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Abstract. This paper describes a local search based approach and a
software tool to approximate the problem of drawing Euler diagrams.
Specifications are written using RCC-8-constraints and radius constraints.
Euler diagrams are described as set of circles.

1 Introduction

Fig. 1. Euler diagram drawn by our
tool

Euler diagrams are pictures to understand
relations between concepts. Sets (= con-
cepts) are represented as regions in the
plane and inclusions or intersections of
those regions depict inclusions or intersec-
tions of the corresponding sets. Euler dia-
grams are a very general tool that is used
in a wide range of application areas. For
instance, Figure 1 shows an Euler diagram
representing the relations of the complex-
ity classes as many computer scientists
may believe they are. Generally speaking,
the user may want to generate automat-
ically Euler diagrams from a knowledge
base expressed in description logic [20].

This paper presents a proof-of-concept
software tool for drawing Euler diagrams
by constraint solving with local search
available here: http://www.irisa.fr/prive/fschwarz/constraineddrawing.

Given a set of geometrical objects and a set of constraints over these objects,
the objective is to find a drawing that contains the geometrical objects and
satisfies the set of given constraints. In this work, objects are circles and our
first aim is to draw Euler diagrams from constraints given as an input.

As discussed in Section 6 on related work, there are different approaches to
solve this problem of drawing Euler diagrams. One prominent work is to use algo-
rithms coming from graph theory [17]. Nevertheless, when we deal with drawing
generation, there is a need which seems essential: the user should be offered
the possibility of interacting with the generated drawing. For instance, the user

http://www.irisa.fr/prive/fschwarz/constraineddrawing
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should be allowed to move or resize a circle in the current Euler diagram. Then
the system should be able to take into account the input of the user and correct
the drawing with respect to the constraints. With the graph theory approach, it
seems difficult and even impossible to correct Euler diagrams interactively. That
is why, we claim that the local search approach, thanks to its high flexibility, is a
suitable method for this problem. Local search both takes into account the input
of the user and corrects the picture in order to always satisfy the constraints.

Concerning the constraint specification language, we decided to start from
RCC-8 constraints [11], where RCC stands for ‘Region connection calculus’.
Indeed, RCC-8 is a desirable formalism for constraint specifications of Euler
diagrams. It provides constraints that describe pure set theory concepts. For
instance, the proposition ’a and b are disjoint’ is expressed as two circles rep-
resenting the relation ’a and b are disconnected’ (DC). This information may
come from a knowledge base where the description logic formula a u b = ¬> is
inferred [20].

Moreover, this tool may be used to draw Euler diagrams representing sets in
a topological space (for instance by a math teacher in an introductory course on
topology). And RCC-8 also provides topological concepts. As in illustration, if a
and b are sets in a topological space such that interiors of a and b are disjoint and
closures of a and b are not disjoint, we may express that the circles representing
a and b are externally connected (EC) (see Figure 2).

The paper is organized as follows. In section 2 we describe the language
we consider. Section 3 gives the semantics. Section 4 is dedicated to the lo-
cal search procedure. Section 5 presents the implementation. Section 6 reviews
related work. Perspectives are provided in the concluding section. Proofs and
experimental results are in [16].

2 Syntax

The syntax of the language L of constraints is defined by the following rule:

ϕ ::= R(a, b) | radius(a) = r | (ϕ ∨ ϕ)

where a and b range over a set of constant symbols, r is a rational number and
R ranges over the symbol predicates of RCC-8. Intuitive meanings of RCC-8-
relations are given in table 1 and figure 2 gives them in pictures RELRCC-8.

3 Semantics

Usually in logic, semantics is given in terms of truth values. A formula ϕ is either
true or false in a given model. But, for the local search algorithm, we need the
semantics to be soft and we measure how much a formula ϕ is true (or false).
First we define the hard semantics of our language L. Second we define the soft
semantics and we make a correspondence between them.

Models are pairs M = 〈C, i〉 where:
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Construction Intuitive meaning

DC(a, b) a and b are disconnected
EC(a, b) a and b are externally connected
PO(a, b) a and b partially overlap
TPP (a, b) a is a tangential proper part of b
TPP−1(a, b) b is a tangential proper part of a
NTPP (a, b) a is a non-tangential proper part of b
NTPP−1(a, b) b is a non-tangential proper part of a
EQ(a, b) a and b are equal
radius(a) = r the radius of the circle a is r
(ϕ ∨ ψ) ϕ or ψ

Table 1. Intuitive meanings of RCC-8-relations

a

b

a

b

a

b

a

b

DC(a, b) EC(a, b) PO(a, b) TPP (a, b)

a

b

a

b

b

a a

b

TPP−1(a, b) NTPP (a, b) NTPP−1(a, b) EQ(a, b)

Fig. 2. The eight RCC-8-relations in pictures

– C is a non-empty set of circles of non-zero radius in the plane (for all c ∈ C,
we respectively denote c.x, c.y and c.r > 0 the abscissa, the ordinate and
the radius of the circle c ; we note c.c the center of c);

– i assigns to each constant symbol an element in C.

To ease the readability, a constant symbol a also designates i(a), that is the
circle represented by a in a model M.

3.1 Hard semantics

Let us define the truth conditions as follows.

Definition 1. Let M = 〈C, i〉 a model. We define the relation M |= ϕ by
induction on ϕ ∈ L as follows:
M |= DC(a, b) iff d(a.c, b.c) > a.r + b.r;
M |= EC(a, b) iff d(a.c, b.c) = a.r + b.r;
M |= PO(a, b) iff d(a.c, b.c) ∈]|a.r − b.r|, a.r + b.r[;
M |= TPP (a, b) iff d(a.c, b.c) = b.r − a.r (and a.r ≤ b.r);
M |= TPP−1(a, b) iff d(a.c, b.c) = a.r − b.r (and b.r ≤ a.r);
M |= NTPP (a, b) iff d(a.c, b.c) < b.r − a.r (and a.r < b.r);
M |= NTPP−1(a, b) iff d(a.c, b.c) < a.r − b.r (and a.r > b.r);
M |= EQ(a, b) iff a.c = b.c and a.r = b.r;
M |= radius(a) = r iff i(a).r = r;
M |= (ϕ ∨ ψ) iff M |= ϕ or M |= ψ.
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The problem we tackle here is defined as follows:

– input: a finite set I = 〈ϕ1, . . . , ϕn〉 of constraints in L;
– output: a model M such that for all i ∈ {1, . . . , n}, M |= ϕi.

The corresponding decision problem L-SAT takes the same input and outputs
yes, iff there exists a model M such that for all i ∈ {1, . . . , n}, M |= ϕi.

Proposition 1. L-SAT is NP-hard and in PSPACE.

3.2 Soft semantics

ϕ Objective functions obj(ϕ)

DC(a, b) max(0, 2(a.r+b.r)−d(a.c,b.c) − 0.0001)
EC(a, b) |d(a.c, b.c)− (a.r + b.r)|
PO(a, b) |d(a.c, b.c)−max(a.r, b.r)|
TPP (a, b) |d(a.c, b.c)− (b.r − a.r)|
TPP−1(a, b) constraint of TPP (b, a)

NTPP (a, b) |d(a.c, b.c)− (b.r−a.r)
2
|+max

(
0, 0001 + a.r−b.r

b.r

)
NTPP−1(a, b) constraint of NTPP (b, a)

EQ(a, b) d(a.c, b.c) + |a.r − b.r|
radius(a) = r |a.r − r|

ϕ ∨ ψ min(obj(ϕ), obj(ψ))

Fig. 3. Objective functions

A formula is evaluated according to an objective function obj : L → R,
defined by induction on ϕ as given in figure 3. Now, we interpret obj over a
model M and use obj(ϕ)M to denote the evaluation value.

Proposition 2. If obj(ϕ)M = 0, then M |= ϕ.

Note that those objective functions are established experimentally and prove
to be appropriate to guide the local search algorithm described in the next
section.

4 Local search

Given a problem instance I = 〈ϕ1, . . . , ϕn〉, we use a local search approach to
determine an Euler diagram respecting the constraints of I. Generally speaking,
local search constitutes a simple optimization approach which improves itera-
tively the current solution based on a neighborhood relation [10]. In our case,
the local search algorithm explores the search space Ω of possible drawings M
of a set of circles with the purpose of finding a feasible drawing satisfying the
predicates (constraints) of the given formula. The pseudo-code is defined as fol-
lows:
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M := generate randomly a drawing
while true do

Mnew := getSolutionInNeighborhood(M)
if Mnew is better than M then

M :=Mnew

The algorithm never stops and keeps improving the current solution M.
To represent a model M (i.e., a drawing), M is considered as a vector, where
indices are constant symbols a and each elementM[a] is a circle represented by
its center (M[a].x,M[a].y) and its radius M[a].r.

The function getSolutionInNeighborhood(M) returns a new solutionMnew,
where for all constant symbols a,Mnew[a].x,Mnew[a].y,Mnew[a].r are respec-
tively obtained by adding randomly chosen numbers in an interval [−ε, ε] to
M[a].x, M[a].y, M[a].r. That is, a new drawing is obtained by moving every
circle center from its current position to a new position and modifying slightly
each radius (this move operator defines thus the neighborhood relation of our
local search algorithm).

Solutions are compared with the following total order.

Definition 2. Given two candidate solutions (drawings)M,Mnew ∈ Ω,Mnew

is better than M if
∑n

i=1 obj(ϕi)Mnew
≤

∑n
i=1 obj(ϕi)M, where obj(ϕi)M and

obj(ϕi)Mnew
are the values of the objective function obj(ϕi) that corresponds to

the ith constraint ϕi for respectively Mnew and M.

5 Implementation

Our local search algorithm is implemented as a web application written in
Javascript and is available from: http://www.irisa.fr/prive/fschwarz/constrainteddrawing.

5.1 Syntax used in the software

The user can add circles and constraints by clicking on the appropriate buttons in the
palette. Let us describe the syntax we use in the software to define circles and con-
straints. In the left part of the screen, the user adds a circle by writing circle(name);

where name is a string for the name of the circle. Constraints are created with functions.
For instance TPP(name1, name2) creates a TPP constraints between the circle named
name1 and the circle named name2. The construction or(constraint1, constraint2)

returns a constraint that represents the disjunction of constraint1 and constraint2.
The construction addConstraint(constraint) adds constraint in the set of con-
straints.

5.2 Interaction

The user may assist the local search. During the local search, the user can move
the circles by drag and drop and modify the radius of each circle. When the user
makes a modification in the drawing, she directly modifies the current modelM. Those
modifications are directly taken in account in real-time by the local search algorithm.

http://www.irisa.fr/prive/fschwarz/constrainteddrawing
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6 Related work

6.1 Region connection calculus

RCC-8 [11] is a first order logic for spatial reasoning. Contrary to the version we adopt
in this article, variables are interpreted by regions of an abstract topological space. The
satisfiability problem of a first order formula given in RCC-8 is undecidable, more
precisely not recursively enumerable [7].

Nevertheless, the satisfiability problem, called RSAT, of a formula of the form
∃x1, . . .∃xn,

∧
i,j∈{1,...n}

∨
R∈C(i,j)R(xi, xj) where n is a positive integer, C(i, j) a sub-

set of RELRCC-8, is NP-complete [12].
The satisfiability problem for RCC-8 formulas over disc-homeomorphs is NP-

complete [14,13]. Notice that the problem addressed in our paper is not about disc-
homeomorphs but about discs. We here tackle the satisfiability problem for RCC-8
formulas over discs; its exact complexity is still an open problem (see proposition 1).
An extension of RCC-8 with Boolean operations over sets has been studied in [6]. Soft
semantics for RCC-8 are also given in [15,18].

6.2 Constrained graph drawing

Drawing with constraint Constraints have long been used for graph drawing.
Generally, the positions of constrained objects to draw can be computed in polynomial
time. For instance, in drawing software like Geogebra, one may state, for example,
that ∆1 contains point A and is orthogonal to line ∆2 [5]. Similarly, in a graphical user
interface library, the layout is computed from easily solvable constraints as ‘the window
is horizontally separated in two parts. The first part is a textbox. The second contains
three buttons displayed vertically’. For these systems, various layout algorithms have
been studied [2,8]. Finally, there exist tools to compute nice graphical representations
of graphs [1,3]. Displaying graphs consists in solving constraints such as two connected
nodes are close and two different edges do not cross.

Bottom-up approach for drawing Euler diagrams The visualization tool
Tulip integrates a functionality for Euler diagrams [17]. The input of this system is
given by an extensive description of the elements of sets. For instance, the following
can be a possible input:

P := {path, linearprog}
NP := {path, linearprog, intlinearprog, sat}
coNP := {path, linearprog, intlinearprog, valid}

Tulip is a ‘bottom-up’ approach. It considers the elements (in the example, elements are
path, linearprog, etc.) as nodes in a graph constrained by the set-theoretical relations
(in the example, P ⊆ NP , etc.). Tulip displays the graph and extracts an Euler diagram
from it. The shape of a region corresponding to a set (for instance P ) is delimited by
the positions of the elements in that set (for instance, path and linearprog). Thus, the
shape can be arbitrary and the diagram may be difficult to read. A similar approach
can be found in [21].

On the contrary, our approach is ‘top-down’ and deals with circles representing
shapes of regions. We do not specify elements that are in sets. Furthermore, contrary
to Tulip, our framework can be extended to capture constraints as ‘the radius of the
disc representing NP is 10cm’.
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Other top-down approaches for Euler diagrams The authors of [4] describe
a software tool for Euler diagrams which are made up of circles (see the site: http:
//www.eulerdiagrams.com/software.htm). Their algorithm is based on the theory of
piercings [19] and is able to draw nice diagrams. Yet, their approach does not capture
topological constraints as TPP (circle a is a tangential proper part of b) and the size
of circles are not easily adjustable. Very recently, another interesting tool is presented
in [9] which is able to draw not only circles, but also ellipses.

Compared to these tools, our approach distinguishes itself by some interesting fea-
tures. First, our tool is based on the RCC-8 language which enables both precise and
rich constraint specifications. For instance, our tool allows the specification of topolog-
ical constraints. Second, one can specify the radius of circles, and our system can then
adjust dynamically these radius for a better visualization. Last but not least, in our
approach, the user can always modify the drawing by moving and resizing circles and
the system will adjust the drawing accordingly and adaptively.

7 Conclusion

This study makes the bridge between logical framework RCC-8, generation of Euler
diagrams (and more generally drawings under constraints), as well as heuristic search. A
first extension is to add a large collection of elements in addition of circles (rectangles,
splines, etc.). Then an interesting perspective is to combine constraints that do not
require search (for instance constraints of Geogebra, or tractable fragments of RCC-8
[12]) and constraints that require search. That is, the tool should be able to choose
how to solve the constraints by detecting which method to apply and on which part
of the drawing. Another perspective is to improve the graphical interface. Then, we
may start to make the tool tested by users and do experimental validations (can users
write constraints they need? do users feel as if the tool understands their constraints?).
Finally, it would be interesting to integrate default reasoning in the tool. For instance
the sole constraint P TPP NP (tangential proper part) should avoid the radius of P
to be too small. This may be solved by using default reasoning: by default, P TPP NP
implies that the radius of P is approximately the half of the radius of NP . Another
interesting research problem concerns the axiomatization. Is there an axiomation of
RCC-8 where objects are circles? Having an axiomatization may help us to improve
the software so that it could give explanations for the generated drawings.

Acknowledgments. We wish to thank the three JELIA reviewers for their critical
comments and pointers to relevant studies.
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