approach. We
also compare our results to a Random selection tech-
nique which is equivalent to training directly a forest
of the desired size.

Implementation details. All the algorithms were
implemented in Python, wusing the scikit-learn
IBLBT13| library for the Random Forest and the
OMP algorithm. We used a 60-20-20% split for train-
validation-test data. Train data was used for training
the base Random Forest and validation data for find-
ing the hyper parameters using Bayesian optimization
through the skopt library [HMS™18]. The train and
validation data were then merged for complete retrain-
ing of the forest and selection. This seems counter-
intuitive to not use the validation data separately for
selecting the trees but our experiment have shown the
best results were obtained without split for all tech-
niques. For all techniques the results have been aver-
aged over 10 runs and standard deviations are shown
in plots.

3.2 Results

We describe our results in this Section. We show that
our method, and its ability to learn weights in particu-
lar, has excellent performance in some case but suffers
harmful over-fitting in some scenarios. We remark an
association between negativity of weights and bad per-
formance which motivates the introduction of a non-
negative constraint on the OMP weights. This heuris-

tic allows our technique to not only achieve even better
performance than the standard OMP version but also
provides an early stopping criterion for advantageous
selection of the pruned forest size.

3.2.1 Evaluating OMP based pruning

Results given in Figure [3] compare the performance of
our OMP based pruning methods to other techniques.
We first note that on some datasets, namely Califor-
nia Housing, Kin8nm, Steel Plates and KR-VS-VP, the
OMP methods clearly outperform most other meth-
ods, reaching at its peaking value even better perfor-
mance than the full Forest. On these datasets, we
also clearly see the benefit of learning weights for the
trees as the weighted version of OMP has better per-
formance than its unweighted counterpart. The En-
semble method compete with OMP and shows excel-
lent results on regression, as in the California Housing
dataset. We remark that the Ensemble method is al-
lowed to take multiple times the same tree in the for-
est, which is equivalent to setting a greater weight to
that tree; this emphasize again the interest of using
weights for the trees in the pruned forest. However,
this Ensemble method performs extremely poorly on
the binary classification tasks compared to the OMP
based methods. The Zhang and Kmeans methods, al-
though stable overall, struggle to perform even as good
as random selection of trees in the forest and hence
have worse performance than the OMP based pruning
technique. A general description of the results is avail-
able in Table [2| where the best performance achieved
by each method is shown, along with the corresponding
number of trees.

In the other datasets, the unweighted version of
our technique performs always at least as well as the
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10 runs and the light colour area around lines show the standard deviation.

NN-OMP NN-OMP OMP omP Random Zhang Zhang
w/o weights

Ensemble Kmeans w/o weights Predictions Similarities

Diam. 3.032E+05 86 3.024E405 143 3.024E+-05 86 3.033E405 86 3.025E+405143 3.087E+05 29 3.025E+405 114 3.047E+05 143 3.032E+405 143
Diab. 3.431E+03 32 3.281E+403 36 3.317E+03 36 3.549E403 36 3.324E+403 36 3.607E+03 25 3.303E403 32 3.282E+403 36 3.241E4-03 32
Kin. 1.892E-02 200 2.024E-02 33 1.921E-02 133 1.809E-02 133 1.931E-02 67 1.776E-02 333 2.002E-02 333 2.089E-02 333 2.017E-02 333
C.H. 2.187E-01 267 2.449E-01 383 2.239E-01 100 2.180E-01133 2.267E-01 33 2.197E-01 133 2.390E-01 333 2.536E-01 333 2.452E-01 333
Bos. 1.267E+01 30 1.278E+01 18 1.214E+4-01 33 1.253E+01 33 1.247E401 27 1.293E+01 13 1.253E+01 33 1.430E+401 33 1.283E+01 33

Sp. B.  94.27% 133 95.52% 167 95.57% 100 95.59% 100 95.56% 167 95.39% 133 95.59% 167 95.45% 333 95.46% 167
St. P. 98.69% 233 99.05% 267 99.95% 67 99.95% 100 99.64% 67 99.90% 333 99.41% 67 99.43% 167 98.92% 300
KR-KP 98.22% 33 99.00% 333 99.42% 100 99.39% 100 99.22% 100 99.48% 100 99.14% 267 99.14% 133 98.94% 333
B. C. 95.09% 100 96.58% 33 96.49% 67 96.58% 67 95.79% 133 95.35% 67 95.88% 300 95.70% 33 95.61% 333
LFW P. 56.00% 67 65.25% 333 66.02% 333 65.73% 233 65.32% 133 65.55% 167 65.98% 267 65.43% 333 65.27% 333
Gam. 80.78% 8 87.68% 33 87.75% 33 87.75% 33 87.75% 33 87.75% 33 87.76% 33 87.72% 33 87.68% 33

Table 2: Table representing the best performance atteined by each model along with the number of tree recquired
for that performance. The maximum considered size of the pruned forest is 10% of the initial Random Forest.
Best performance result on each dataset is bold, second best is underlined. Smallest number of tree is written
in dtalic. Collocation of italic and bold or underlined means that the technique achieve excellent performance
with the smallest number of tree. Score measures and acronyms for dataset are referenced in Table



other techniques but in some cases, namely the Dia-
monds, Boston, Diabetes and Breast Cancer datasets,
the weights have an undisputable detrimental effect on
the performance. We first remark that, in these cases,
no technique seems able to give significantly better re-
sult than a simple random selection of trees. Second,
these three datasets are very small in size and then
we believe that this makes them extremely prone to
over-fitting the weights as illustrated in Figure [2[ which
shows that the weighted forest performs extremely well
on the Validation data, used for selecting trees.

3.2.2 Non-negativity of weights to prevent
over-fitting

Even though the OMP based pruning technique has of-
ten excellent performance when selecting a small num-
ber of trees, it also produces bad results when the num-
ber of selected trees grows. This is extremely problem-
atic as no particular hint is given during the selection
phase of the trees which would allow us to design an
early stopping criterion to set the maximum size for the
pruned forest. Indeed, Figure [2| shows that the perfor-
mance measure on the validation data doesn’t seem to
reach a particular plateau for that purpose.

Encouraged by the overall good performance of the
unweighted version of OMP, we naturally investigate
the weights values provided by OMP —instead of the
trees themselves— in order to explain the poor be-
haviour of our technique. We notice, as depicted in
Figure that the proportion of trees with negative
weight increases with the number of selected trees.
This behavior has certainly detrimental effect on the
performance of the pruned forest and we provide an
explanation for binary classification where the labels
are in {—1,+1}; the thought process is easily transfer-
able to regression though.

It is reasonable to think that any of the pre-trained
trees from the base forest should have at least bet-
ter performance than random —even marginally— which
means that mean accuracy for these trees should be
over 0.5 in the case of binary classification. Yet, lin-
early combining trees with negative weights would be
equivalent to reversing the vote of such trees, deliber-
ately make it a bad classifier and use it for the final vote
of the pruned forest. This counter-intuitive behaviour
can mostly be explained by the fact that OMP chooses
negative weights in order to perfectly match the train-
ing set labels, just as it has been designed to behave.
This analysis is validated in Figure [Ta] where we clearly
see that the performance tends to decrease when the
proportion of negative weights increase. However, we

must note that this trend is clearly not observed on
Kin8nm and LFW Pairs. Note that only pruned forests
with more than 10% of the base forest size are reported
here. We choose to only report these points because the
observations occurring before this threshold have nat-
urally bad performance since they correspond to forest
so small that they wouldn’t have good performance
anyway (See Figure [3)).

This analysis lead us to the following conclusion: us-
ing a non-negative version of OMP[BEZ08] should pre-
vent over-fitting. The Non-Negative version of OMP is
similar to the one described in Algorithm [I]except that
on line 3| where only positively correlated atoms can be
selected and on line[5] where a non-negative least square
regression is performed to obtain only non-negative co-
efficients. We remark that selecting only positively cor-
related atoms will eventually make NN-OMP unable
to select new ones and hence prevent over-fitting by
bounding the maximum size of the pruned forest. The
results obtained with this algorithm are demonstrated
in Figure[3|and Table 2] where we clearly see the benefit
of our method in term of performance.

4 Conclusion

We presented in this paper an original method for re-
ducing random forest’s size. Our method uses a greedy
algorithm, namely Orthogonal Matching Pursuit, on
the predictions of each forest’s tree to select a subset
of trees that best approximate the real labels vector.

Our method not only selects a subset of trees, but
also associate a coefficient to each selected tree. These
coefficients are chosen so as to form a linear combina-
tion which best approximates the real labels vector and
also they show really beneficial in some case, they may
also lead to overfit in some other scenarios, as shown
in an extensive set of experiments. We also provided
theoretical insights and justifications for the proposed
methodology.

The present work opens up several interesting re-
search directions for future works. On the theoretical
aspect, tying a tighter link between OMP and Gradient
Boosting, and ensemble learning in general, becomes
mandatory in order to better understand the under-
lying implications of our approach. A second possible
research direction consists in providing custom-tailored
theoretical guarantees for the proposed method based
on frameworks such as Rademacher complexity. Fi-
nally, it would be interesting to quantify the inter-
pretability gain of the forest extracted by non-negative
OMP.
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Figure 3: Performance results on the test data by the different methods with respect to the number of selected
trees. One graph for each tested dataset. Results are averaged over 10 runs and the light colour area around
lines show the standard deviation. See Table E| for the size of the base forest
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