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Some considerations on Poonen's conjecture over R

Let c be a rational number and consider the polynomial map ϕ c (x) = x 2 -c. We are interested in the cycles of quadratic polynomials ϕ c in Q. More explicitly, we are interested in Poonen's conjecture that there is no cycle of ϕ c with a length n > 3 in Q. Using simple means, we will study the cycles of ϕ c in R and deduce some properties of the cycles of ϕ c in Q.

Introduction

Let S be a set and ϕ : S → S a self map. Let ϕ k denote k th iterate of ϕ under composition of; that is, ϕ 0 is the identity function of S, and for every integer k, k ≥ 1, ϕ k = ϕ k-1 . For every element z of S, the orbit of z is

O ϕ (z) = {ϕ n (z) | n ≥ 0}.
We say an element z ∈ S is periodic if there is an integer n ≥ 1 such that ϕ n (z) = z. In this case, the period of z is the cardinality of O ϕ (z).

Throughout this article, we will denote by ϕ c the quadratic polynomial ϕ c (x) = x 2 -c where c is a real number. When c is a rational number, the finiteness of the set of periodic points of ϕ c in Q is a special case of the Northcott theorem [START_REF] Northcott | Periodic points on an algebraic variety[END_REF]. However, the existence of a bound bounding all the lengths of all the cycles of the polynomials ϕ c in Q still not proved. Poonen gave the following conjecture: Conjecture 1.1. [START_REF] Flynn | Cycles of quadratic polynomials and rational points on a genus-2 curve[END_REF]Poonen] Let c be a rational number. Then every periodic point of the rational quadratic map ϕ c in Q has period at most 3.

For the classical example c = -29/16, then {-1/4, -7/4, 5/4} is a cycle of length 3 of ϕ c in Q. In fact, for every n ∈ {1, 2, 3}, there are infinitely many values of c for which ϕ c admits a cycle of length n [START_REF] Walde | Rational periodic points of the quadratic function Q c = x 2 + c[END_REF]. For the other lengths n > 3, only cases n = 4 and n = 5 are known.

Theorem 1.2 (Morton [4]). For every c ∈ Q, there is no periodic point of ϕ c in Q having period 4.

Theorem 1.3 (Flynn, Poonen and Shaeffer [START_REF] Flynn | Cycles of quadratic polynomials and rational points on a genus-2 curve[END_REF]). For every c ∈ Q, there is no periodic point of ϕ c in Q having period 5.

In this article, we will be interested in the dynamics of ϕ c in Q and in R. We will show that if ϕ c admits a cycle of length at least three then c > 1. This result will be improved in the case of the dynamic of ϕ c in Q . We will end with properties of the cycles of ϕ c in R. These properties will then be used to study certain particular cases of the Poonen conjecture. We will end, using in Q the equality c = a d 2 , by showing that if c > f (d) where f is a quadratic polynomial, then ϕ c does not admit a rational cycle of length > 3.

Remark 1.4. In the article [START_REF] Eliahou | Some Results On The Flynn-Poonen-Schaefer Conjecture[END_REF], the authors used the term Flynn-Poonen-Schaefer Conjecture conjecture instead of Poonen conjecture.

Notations

Throughout this article, in order to work with the positive values of c, we chose to write ϕ c (x) = x 2 -c instead of ϕ c (x) = x 2 -c as used in most articles devoted to this subject. It is a choice that has been used in [START_REF] Eliahou | Some Results On The Flynn-Poonen-Schaefer Conjecture[END_REF]. In fact, with this choice, we show in the Theorem 2.10 that if ϕ c admits a real cycle lenght greather than 3, then c ≥ 1. For K = Q or K = R, the sets of rational periodic points and of preperiodic points of ϕ c in K, will be denoted P er(ϕ c , K) and P reper(ϕ c , K):

P er(ϕ c , K) = {x ∈ K | ϕ n c (x) = x for some n ∈ N}. P reper(ϕ c , K) = {x ∈ K | ϕ m c (x) = ϕ n c (x) for some (m, n) ∈ N 2 , m < n}. A finite subset of R, C = {x 1 , x 2 , • • • , x n }, is a cycle of length n if O ϕ (x 1 ) = C. Every cycle C of ϕ c will be written C = {x 1 , x 2 , . . . , x n } with x i+1 = ϕ c (x i ) for i = 1, 2, . . . , n -1 and x 1 = ϕ c (x n ). For every subset E of R, one will denote by |E| the set {|x|, | x ∈ E}.
2 Cycles of lengths less than or equal to 2 in R.

The fixed points and the periodic points of periods 2 of ϕ c in R play a crucial role in this article. This section is elementary but will be very useful in the rest of the article. 

α = 1 - √ 1 + 4c 2 , β = 1 + √ 1 + 4c 2
the two fixed points of ϕ c .

Remark 2.3. If c ≥ -1/4, then P reper(ϕ c , R) ⊆ [-β, β]. Indeed, if |x| > β, then lim n→+∞ ϕ n c (x) = +∞. In particular, if -1/4 ≤ c ≤ 2, then c ≤ β ≤ 2 and every real preperiodic point of ϕ c belongs to the interval [-c, β] ⊂ [-2, +2]. 2.2 The roots γ 1 , γ 2 of ϕ 2 c (x) -x
We will also need the real periodic points of ϕ c of period 2, namely the solutions of the equation

ϕ 2 c (x) -x ϕ c (x) -x = 0.
Note that ϕ 2 c (x) -x = (ϕ c (x) -x)(x 2 + x -c + 1), we see that these points are the real solutions of the equation x 2 + x -c + 1 = 0, which exist if and only if c ≥ 3 4 . We denote these two points:

γ 1 = -1 - √ -3 + 4c 2 , γ 2 = -1 + √ -3 + 4c 2 .
Note that since γ 1 and γ 2 are the unique real periodic points of ϕ c of period 2, we have ϕ c (γ 1 ) = γ 2 and ϕ c (γ 2 ) = γ 1 .

Remark 2.4. We have : Proof. First note the following property: for all y, z ∈ R,

-β ≤ γ 1 ≤ -γ 2 ≤ 0 ≤ γ 2 ≤ -γ 1 ≤ β.

On cycle extremities

|y| < |z| =⇒ ϕ c (y) < ϕ c (z). (1) 
Indeed, we have ϕ c (u) = ϕ c (|u|) for all u ∈ R, and ϕ c is increasing on [0, +∞[. A straightforward consequence is the following: for z ∈ C,

|z| = min |C| =⇒ ϕ c (z) = min C, |z| = max |C| =⇒ ϕ c (z) = max C.
Moreover, since the restriction of ϕ c to C is a bijection, the above implications are equivalences: for z ∈ C, we have We now distinguish the two cases.

|z| = min |C| ⇐⇒ ϕ c (z) = min C, |z| = max |C| ⇐⇒ ϕ c (z) = max C. (2) 
• If max |C| = |y|, then by ( 2), we have ϕ c (y) = y, whence C = {y} and we are done again.

• If max |C| = |x|, then ϕ c (x) = y by ( 2), as desired.

Remark 2. [START_REF] Walde | Rational periodic points of the quadratic function Q c = x 2 + c[END_REF].

By (1), if |x| = min |C| , then ϕ c (x) = min C. Proposition 2.7. Let C ⊂ R be a cycle of ϕ c of length n. If C ⊂ R + then n = 1, and if C ⊂ R -then n ≤ 2.
Proof.

• If C ⊂ R + , then |C| = C, hence max C is a fixed point of ϕ c by (2). Whence n = 1. • If C ⊂ R -, then n ≤ 2, then |C| = -C, whence | min C| = -max C and | max C| = -min C. It then follows from (2) that ϕ c {min C, max C} = {min C, max C}.
Whence n ≤ 2.

Corollary 2.8. Let C be a cycle of ϕ c of length n ≥ 3. Then C contains both negative and positive elements. In particular,

min C < 0 < max C. Remark 2.9. Let C be a cycle of ϕ c of length n ≥ 2.
Then C contains a negative element.

According to Sharkovski's theorem [START_REF] Sharkovsky | Coexistence of cycles of a continuous map of a line into itself[END_REF], if ϕ c has a real cycle of length 3, then it admits a real cycle of any length. It is then interesting to try to know under which condition ϕ c admits a real cycle of length 3 or more. The following theorem gives a necessary condition and a better lower bound for the real c, in the case where ϕ c has a cycle length at least equal to 3. 

Hence (min C) 2 -c > 0 and min C < - √ c. Let x ∈ C such that ϕ c (x) = min C, then x 2 -c = min C and x 2 = c + min C ≥ 0 . This implies, in particular, that c - √ c ≥ 0 and therefore c ≥ 1.
Remark 2.11. The conclusion of the theorem remains valid if we assume that ϕ c admits a cycle of length 2 whose two points have opposite signs.

Theorem 2.12.

Let C ⊂ R be a cycle of ϕ c of length n ≥ 3. Then c ≤ (min |C|) 2 + 1 + (min |C|) 2 + 1
and

(min |C|) 2 ≥ 2c -1 - √ 1 + 4c 2 . Proof. Let x 1 ∈ C such that |x 1 | = min |C|. By Remark 2.6, ϕ c (x 1 ) = min C < 0 and by Theorem 2.5, ϕ 2 c (x 1 ) = max C > 0 and |ϕ c (x 1 )| = max |C|. In particular, ϕ c (x 1 ) + ϕ 2 c (x 1 ) < 0. Let λ = ϕ c (x 1 ) + ϕ 2 c (x 1 ), then x 2 1 -c + (x 2 1 -c) 2 -c -λ = 0. Thus, c = x 2 1 + 1 + x 2 1 + 1 + λ. (3) 
The inequality λ < 0 provides the first inequality of the theorem. The second inequality, is just a straightforward consequence of 

ϕ c (x 1 ) ≥ -β = -1- √ 1+4c 2 . Remark 2.13. By the previous theorem, if min |C| ≤ 1, then c ≤ 2 + √ 2.
for all u, v ∈ C since x, y are the extremities of C. In particular, we have

|x -y| ≥ |ϕ c (x) -ϕ c (y)|. Since ϕ c (u) -ϕ c (v) = u 2 -v 2 for all u, v, we have |x -y| ≥ |ϕ c (x) -ϕ c (y)| = |x -y||x + y|.
Since n ≥ 2 then x -y = 0 and consequently |x + y| ≤ 1. Moreover, we have |x

+ y| = 1 if and only if |ϕ c (x) -ϕ c (y)| = |x -y| wich is equivalent to {ϕ c (x), ϕ c (y)} = {x, y} and to n = 2.
We recall that

β = 1 + √ 1 + 4c 2 , γ 1 = -1 - √ -3 + 4c 2 and γ 2 = -1 + √ -3 + 4c 2 .
Theorem 2.15. Suppose that c ≥ 1 and let C = {x 1 , x 2 , . . . , x n } be a real cycle of ϕ c of length n ≥ 2. Then

1. min(C) ∈ [-β, γ 1 ]; 2. min(|C|) ∈ [0, γ 2 ].
Proof.

1. For the first assertion, we know that C ⊂ [-β, β]. We just need to show that

min(C) ≤ γ 1 = -1 - √ -3 + 4c 2 .
By the Lemma 2.5, ϕ c (min C) = max C. Thus, by the Lemma 2.14,

| min C + max C| ≤ 1. Since, min C + max C is negative, we have min C + max C ≥ -1. It follows that (min C) 2 -c + min C ≥ -1. Hence, min C ≥ γ 2 = 1- √ -3+4c 2 
or min C ≤ γ 1 = -1- √ -3+4c 2 . But min C < 0, so min C ≤ -1- √ -3+4c 2 = γ 1 . 2. Let x ∈ C be such that |x| = min |C|. Then ϕ c (x) = min C and ϕ c (x) ≤ γ 1 .
Using the sense of variation of the function ϕ c , we have

ϕ -1 c ([-β; γ 1 ]) ⊂ [-γ 2 ; γ 2 ]. This implies that |x| ∈ [0, γ 2 ].
Corollary 2.16. Let C ⊂ R be a cycle of ϕ c of length n ≥ 3. Then

(min |C|) 2 + 1 ≤ c ≤ (min(|C|) 2 + 1 + (min |C|) 2 + 1.
Proof. By Theorem 2.12, the only part of Corollary 2.16 that remains to be proven is that 

(min |C|) 2 + 1 ≤ c. Let x 1 ∈ C such that |x 1 | = min
γ 1 = -1- √ -3+4c 2 ≤ -1. In particular, ϕ c (x 1 ) ≤ -1 and x 2 1 -c ≤ -1, which yields x 2 1 + 1 ≤ c.
Corollary 2.17. Suppose that the real c is such that,

1 ≤ c ≤ 3. Let C ⊂ R be a cycle of ϕ c of length n ≥ 3. Then | min C| ≤ 1. Proof. Let x 1 ∈ C such that |x 1 | = min |C|. Then, by Remark 2.6, ϕ c (x 1 ) = min C. Hence, x 2 1 -c ≤ -1- √ - 3+4c 2 
. In particular,

x 2 1 ≤ c + -1- √ -3+4c 2 
. Since the function g : Proof. We just need to show that max |C| ≤ 1 + (| min C|) 2 + 1. By Corollary 2.16,

t -→ t + -1- √ -3+4t 2 is increasing on [1, +∞[, if 1 ≤ c ≤ 3, then x 2 1 ≤ g(3) = 1 and |x 1 | ≤ 1.
x 2 1 + 1 ≤ c ≤ x 2 1 + 1 + x 2 1 + 1, where |x 1 | = min |C|. Hence, 1 ≤ c -x 2 1 ≤ 1 + x 2 1 + 1. Thus, |ϕ c (x 1 )| ≤ 1 + x 2 1 + 1. But by Lemma 2 and Remark 2.6, max |C| = |ϕ c (x 1 )|, whence max |C| ≤ 1 + x 2 1 + 1.
Note that that the Theorem 2.15 shows in particular that every real cycle of ϕ c in R has its minimum contained in the interval [-β, γ 1 ]. In particular, the closer -β and γ 1 are, the smaller the number of rational cycles of ϕ c is.

Proposition 2.19. If ϕ c admits a real cycle C = { x 1 , x 2 , x 3 } of lenght 3 with |x 1 | = min |C| and x 2 = ϕ c (x 1 ), then x 1 ∈ [-γ 2 , γ 2 ], x 2 ∈ [-β, γ 1 ] and x 3 ∈ [γ 2 , -γ 1 ];
Proof. By the Lemma 2 and the Theorem 2.15,

x 2 ∈ [-β, γ 1 ]. Since ϕ -1 c ([-β, γ 1 ]) = [-γ 2 , γ 2 ], x 1 ∈ [-γ 2 , γ 2 ]. It remains to show that x 3 ∈ [γ 2 , β]. For this, note that x 3 ∈ ϕ c ([-β, γ 1 ]) = [γ 2 , β] = [γ 2 , -γ 1 ] ∪ [-γ 1 , β] wich implies that x 3 ∈ [γ 2 , -γ 1 ] or x 3 ∈ [-γ 1 , β]. But if x 3 ∈ [-γ 1 , β], then x 1 = ϕ c (x 3 ) ∈ ϕ c ([-γ 1 , β]) = [γ 2 , β]. A contradiction. Remark 2.20. If ϕ c admits a cycle of length n wich contains an element in ]γ 1 , -γ 2 [∪] -γ 1 , β[, then n ≥ 4.
In particular if the conjecture 1.1 is true then for every rational c, ϕ c does not admit a rational periodic point in Proof. We just need to show that c -

]γ 1 , -γ 2 [∪] -γ 1 , β[.
√ c + 1 ≥ 0. Let x i = ϕ i c (x) for i, 0 ≤ i ≤ 3. Since x 3 ∈ [-γ 2 , γ 2 ], then x 2 2 -c ≥ -γ 2 = 1- √ 4c-3 2
. Hence

x 2 2 ≥ c + 1- √ 4c-3 2
. Using the inequality t + 1-

√ 4t-3 2 ≥ 1, for every t ≥ 1, we have x 2 2 ≥ 1 and x 2 ≥ 1 because x 2 ∈ [γ 2 , β]. In particular, x 2 1 -c ≥ 1 and since x 1 ≤ 0, we have x 1 ≤ - √ c + 1. Thus x 2 -c ≤ - √ c + 1. Therefore x 2 ≤ c - √ c + 1 and c - √ c + 1 ≥ 0.

An application

Before studying the dynamics of ϕ c in Q, we will focus on some particular discrete sets of R. We will give certain properties of the cycles of ϕ c in such sets.

Theorem 2.22. Let λ > 0 be a real number and let E be a subset of R such that |x -y| ≥ 2/λ for every x, y in E. If

c ≥ λ 2 16 + 1 4 + 1 λ 2 ,
then ϕ c either admits at most two fixed points or else at most one cycle in E of length n ≥ 2.

Proof. By Theorem 2.15, the smallest element of every cycle of

ϕ c of length n ≥ 2 in R belongs to the interval [-β, γ 1 ] = -1- √ 1+4c 2 ; -1- √ -3+4c 2 
. In particular, if the diameter of the interval [-β, γ 1 ] is less than 2/λ then then ϕ c either admits at most two fixed points or else at most one cycle in E of length n ≥ 2.

We have

γ 1 -β = 2 √ 1 + 4c + √ -3 + 4c . And γ 1 -β ≤ 2/λ iff √ 1 + 4c + √ -3 + 4c ≥ λ.
The previous ineqyality is equivalent to

8c -2 + 2 (4c -3)(4c + 1) ≥ λ 2 .
By distinguishing the two cases 8c -2 -λ 2 ≤ 0 and 8c -2 -λ 2 ≥ 0, we have

γ 1 -β ≤ 2/λ iff c ≥ λ 2 16 + 1 4 + 1 λ 2 . Remark 2.23. If C is a cycle of lenght n ≥ 3 contained in E and c ≥ λ 2
16 + 1 4 + 1 λ 2 then C admits at most one element in the interval [-β, -γ 1 ]. Lemma 2.24. Let λ > 0 be a real number and let E be a subset of R such that |x -y| ≥ 2/λ for every x, y in E. Suppose that E is symmetric with respect to 0. Suppose also that E contains a cycle

C = { x 1 , x 2 , . . . , x n } of length ≥ 4 where |x 1 | = min |C|. If c ≥ λ 2 16 + 1 4 + 1 λ 2 , then 1. x 2 is the unique element of C in [-β, γ 1 ]; 2. x 1 is he unique element of C in [-γ 2 , γ 2 ]; 3. C ∩ [-γ 1 , β] = ∅; 4. x 3 ∈ [γ 2 , -γ 1 ]; 5. for 4 ≤ i ≤ n, x i is an element of [γ 1 , -γ 2 ].
Proof.

1. We have ϕ c (x 1 ) = x 2 . By the Remark 2.6, we have x 2 = min C and by the theorem 2.15,

x 2 ∈ [-β, γ 1 ] . Since c ≥ λ 2 16 + 1 4 + 1 λ 2 , according to the Remark 2.23, x 2 is the unique element of C in [-β, γ 1 ]. 2. Since, ϕ c (x 1 ) = x 2 ∈ [-β, γ 1 ] and ϕ -1 c ([-β, γ 1 ]) = [-γ 2 , γ 2 ], x 1 is he unique element of C in [-γ 2 , γ 2 ]. 3. Suppose that C ∩ [-γ 1 , β] is not empty and let x ∈ C ∩ [-γ 1 , β]. Then by the symmetry of E, -x ∈ E ∩ [-β, γ 1 ]. Therfore, since x 2 is the unique element of C in [-β, γ 1 ], -x = x 2 .
Consequently, C contains two opposit elements x 2 and -x 2 which is absurd.

4. Since x 3 = ϕ c (x 2 ) and x 2 ∈ [-β, γ 1 ], x 3 ∈ ϕ c ([-β, γ 1 ]) = [γ 2 , β] = [γ 2 , -γ 1 ] ∪ [-γ 1 , β]. But C ∩ [-γ 1 , β] = ∅, thus x 3 ∈ [γ 2 , -γ 1 ]. 5. Since x 3 ∈ [γ 2 , -γ 2 ] then x 4 ∈ ϕ c ([γ 2 , -γ 1 ]) = [γ 1 , γ 2 ] = [γ 1 , -γ 2 ] ∪ [-γ 2 , γ 1 ]. Because x 1 is the unique element of C in [-γ 2 , γ 2 ], x 4 ∈ [γ 1 , -γ 2 ].
For the same reason and because also

ϕ c ([γ 1 , -γ 2 ]) = [γ 1 , γ 2 ],
x 5 , x 6 , . . . , x n-1 and x n are elements of [γ 1 , -γ 2 ].

Theorem 2.25. Let λ > 0 be a real number and let E be a symmetric subset with respect to 0 of R such that |x -y| ≥ 2/λ for every x, y in E. 

Rational cycles of ϕ c

In all the rest of this article, c is a rational number. We are interested in this section at the periodic and preperiodic points of ϕ c . We recall that P er(ϕ c , Q) is the set of periodic rational points of ϕ c .

We start this section with a simple property which concerns the denominators of c and of rational preperiodic points of their irreducible fractions due to Russo [START_REF] Walde | Rational periodic points of the quadratic function Q c = x 2 + c[END_REF]. A proof may also be found in [START_REF] Eliahou | Some Results On The Flynn-Poonen-Schaefer Conjecture[END_REF]. Hence, if x = X d is a rational preperiodic point x of ϕ c , then X is an odd integer. In particular, if x and y are rational preperiodic points of ϕ c , then |x -y| ≥ 2 d .

An improved lower bound on c.

We have seen by the Theorem 2.10 that if ϕ c admits a cycle C over R of length n ≥ 3, then c ≥ 1. That statement may be improved in the case where C is a rational cycle, as follows. Let z ∈ C be such that x = ϕ c (z). Then |z| ≥ 1/d and so ϕ c (z) ≥ (1/d) 2 -c by (1). Therefore x ≥ (1/d) 2 -c. By the above, we have

1 d 2 -c ≤ -1 -4c -3 + 8 d 2 .
Thus, 

(2c -1 - 2 d 2 ) 2 ≥ 4c -3 + 8/d, whence c 2 -2c(1 + 1 d 2 ) + 1 d 2 + 1 d 4 + 1 -2/d ≥

An improved upper bound on c.

We start this last subsection with an application of the inequality 3 concerning a particular case. In particular, since ϕ c (x 1 ) + ϕ 2 c (x

1 ) ≤ -2 d , c ≤ 1 d + 1 + 1 d 2 + 1 - 2 d = 2 - 1 d + 1 d 2 ≤ 2
Most of the articles devoted to Poone's conjecture give an an upper bound of the number of rational periodic points of ϕ c using the number s of primes dividing the denominator of c. Thus, in [START_REF] Eliahou | Some Results On The Flynn-Poonen-Schaefer Conjecture[END_REF], we have shown that the number of rational periodic points of ϕ c is less than 2 s + 2. We conclude this paper with an application of the Theorem 2.25 and which shows that if c is greater than a quadratic polynomial in d, then ϕ c can not have a rational cycle of length greater than or equal to 4. 

2. 1 Lemma 2 . 1 .Notation 2 . 2 .

 12122 The roots α, β of ϕ c (x) -x Let c ∈ R. If ϕ c admits a real cycle C ⊂ R, then ϕ c admits one or two real fixed points and c ≥ -1/4. Proof. We have ϕ c (C) = C. Hence ϕ c (min C) ≥ min C and ϕ c (max C) ≤ max C. By the intermediate value theorem, the real polynomial ϕ c (x) -x vanishes somewhere between min C and max C. Hence its discriminant 1 + 4c is nonnegative. Therefore c ≥ -1 4 and ϕ c has one or two real fixed points, namely the real roots of ϕ c (x) -x. Given c ∈ R such that c ≥ -1/4, we shall denote

Lemma 2 . 5 .

 25 Let C ⊂ R be a cycle of ϕ c . Then ϕ c (min C) = max C and | min C| = max |C|.

  Let now x = min C. If x ≥ 0, then |x| = min |C| and by (2) we have ϕ c (x) = min C = x. Hence C = {x} and so x = max C = ϕ c (x). Assume now x < 0. Let y = max C. We must show ϕ c (x) = y. Then max |C| ∈ {| min C|, | max C|} = {|x|, |y|}.

Theorem 2 .

 2 10. Let c ∈ R. If the quadrtic polynomial ϕ c admits a real cycle C of length n ≥ 3, then c ≥ 1. Proof. By Proposition 2.5, ϕ c (min C) = max C and by Corollary 2.8, min C < 0 < max C.

Lemma 2 .

 2 14. Let C be a real cycle of ϕ c of length n ≥ 2. Then | min C + max C| ≤ 1 and | min C + max C| = 1 if and only if n = 2. Proof. Let x = min C and y = ϕ c (x). By the Lemma 2.5, y = max C. Hence |x -y| ≥ |u -v|

Corollary 2 .

 2 18. Let C ⊂ R be a cycle of ϕ c of length n ≥ 3. Then |C| ⊆ min |C|; 1 + (min |C|) 2 + 1 .

  By the previous proposition, if ϕ c admits a real cycle C of lenght 3, thenx 1 ∈ [-γ 2 , γ 2 ]where |x 1 | = min |C|. The Corollary [6, Corollary 2], shows that if ϕ c admits a real cycle of length 3 then c ≥ 7/4. The following Proposition gives a lower bound of c if ϕ c admits a real cycle containing an element x such that x and ϕ 3 c (x) belong to [-γ 2 , γ 2 ]. Proposition 2.21. If ϕ c admits a real cycle C of length n ≥ 3 containing an element x such that x and ϕ 3 c (x) belong to [-γ 2 , γ 2 ],

Proposition 3 . 1 . 2 . 2 .

 3122 If ϕ c admits a cycle in Q then: 1. The denominator of c is of the form d 2 with d an integer. In other words, there exists two coprime integers a and d such that c = a d The denominator of each rational preperiodic point x of ϕ c is exactly d. In other words, c = X d where X and d are coprime. Thus, in the following, we will write c = a d 2 where a and d are coprime and for rational preperiodic point x of ϕ c , x = X d . In fact, if ϕ c admits a rational cycle of lenght n ≥ 3, then d is an even integer and more precisely we have the Proposition Proposition 3.2. [2] If ϕ c admits a rational cycle of length ≥ 3 then the denominator d of c is divisible by 4.

Proposition 3 . 3 .

 33 If ϕ c admits a rational cycle of length n ≥ 3, then c Let x = min C and y = ϕ c (x). By the Lemma 2.14, we have |x+y| < 1 since n ≥ 3. Hence x + y > -1. By Proposition 3.1, we have x = X/d and y = Y /d for some odd integers X, Y . For these reasons, x + y = (X + Y )/d and X + Y > -d. Therefore, since both d and X + Y are even integers, X + Y ≥ -d + 2. In particular, x + y ≥ -1 + 2/d. Using y = ϕ c (x) = x 2 -c, this yields x + x 2 -c + 1 -2/d ≥ 0. The two roots of the polynomial t 2 + t -c + 1 -2/d are (-1 ± 4c -3 + 8 d )/2. The largest one being positive, and x being negative, it follows that x ≤ -1 -4c -3 + 8 d 2 .

Proposition 3 . 5 .c ≤ x 2 1 + 1 + x 2 1 +

 35111 Suppose that ϕ c admits a rational cycle C of length n ≥ 3 such that min |C| = 1 d where c = a d 2 then,1 < c < 2. Proof. Since the length of C is ≥ 3, c ≥ 1. It suffices to show that c ≤ 2. Let x 1 ∈ C such that |x 1 | = 1 d .By the equality 3, ϕ c (x 1 ) + ϕ 2 c (x 1 ).

Theorem 3 . 6 . 1 .

 361 Let c = a d 2 be a rational number. If ϕ c either admits two fixed points or else at most one cycle C in Q of length n ≥ 2; 2. the length of C is ≤ 3. Proof. Let x and y be two elements of P er(ϕ c , Q), then x = X d and y = Y d where X and Y are odd integers. Thus, |x -y| ≥ 2 d . Consider the subset E = { 2k+1 d | k ∈ Z}. Then the two points of this theorem are straightforward consquences of the Theorem 2.25 and Theorem 1.3.

  |C|. By Remark 2.6, ϕ c (x 1 ) = min C and by Theorem 2.15, min C ≤ γ 1 . Since n ≥ 3, by Theorem 2.10, c ≥ 1 wich implies

  Suppose that ϕ c admits a cycle C = {x 1 , x 2 , . . . , x n } in E where n ≥ 5 and |x 1 | = min |C|. By the Lemma 2.24, the element x 3 , is in [γ 2 , -γ 1 ] and the elemnts x 4 and x 5 are in [γ 1 , -γ 2 ]. In particular, -x 3 , x 4 and x 5 are three elements of E belonging to the interval [γ 1 , -γ 2 ]. Hence |x 5 -x 4 | ≤ -γ 1 -γ 2 = 1. Thus, |ϕ c (x 4 ) -ϕ c (-x 3 )| ≤ 1. This implies |x 3 + x 4 ||x 3 -x 4 | ≤ 1. So

	2. 2 λ	× 2γ 2 ≤ 1,
	and	2 λ	( √	4c -3 -1) ≤ 1.
	Whence,						
		c ≤		1 4		(	λ 2	+ 1) 2 +	3 4	.
								Suppose
	that	c >	1 4	(	λ 2	+ 1) 2 +	3 4
	and						
				λ ≥ 1,
	then						
	1. ϕ c either admits at most two fixed points or else at most one cycle C
	in E of length n ≥ 2.						
	2. The length of C is ≤ 4.					
	Proof. c > λ 2 1. Since λ ≥ 1, then 1 4 ( λ 2 + 1) 2 + 3 4 ≥ λ 2 16 + 1 4 + 1 λ 2 . Therefore 16 + 1 4 + 1 λ 2 and the first point is prouved thanks to the Theorem
	2.22.						

  Corollary 3.4. Recalling the notation c = a d 2 , if ϕ c admits a rational cycle of length n ≥ 3, we havea ≥ d 2 + 1 + d √ 1 + 2d.Note that the above lower bounds on c and a are best possible, since equality is attained for c = 29 16 with the cycle { -1 4 , -7 4 , 5 4 } of ϕ c .

			0.
	Hence, since c ≥ 1 by Theorem 2.10, we conclude
	c ≥ 1 +	1 d 2 +	√ 1 + 2d d
	by analyzing the parabola corresponding to the above polynomial of degree
	2 in c.