Ali Asadi

Krishnendu Chatterjee
email: kchatterjee@ist.ac.at

Amir Kafshdar Goharshady
email: goharshady@ist.ac.at

Kiarash Mohammadi
email: kiarash.km@gmail.com

Andreas Pavlogiannis
email: pavlogiannis@cs.au.dk

Faster Algorithms for Quantitative Analysis of Markov Chains and Markov Decision Processes with Small Treewidth

. * * ω is the matrix multiplcation constant, i.e. the infimum number for which there is an algorithm that multiplies two n × n matrices in O(n ω). We know ω ≤ 2.373 [67].

† † If |T| ≥ 2, we use the same technique as in the previous section to have only one target t. To keep the tree decomposition valid, we add t to every bag.

Introduction

Markov Chains. Perhaps the most standard formalism for modeling randomness in discrete-time systems is that of discrete-time Markov Chains (MCs) [START_REF] Norris | Markov chains[END_REF][START_REF] Gagniuc | Markov chains: from theory to implementation and experimentation[END_REF]. MCs have immense applications in verification, and are used to express randomness both in the system itself [START_REF] Courcoubetis | The complexity of probabilistic verification[END_REF][START_REF] Rutten | Mathematical Techniques for Analyzing Concurrent and Probabilistic Systems[END_REF] and in the environment that the system interacts with [START_REF] Chatterjee | Measuring and synthesizing systems in probabilistic environments[END_REF]. The modeling power of MCs has also led to various extensions, such as parametric [START_REF] Daws | Symbolic and parametric model checking of discrete-time Markov chains[END_REF][START_REF] Lanotte | Parametric probabilistic transition systems for system design and analysis[END_REF][START_REF] Hahn | Probabilistic reachability for parametric Markov models[END_REF], interval [START_REF] Jonsson | Specification and refinement of probabilistic processes[END_REF][START_REF] Sen | Model-checking Markov chains in the presence of uncertainties[END_REF][START_REF] Delahaye | Decision problems for interval Markov chains[END_REF][START_REF] Benedikt | LTL model checking of interval Markov chains[END_REF] and augmented interval [START_REF] Chonev | Reachability in augmented interval Markov chains[END_REF] MCs. Besides the theoretical appeal, the analysis of MCs is also a core component in several model checkers [START_REF] Dehnert | A storm is coming: A modern probabilistic model checker[END_REF][START_REF] Hermanns | A Markov chain model checker[END_REF][START_REF] Hahn | Param: A model checker for parametric Markov models[END_REF][START_REF] Kwiatkowska | PRISM 4.0: Verification of probabilistic real-time systems[END_REF].

Markov Decision Processes. When the system exhibits both stochastic and nondeterministic behavior, the standard model of MCs is lifted to Markov Decision Processes (MDPs) [START_REF] Bellman | A Markovian decision process[END_REF][START_REF] Feinberg | Handbook of Markov decision processes: methods and applications[END_REF]. For example, MDPs are used to model stochastic controllers, where non-determinism models the freedom of the controller and randomness models the behavior of the system [START_REF] Filar | Competitive Markov Decision Processes[END_REF]. MDPs are also a topic of active study in verification [START_REF] Bianco | Model checking of probabilistic and nondeterministic systems[END_REF][START_REF] Brázdil | Verification of Markov decision processes using learning algorithms[END_REF][START_REF] Tappler | L * -based learning of Markov decision processes[END_REF][START_REF] Chatterjee | Symbolic algorithms for graphs and Markov decision processes with fairness objectives[END_REF][START_REF] Hahn | Multiobjective robust strategy synthesis forÂăinterval Markov decision processes[END_REF]. Quantitative Analysis. Three of the most standard analysis objectives for MCs are the following: (a) The hitting probabilities objective takes as input a set of target vertices T of the MC, and asks to compute for each vertex u, the probability that a random walk starting from u will eventually hit T. The discounted sum objective takes as input a discount factor λ ∈ (0, 1) and a reward function R that assigns a reward to each edge of the MC. The task is to compute for each vertex u the expected reward value of a random walk starting from u, where the value of the walk is the sum of the rewards along its edges, discounted by the factor λ at each step. Finally, the mean payoff objective is similar to the discounted sum objective, except that the value of a walk is the long-run average of the rewards along its edges. In MDPs, the corresponding analysis questions ask for a strategy that maximizes the respective quantity. Analysis Algorithms. Given the importance of quantitative objectives for MCs and MDPs, there have been various techniques for solving them efficiently. For MCs, the hitting probabilities and discounted sum objectives reduce to solving a system of linear equations [START_REF] Gagniuc | Markov chains: from theory to implementation and experimentation[END_REF][START_REF] Norris | Markov chains[END_REF][START_REF] Bellman | A Markovian decision process[END_REF][START_REF] Křetínský | Efficient strategy iteration for mean payoff in Markov decision processes[END_REF]. For MDPs, all three objectives reduce to solving a linear program [START_REF] Norris | Markov chains[END_REF][START_REF] Křetínský | Efficient strategy iteration for mean payoff in Markov decision processes[END_REF][START_REF] Papadimitriou | The complexity of Markov decision processes[END_REF]. Besides the LP formulation, two popular approaches for solving quantitative objectives on MDPs are value iteration [START_REF] Bellman | A Markovian decision process[END_REF][START_REF] Bellman | Dynamic Programming[END_REF] and strategy iteration [START_REF] Howard | Dynamic programming and Markov processes[END_REF][START_REF] Littman | On the complexity of solving Markov decision problems[END_REF][START_REF] Mansour | On the complexity of policy iteration[END_REF][START_REF] Abate | Approximate policy iteration for Markov decision processes via quantitative adaptive aggregations[END_REF][START_REF] Puterman | Markov Decision Processes[END_REF]. Value iteration is the most commonly used method in verification and operates by computing optimal policies for successive finite horizons. However, this process leads only to approximations of the optimal values, and for some objectives no stopping criterion for the optimal strategy is known [START_REF] Ashok | Value iteration for long-run average reward in Markov decision processes[END_REF]. In cases where such criteria are known (e.g. [START_REF] Baier | Ensuring the reliability of your model checker: interval iteration for markov decision processes[END_REF][START_REF] Haddad | Interval iteration algorithm for mdps and imdps[END_REF][START_REF] Quatmann | Sound value iteration[END_REF]), the number of iterations necessary before the numbers can be rounded to provide an optimal solution can be extremely high [START_REF] Chatterjee | Value iteration[END_REF]. Nevertheless, value iteration has proved to be very successful in practice and is included in many probabilistic model checkers, such as [START_REF] Kwiatkowska | PRISM 4.0: Verification of probabilistic real-time systems[END_REF][START_REF] Dehnert | A storm is coming: A modern probabilistic model checker[END_REF]. On the other hand, strategy iteration lies on the observation that given a fixed strategy, the MDP reduces to an MC, and hence one can compute the value of each vertex using existing techniques on MCs. Then, the strategy can be refined to a new strategy that improves the value of each vertex. The running time of strategy iteration can be written as O(κ • f), where κ is the number of strategy refinements and f is the time for evaluating the strategy. As we saw above, f is bounded by the time required to solve a linear system (instead of a linear program). In addition, κ is bounded by the number of possible strategies and thus finite, and although κ can be exponentially large [START_REF] Fearnley | Exponential lower bounds for policy iteration[END_REF][START_REF] Hollanders | The complexity of policy iteration is exponential for discounted Markov decision processes[END_REF], it behaves as a small constant in practice, which makes strategy iteration work well in practice [START_REF] Puterman | Markov Decision Processes[END_REF][START_REF] Křetínský | Efficient strategy iteration for mean payoff in Markov decision processes[END_REF]. Hence, both for MCs and for MDPs using strategy iteration, the performance of the algorithm largely depends on the speed of solving the respective linear system [START_REF] Křetínský | Efficient strategy iteration for mean payoff in Markov decision processes[END_REF]. Treewidth. A very well-studied notion in graph theory is the concept of treewidth of a graph, which is a measure of how similar a graph is to a tree [START_REF] Robertson | Graph minors. iii. planar tree-width[END_REF]. For example, a connected graph has treewidth 1 precisely if it is a tree. On one hand the treewidth property provides a mathematically elegant way to study graphs, and on the other hand there are many classes of graphs which arise in practice and have constant treewidth. A prime example is that Control Flow Graphs (CFGs) of goto-free programs in many classical programming languages have constant treewidth [START_REF] Thorup | All structured programs have small tree width and good register allocation[END_REF]. The low treewidth of flow graphs has also been confirmed experimentally for programs written in Java [START_REF] Gustedt | The treewidth of java programs[END_REF], C [START_REF] Krause | The tree-width of C[END_REF], Ada [START_REF] Burgstaller | On the tree width of Ada programs[END_REF] and Solidity [START_REF] Chatterjee | The treewidth of smart contracts[END_REF]. Treewidth has important algorithmic implications, as many graph problems that are hard to solve in general admit efficient solutions on graphs of low treewidth [START_REF] Cygan | Parameterized algorithms[END_REF]. In program analysis, this property has been exploited to develop improvements for register allocation [START_REF] Thorup | All structured programs have small tree width and good register allocation[END_REF][START_REF] Bodlaender | Linear-time register allocation for a fixed number of registers[END_REF], on-demand algebraic-path analysis [START_REF] Chatterjee | Faster algorithms for algebraic path properties in recursive state machines with constant treewidth[END_REF], on-demand data-flow analysis of concurrent programs [START_REF] Chatterjee | Faster algorithms for dynamic algebraic queries in basic RSMs with constant treewidth[END_REF] and data-dependence analysis [START_REF] Chatterjee | Optimal dyck reachability for data-dependence and alias analysis[END_REF]. Treewidth has also been studied in the context of parameterized algorithms for model checking [START_REF] Obdržálek | Fast mu-calculus model checking when tree-width is bounded[END_REF][START_REF] Ferrara | Treewidth in verification: Local vs[END_REF].

Our Contributions. The contributions of this work are as follows:

1. Theoretical Contributions. Our main theoretical result is a linear-time algorithm for solving arbitrary systems of linear equations whose primal graph has low treewidth. Given a linear system S of m equations over n unknowns, and a tree decomposition of the primal graph of S that has width t, our algorithm solves S in time O((n + m) • t 2). Given an MC M of treewidth t and a corresponding tree decomposition, our algorithm directly implies similar running times for the hitting probabilities and discounted sum objectives for M . In addition, we develop an algorithm that solves the mean-payoff objective for M in time O((n + m) • t 2). Our results on MCs also imply upper-bounds for the running time of strategy iteration on low-treewidth MDPs. Given an MDP P with treewidth t and a quantitative objective, our results imply that P can be solved in time O(κ

• (n + m) • t 2)
, where κ is the number of iterations until strategy iteration stabilizes for the respective input and objective. 2. Practical Contributions. We develop two practical algorithms for solving the hitting probabilities and discounted sum objectives on low-treewidth MCs. Although these algorithms have the same worst-case complexity of O((n+m)• t 2) as our general solution, they avoid its most practically time-consuming step, i.e. applying the Gram-Schmidt process, and replace it with simple changes to the MC. We report on an implementation of these algorithms and their performance in solving MCs and MDPs with low treewidth. We perform an extensive comparison of our implementation and previous methods as follows:

(a) Comparison with classical approaches: We compare our algorithms for MCs against a heavily-optimized Gaussian elimination. In case of MDPs, we additionally compare with classical value-iteration and strategy-iteration methods. (b) Comparison with out-of-the-box tools: We compare our implementation with standard industrial optimizers and probabilistic model checkers, including Matlab [71], lpsolve [START_REF] Berkelaar | lpsolve : Open source (Mixed-Integer) Linear Programming system[END_REF], Gurobi [START_REF] Gurobi Optimization | Gurobi optimizer[END_REF], PRISM [START_REF] Kwiatkowska | PRISM 4.0: Verification of probabilistic real-time systems[END_REF] and Storm [START_REF] Dehnert | A storm is coming: A modern probabilistic model checker[END_REF]. Our results show a consistent advantage of our new algorithms over all baseline methods, when the input models have small treewidth. Our algorithms outperform both the existing classical approaches for solving MCs/MDPs, and the highly-refined standard solvers.

Closest Related Works. To our knowledge, the existing works closest to this paper are [START_REF] Chatterjee | Faster algorithms for Markov decision processes with low treewidth[END_REF][START_REF] Fomin | Fully polynomial-time parameterized computations for graphs and matrices of low treewidth[END_REF]. The work of [START_REF] Chatterjee | Faster algorithms for Markov decision processes with low treewidth[END_REF] (CAV 2013) considers the maximal endcomponent decomposition and the almost-sure reachability set computation in low-treewidth MDPs. Note that these are both qualitative objectives, and thus very different from the quantitative objectives we consider here, which cannot be solved by [START_REF] Chatterjee | Faster algorithms for Markov decision processes with low treewidth[END_REF]. Specifically, the main problem solved by [START_REF] Chatterjee | Faster algorithms for Markov decision processes with low treewidth[END_REF] is almost-sure reachability, i.e. reachability with probability 1, which is a very special qualitative case of computing hitting probabilities. The work of [START_REF] Fomin | Fully polynomial-time parameterized computations for graphs and matrices of low treewidth[END_REF] develops an algorithm for solving linear systems of low treewidth. Considering the computational complexity when applied to MCs/MDPs of treewidth t, the algorithms we develop in this work are a factor t faster compared to [START_REF] Fomin | Fully polynomial-time parameterized computations for graphs and matrices of low treewidth[END_REF]. On the practical side, the algorithms in [START_REF] Fomin | Fully polynomial-time parameterized computations for graphs and matrices of low treewidth[END_REF] have more complicated intermediate steps, which we expect will lead to huge constant factors in the runtime of their implementations. This being said, it is highly nontrivial to provide a practically efficient implementation of [START_REF] Fomin | Fully polynomial-time parameterized computations for graphs and matrices of low treewidth[END_REF] and we are not aware of any implementation for it.

Preliminaries

Markov Chains and Markov Decision Processes

Discrete Probability Distributions. Given a finite set X, a probability distribution over X is a function d : X → [0, 1] such that x∈X d(x) = 1. We denote the set of all probability distributions over X by D(X).

Markov Chains (MCs) [START_REF] Kemeny | Denumerable Markov chains: with a chapter of Markov random fields by David Griffeath[END_REF]. A Markov chain C = (V, E, δ) consists of a finite directed graph (V, E) and a probabilistic transition function δ : V → D(V), such that for any pair u, v of vertices, we have δ(u)(v) > 0 only if (u, v) ∈ E.

In an MC C, we start a random walk from a vertex v 0 ∈ V and at each step, being in a vertex v, we probabilistically choose one of the successors of v and go there. The probability with which a successor w is chosen is given by δ(v)(w).

Let O be a measurable set of infinite paths on V (or more generally let O ⊆ V ω), we use the notation Pr v0 (O) to denote the probability that our infinite random walk starting from v 0 is a member of O. See [START_REF] Gagniuc | Markov chains: from theory to implementation and experimentation[END_REF][START_REF] Kemeny | Denumerable Markov chains: with a chapter of Markov random fields by David Griffeath[END_REF] for more detailed treatment.

Markov Decision Processes (MDPs) [START_REF] Howard | Dynamic programming and Markov processes[END_REF][START_REF] Filar | Competitive Markov Decision Processes[END_REF]. A Markov decision process P = (V, E, V 1 , V P , δ) consists of a finite directed graph (V, E), a partitioning of V into two sets V 1 and V P , and a probabilistic transition function δ :

V P → D(V), such that for any (u, v) ∈ V P × V, we have δ(u)(v) > 0 only if (u, v) ∈ E.
In this work, we assume that all vertices of an MDP have at least one outgoing edge. Intuitively, an MDP is a one-player game in which we have two types of vertices: those controlled by Player 1, i.e. V 1 , and those that behave probabilistically, i.e. V P .

Strategies. In an MDP

P , a strategy is a function σ : V 1 → V , such that for every v ∈ V 1 we have (v, σ(v)) ∈ E. *
Informally, a strategy is a recipe for Player 1 that tells her which successor to choose based on the current state (vertex). Given an MDP P with a strategy σ, we start a random walk from a vertex v 0 ∈ V and at each step, being in a vertex v, choose the successor as follows: (i) if v ∈ V 1 , then we go to σ(v), and (ii) if v ∈ V P we act as in the case of MCs, i.e. we go to each successor w with probability δ(v)(w). As before, given a measurable set O ⊆ V ω of infinite paths on V , we define Pr σ v0 (O) as the probability that our infinite random walk becomes a member of O. Note that an MDP with a fixed strategy σ is basically an MC, in which for every v ∈ V 1 we have δ(v)(σ(v)) = 1. See [START_REF] Filar | Competitive Markov Decision Processes[END_REF][START_REF] Howard | Dynamic programming and Markov processes[END_REF] for more details.

Hitting Probabilities [START_REF] Grinstead | Introduction to probability[END_REF][START_REF] Norris | Markov chains[END_REF][START_REF] Krak | Hitting times and probabilities for imprecise Markov chains[END_REF]. Let C = (V, E, δ) be an MC and T ⊆ V a designated set of target vertices. We define Hit(T) ⊆ V ω as the set of all infinite sequences of vertices that intersect T. The Hitting probability HitPr(u, T) is defined as Pr u (Hit(T)). In other words, HitPr(u, T) is the probability of eventually reaching T, assuming that we start our random walk at u. In case of MDPs, we assume that the player aims to maximize the hitting probability by choosing the best possible strategy. Therefore, in an MDP P = (V, E, V 1 , V P , δ), we define HitPr(u, T) as max σ Pr σ u (Hit(T)). Discounted Sums of Rewards [START_REF] Puterman | Markov Decision Processes[END_REF]. Let C = (V, E, δ) be an MC and R : E → R a reward function that assigns a real value to each edge. Also, let λ ∈ (0, 1) be a discount factor. Given an infinite path π = v 0 , v 1 , . . . over (V, E), we define the total reward R(π) of π as

∞ i=0 λ i • R(v i , v i+1) = R(v 0 , v 1) + λ • R(v 1 , v 2) + λ 2 • R(v 2 , v 3) + Let u ∈ V be a vertex, we define ExpDisSum(u)
as the expected value of the reward of our random walk if we begin it at u, i.e. ExpDisSum(u) := E u [R(π)]. As in the previous case, when considering MDPs, we assume that the player aims to maximize the discounted sum, hence given an MDP P = (V, E, V 1 , V P , δ), a reward function R and a discount factor λ, we define ExpDisSum(u) := max σ E σ u [R(π)]. Mean Payoff [START_REF] Puterman | Markov Decision Processes[END_REF][START_REF] Křetínský | Efficient strategy iteration for mean payoff in Markov decision processes[END_REF]. Let C be an MC and R a reward function as above. Given an infinite path π = v 0 , v 1 , . . . over C, we define the n-step average reward of π as R(π[0..n]) := 1 n n i=1 R(v i-1 , v i). Given a start vertex u ∈ V, the expected long-time average or mean payoff value from u is defined as ExpMP(u) := lim n→∞ E u [R(π[0..n])]. In other words, ExpMP(u) captures the expected reward per step in a random walk starting at u. As in previous cases, in an MDP P , we define ExpMP(u)

:= max σ lim n→∞ E σ u [R(π[0..n])].
The limits in the former definitions are guaranteed to exist [START_REF] Puterman | Markov Decision Processes[END_REF][START_REF] Křetínský | Efficient strategy iteration for mean payoff in Markov decision processes[END_REF].

Problems. We consider the following classical problems for both MCs and MDPs:

-Computing Hitting Probabilities: Given an MC/MDP and a target set T compute HitPr(u, T) for every vertex u. -Computing Expected Discounted Sums: Given an MC/MDP, a reward function R and a discount factor λ ∈ (0, 1), compute ExpDisSum(u) for every vertex u. -Computing Mean Payoffs: Given an MC/MDP and a reward function R, compute ExpMP(u) for every vertex u.

Solving MCs [START_REF] Grinstead | Introduction to probability[END_REF][START_REF] Norris | Markov chains[END_REF]. A classical approach to the above problems for MCs is to reduce them to solving systems of linear equations. In case of hitting probabili-ties, we define one variable x u for each vertex u, whose value in the solution to the system would be equal to HitPr(u, T). The system is constructed as follows:

-We add the equation x t = 1 for every t ∈ T, and -For every vertex u ∈ T with successors u 1 , . . . , u k , we add the equation

x u = k i=1 δ(u)(u i) • x ui .
If every vertex can reach a target, then it is well-known that the resulting system has a unique solution in which the value assigned to each x u is equal to HitPr(u, T) † . A similar approach can be used in the case of discounted sums. We define one variable y u per vertex u and if the successors of u are u 1 , . . . , u k , then we add the equation

y u = k i=1 δ(u)(u i) • (R(u, u i) + λ • y ui).
The approach for mean payoff objectives is more subtle and described in Section 3.5.

Primal Graphs [START_REF] Rossi | Handbook of constraint programming[END_REF]. Let S be a system of linear equations with m equations and n unknowns (variables). The primal graph G(S) of S is an undirected graph with n vertices, each corresponding to one unknown in S, in which there is an edge between two unknowns x and y iff there exists an equation in S that contains both x and y with non-zero coefficients.

Solving MDPs. There are two classical approaches to solving the above problems for MDPs. One is to reduce the problem to Linear Programming (LP) in a manner similar to the reduction from MC to linear systems [START_REF] Feinberg | Handbook of Markov decision processes: methods and applications[END_REF]. The other approach is to use dynamic programming [START_REF] Bellman | A Markovian decision process[END_REF][START_REF] Shapley | Stochastic games[END_REF]. We consider a widely-used variety of dynamic programming, called strategy iteration or policy iteration [START_REF] Howard | Dynamic programming and Markov processes[END_REF][START_REF] Bertsekas | Dynamic programming and optimal control[END_REF].

Strategy Iteration (SI) [START_REF] Bellman | A Markovian decision process[END_REF][START_REF] Shapley | Stochastic games[END_REF]. In SI we start with an arbitrary initial strategy σ 0 and attempt to find a better strategy in each step. Formally, assume that our strategy after i iterations is σ i . Then, we compute val i (u) = HitPr σi (u, T) for every vertex u. This is equivalent to computing hitting probabilities in the MC that is obtained by considering our MDP together with the strategy σ i . We use the values val i (u) to obtain a better strategy σ i+1 as follows: for every vertex v ∈ V 1 with successors v 1 , v 2 , . . . , v k , we set σ i+1 (v) = arg max vj val i (v j). (In case of discounted sum, we let val i (u) = ExpDisSum σi (u) and σ i+1 (v) = arg max vj R(v, v j) + λ • val i (v j).) We repeat these steps until we reach a point where our strategy converges, i.e. it does not change anymore. It is well-known that strategy iteration always converges to the optimal strategy, and at that point the values val i will be the desired hitting probabilities/discounted sums [START_REF] Howard | Dynamic programming and Markov processes[END_REF][START_REF] Bertsekas | Dynamic programming and optimal control[END_REF][START_REF] Feinberg | Handbook of Markov decision processes: methods and applications[END_REF]. Moreover, while it might take exponentially many steps in theory [START_REF] Fearnley | Strategy iteration algorithms for games and Markov Decision Processes[END_REF][START_REF] Hansen | Worst-case analysis of strategy iteration and the simplex method[END_REF], SI is one of the most practical algorithms for solving MDPs and almost always terminates within a few iterations in real-world scenarios [START_REF] Hansen | Worst-case analysis of strategy iteration and the simplex method[END_REF][START_REF] Křetínský | Efficient strategy iteration for mean payoff in Markov decision processes[END_REF]. Hence, a major challenge is to optimize the runtime of each iteration [START_REF] Křetínský | Efficient strategy iteration for mean payoff in Markov decision processes[END_REF]. SI can also be applied to mean payoff objectives. However, it requires the computation of additional values, called potentials or biases. See [START_REF] Křetínský | Efficient strategy iteration for mean payoff in Markov decision processes[END_REF][START_REF] Puterman | Markov Decision Processes[END_REF] for more details.

Given that SI solves the classic problems above on MDPs by several calls to a procedure for solving the same problems on MCs, our runtime improvements for MCs are naturally extended to MDPs. So, in the sequel we turn our focus to MCs. † Otherwise, we can first remove the vertices that cannot reach a target by a simple DFS and then apply the algorithm to the rest of the MC.

Parameterized Algorithms, Tree Decompositions and Treewidth

Parameterized Complexity [START_REF] Downey | Parameterized complexity[END_REF]. In parameterized complexity, the runtime of an algorithm is analyzed not only based on the size of its input, but also based on an aspect of the input, called a "parameter". Hence, parameterized complexity provides a finer-grained understanding than traditional complexity theory. For example, given a graph G and an integer k as input, it is NP-hard to decide whether G has a vertex cover ‡ of size k. However, there is an algorithm with runtime O(n • k • 2 k) for this problem [START_REF] Cygan | Parameterized algorithms[END_REF]. Hence, if k is a small constant, then the problem is solvable in linear time. The parameter does not necessarily need to be an explicit part of the input. It can also be a structural property of the input instance, e.g. many hard graph problems are efficiently solvable over graphs whose maximum degree is small [START_REF] Cygan | Parameterized algorithms[END_REF]. Fixed-Parameter Tractability (FPT) [START_REF] Downey | Parameterized complexity[END_REF][START_REF] Cygan | Parameterized algorithms[END_REF]. A parameterized problem is called fixed parameter tractable if it can be solved in time O(n c • f (k)), where n is the input size, k is the parameter, f is an arbitrary computable function and c is a constant that is not dependent on either n or k. This definition captures the intuition that while the problem might be hard in general, those instances of the problem where the parameter is small are easy to solve, i.e. they are solvable in polynomial time wrt the size of input § . In this work, we provide linear parameterized algorithms for MCs. In other words, in all of our algorithms we have c = 1.

Treewidth [START_REF] Robertson | Graph minors. iii. planar tree-width[END_REF] is a widely-used parameter for graph problems. Intuitively, the treewidth of a graph is a measure of its tree-likeness, e.g. only trees and forests have a treewidth of 1. We now provide a formal definition for treewidth based on tree decompositions. Tree Decompositions [START_REF] Robertson | Graph minors. iii. planar tree-width[END_REF][START_REF] Bodlaender | A tourist guide through treewidth[END_REF]. Given a directed or undirected graph G = (V, E), a tree decomposition of G is a tree (T, E T) such that:

-Each vertex b ∈ T of the tree is associated with a subset V b ⊆ V of vertices of the graph. For clarity, we reserve the word "vertex" for vertices of G and use the word "bag" to refer to vertices of T . Also, we define

E b := {(u, v) ∈ E | u, v ∈ V b }. ‡ A
vertex cover is a set C of vertices such that each edge has at least one of its endpoints in C.

§ Note that the polynomial degree c is not dependent on the parameter k.

-Each vertex appears in at least one bag, i.e. b∈T V b = V.

-Each edge appears in at least one bag, i.e. b∈T E b = E.

-Each vertex appears in a connected subtree of T . In other words, for all b, b , b ∈ T , if b is in the unique path between b and b , then

V b ∩ V b ⊆ V b .
Treewidth [START_REF] Robertson | Graph minors. iii. planar tree-width[END_REF][START_REF] Cygan | Parameterized algorithms[END_REF]. The width of a tree decomposition is the size of its largest bag minus one, i.e. w(T) = max b∈T |V b | -1. A tree decomposition of G is called optimal if its width is less than or equal to the width of any other tree decomposition. The treewidth tw(G) of G is defined as the width of its optimal tree decomposition(s). Computing Treewidth and Tree Decompositions. Computing treewidth is an NPcomplete problem [START_REF] Arnborg | Complexity of finding embeddings in a k-tree[END_REF]. However, it is solvable in linear-time FPT wrt the treewidth itself, i.e. if we know that tw(G) is bounded by a constant, then the problem is solvable in linear time [START_REF] Bodlaender | A linear-time algorithm for finding tree-decompositions of small treewidth[END_REF]. In this case, the algorithm in [START_REF] Bodlaender | A linear-time algorithm for finding tree-decompositions of small treewidth[END_REF] also finds an optimal tree decomposition in linear time ¶ . In the sequel, we focus on linear-time algorithms for MCs and MDPs parameterized by their treewidth. As is standard for treewidth-based approaches, we assume that an optimal tree decomposition is given as part of the input. This assumption does not affect the complexity of our approach, as we can use [START_REF] Bodlaender | A linear-time algorithm for finding tree-decompositions of small treewidth[END_REF][START_REF] Thorup | All structured programs have small tree width and good register allocation[END_REF] or tools such as [START_REF] Chatterjee | JTDec: A tool for tree decompositions in soot[END_REF] to obtain the tree decomposition in linear time.

Algorithms for MCs with Constant Treewidth

In this section, we consider quantitative problems on MCs. As mentioned before, our improvements carry over to MDPs using SI. We build on classical state-elimination algorithms to handle our MCs. Such methods are well-known and were previously used in [START_REF] Hopcroft | Introduction to automata theory, languages, and computation[END_REF][START_REF] Daws | Symbolic and parametric model checking of discrete-time markov chains[END_REF][START_REF] Hahn | Param: A model checker for parametric markov models[END_REF][START_REF] Hahn | Probabilistic reachability for parametric markov models[END_REF], as well as many other works. The main novelty of our approach is that we use the tree decompositions to obtain a suitable order for eliminating vertices. This specific ordering significantly reduces the runtime complexity of classical state-elimination algorithms from cubic to linear. Aside from the ordering, which is the main basis for our algorithmic improvements, the rest of this section consists mostly of well-known transformations on MCs. However, a new subtlety arises in our approach: while in general MCs there are several variants of rules for eliminating vertices, in small-treewidth MCs we must also make sure that the elimination step does not increase the treewidth or invalidate the underlying tree decomposition.

We first review state-elimination for computing hitting probabilities (Section 3.1). Then, in Section 3.2, we show how to exploit the treewidth to speedup this process and obtain a linear-time algorithm. Section 3.3 provides a similar speedup for computing expected discounted sums. In Section 3.4, we show our most general result, i.e. solving small-treewidth systems of linear equations in linear time. While this algorithm is more general than those of Sections 3.2 and 3.3, it repeatedly applies the costly Gram-Schmidt orthogonalization process, and is hence not preferable in practice. Finally, Section 3.5 combines these ideas to compute expected mean payoffs in linear time. ¶ Specifically, note that [START_REF] Thorup | All structured programs have small tree width and good register allocation[END_REF] proves that control-flow graphs of structured programs in C and Pascal have a treewidth of at most 6.

A Simple Algorithm for Computing Hitting Probabilities

We begin by looking into the problem of computing hitting probabilities for general MCs without exploiting the treewidth. First, note that, without loss of generality, we can assume that our target set contains a single vertex. Otherwise, we add a new vertex t and add edges with probability 1 from every target vertex to t. This will keep the hitting probabilities intact.

Consider our Markov chain C = (V, E, δ) and our target vertex t ∈ V. If there is only one vertex in the MC, i.e. if V = {t}, then there is not much to solve. We just return that HitPr(t, t) = 1. Otherwise, we take an arbitrary vertex u = t and try to remove it from the MC in order to obtain a smaller MC that can in turn be solved using the same method. We should do this in a manner that does not change HitPr(v, t) for any vertex v = u. Figure 2 shows how to remove a vertex u from C in order to obtain a smaller MC C = (V \ {u}, E, δ) . Basically, we remove u and all of its edges, and instead add new edges from every predecessor u to every successor u . We also update the transition function δ by setting δ(u

)(u) = δ(u)(u) + δ(u)(u) • δ(u)(u).
It is easy to verify that for every v = u, we have HitPr(v, t) = HitPr(v, t). Hence, we can compute hitting probabilities for every vertex

v = u in C instead of C. Finally, if u 1 , u 2 , . . . , u k are the successors of u in C, we know that HitPr(u, t) = k i=1 δ(u)(u i) • HitPr(u i , t) = k i=1 δ(u)(u i) • HitPr(u i , t)
. Hence, we can easily compute the hitting probability for u using this formula. A pseudocode of this approach is available in Appendix A.

A special case arises when there is a self-loop transition from u to u. If δ(u)(u) = 1, i.e. u is an absorbing trap, then we can simply remove u, noting that HitPr(u, t) = 0. On the other hand if 0 < δ(u)(u) < 1, then we should distribute δ(u)(u) proportionately among the other successors of u because staying for a finite number of steps in the same vertex u does not change the hitting property of a path, and the probability of staying at u forever is 0.

u u u u u C C p1 p2 p1 • p2 u u u u u p1 p2 p1 • p2 + p3 p3 Fig. 2.
Removing a vertex u. The vertex u is a predecessor of u and u is one of its successors. The left side shows the changes when there is no edge from u to u and the right side shows the other case, where (u , u) ∈ E. Edge labels are δ values.

Note that removing each vertex can take at most O(n 2) time, given that it has O(n) predecessors and successors. Using this algorithm we should remove n -1 vertices, leading to a total runtime of O(n 3), which is worse than the reduction to system of linear equations and then applying Gaussian elimination, leading to

In the sequel, we always use C to denote an MC that is obtained from C by removing one vertex. We also apply the same rule across our notation, e.g. δ is the transition function after removal of the vertex. a runtime of O(n ω) * * . However, the runtime can be significantly improved if we could remove vertices in an order that guaranteed that every vertex has a low degree when it is being removed. One heuristic is to always remove the vertex with the smallest degree, but this does not guarantee that all removals remain cheap.

Computing Hitting Probabilities in Constant Treewidth

The main idea behind our algorithm for computing hitting probabilities in constant treewidth is very simple: we take the algorithm from the previous section and use the tree decomposition to obtain an ordering for the removal of vertices.

Given that we can choose any bag in T as the root, without loss of generality, we assume that the target vertex t is in the root bag † † . The following two lemmas are the bases of our approach: Lemma 1. Let l ∈ T be a leaf bag of the tree decomposition (T, E T) of our MC C, and let l be the parent of l. If V l ⊆ Vl, then (T \ {l}, E T \ {(l, l)}) is also a valid tree decomposition for C.

Proof. We just need to check that all the required properties of a tree decomposition hold after removal of l. Given that V l ⊆ Vl, any vertex that appears in l is also in l and hence removal of l does not cause any vertex to be unrepresented in the tree decomposition. The same applies to edges. Moreover, removing a leaf bag cannot disconnect the previously-connected set of bags containing a vertex. Lemma 2. Let l ∈ T be a bag of the tree decomposition (T, E T) and assume that the vertex u ∈ V only appears in V l , i.e. it does not appear in the vertex set of any other bag. Then, the vertex u has at most |V l | predecessors/successors in C.

Proof. If u is a predecessor/successor of u, then there is an edge between them. By definition, a tree decomposition should cover every edge. Hence, there should be a bag b such that u, u ∈ V b . By assumption, u only appears in V l . Hence, every predecessor/successor u must also appear in V l .

The two lemmas above give us a convenient order for removing vertices. At each step, we choose an arbitrary leaf bag l. If there is a vertex u that only appears in V l , then we remove u. In this case, Lemma 2 guarantees that u has O(t) predecessors and successors. Otherwise, V l ⊆ Vl (recall that each vertex appears in a connected subtree) and we can remove l from our tree decomposition according to Lemma 1. Algorithm 1 puts all these steps together. Note that throughout this algorithm the tree decomposition remains valid, because we are only adding edges between vertices that are already in the same leaf bag l. Given that we remove at most O(n) bags and n -1 vertices and that removing each vertex takes only O(t 2), the total runtime of Algorithm 1 is O(n • t 2). Hence, we have the following theorem:

Theorem 1. Given an MC with n vertices and treewidth t and an optimal tree decomposition of the MC, Algorithm 1 computes hitting probabilities from every vertex to a designated target set in O(n • t 2).

1 Function ComputeHitProbs(C = (V, E, δ), t, (T, ET)):

2 if V = {t} then 3 HitPr(t, t) ← 1 4 else 5 repeat 6 Choose an arbitrary leaf bag l ∈ T 7 l ← parent of l 8 if V l ⊆ Vl then 9 T ← T \ {l} 10 ET ← ET \ {(l, l)} 11 else 12 Choose an arbitrary u ∈ V l \ Vl 13 V l ← V l \ {u} 14 break 15 if δ(u)(u) = 1 then 16 HitPr(u, t) ← 0 17 ComputeHitProbs ((V \ {u}, E, δ), t) 18 else 19 f ← 1 1-δ(u)(u) 20 δ(u)(u) ← 0 21 E ← E \ {(u, u)} 22 foreach u ∈ V l : (u, u) ∈ E do 23 δ(u)(u) ← δ(u)(u) • f 24 foreach u ∈ V l : (u , u) ∈ E do 25 foreach u ∈ V l : (u, u) ∈ E do 26 δ(u)(u) ← δ(u)(u) + δ(u)(u) • δ(u, u) 27 E ← E ∪ {(u , u)} 28 ComputeHitProbs ((V \ {u}, E, δ), t) 29 HitPr(u, t) ← 0 30 foreach u ∈ V l : (u, u) ∈ E do 31 HitPr(u, t) ← HitPr(u, t) + δ(u, u) • HitPr(u , t)
Algorithm 1: Computing Hitting Probabilities using a Tree Decomposition.

Example 1. Consider the graph and tree decomposition in Figure 1 with an arbitrary transition probability function δ and target vertex t = 6. On this example, Algorithm 1 would first choose an arbitrary leaf bag, say {7, 9} and then realize that 9 has only appeared in this bag. Hence it removes vertex 9 from the MC using the same procedure as in the previous section. In the next iteration, it chooses the bag {7} and realizes that the set of vertices in this bag is a subset of vertices that appear in its parent. Hence, it removes this unnecessary bag. The algorithm continues similarly, until only the target vertex 6 remains, at which point the problem is trivial. Figure 3 shows all the steps of our algorithm. Note that because the width of our tree decomposition is 2, at each step when we are removing a vertex u, it has at most 3 neighbors (counting itself).

{2, 3, 6} {3, 4, 6} {2, 6} {1, 2, 3} {4, 6, 7} 1 2 4 7 {2, 3, 6} {3, 4, 6} {1, 2, 3} {4, 6, 7} 1 2 3 4 6 {2, 3, 6} {3, 4, 6} {1, 2, 3} {4, 6} 1 2 4 {2, 3, 6} {3, 4, 6} {1, 2, 3} 1 2 3 6 {2, 3, 6} {3, 6} {1, 2, 3} 1 2 {2, 3, 6} {1, 2, 3} 2 3 6 {2, 3, 6} {2, 3} 2
{2, 3, 6} 2 6
{2, 3, 6} Fig. 3. The Steps Taken by Algorithm 1 on the Graph and Tree Decomposition in Figure 1. The target vertex t = 6 is shown in green. At each step the vertex/bag that is being removed is shown in red. An active bag whose vertices, but not itself, are considered for removal is shown in blue. After removing vertex 2, the graph has only one vertex and the base case of the algorithm is run.

Computing Expected Discounted Sums in Constant Treewidth

We use a similar approach for handling the discounted sum problem. The only difference is in how a vertex is removed. Given an MC C = (V, E, δ), a tree decomposition (T, E T) of C, a reward function R : E → R and a discount factor λ ∈ (0, 1), we first add a new vertex called 1 to the MC. The vertex 1 is disjoint from all other vertices and only has a single self-loop with probability 1 and reward 1 -λ. In other words, we define δ(1)(1) = 1 and R(1, 1) = 1 -λ.

1

1, 1 -λ
We also add 1 to the vertex set of every bag. The reason behind this gadget is that we have ExpDisSum(1) = (1 -λ) • (1 + λ + λ 2 + . . .) = 1. We will use this property later.

In our algorithm, the requirement that for all u, v we should have 0 ≤ δ(u)(v) ≤ 1 is unnecessary and becomes untenable, too. Therefore, we allow δ(u)(v) to have any real value, and use the linear system interpretation of C as in Section 2.1, i.e. instead of considering C as an MC, we consider it to be a representation of the linear system S C defined as follows:

-For every vertex u ∈ V , the system S C contains one unknown y u , and -For every vertex u ∈ V , whose successors are u 1 , u 2 , . . . , u k , the system S C contains an equation e u :=

y u = k i=1 δ(u)(u i) • (R(u, u i) + λ • y ui) .
As mentioned in Section 2.1, in the solution to S C , the value assigned to the unknown y u is equal to ExpDisSum(u) in the MC C. However, the definition above does not depend on the fact that C is an MC and can also be applied if δ has arbitrary real values.

Now suppose that we want to remove a vertex u = 1 with successors u 1 , . . . , u k from C. This is equivalent to removing y u from S C without changing the values of other unknowns in the solution. Given that we have y u = k i=1 δ(u)(u i) • (R(u, u i) + λ • y ui) , we can simply replace every occurrence of y u in other equations with the right-hand-side expression of this equation. If u = u is a predecessor of u, then we have

y u = A + δ(u)(u) • (R(u , u) + λ • y u)
, where A is an expression that depends on other successors of u . We can rewrite this equation as

y u = A + δ(u)(u) • R(u , u) + k i=1 δ(u)(u) • δ(u)(u i) • λ • (R(u, u i) + λ • y ui).
This is equivalent to obtaining a new C from C by removing the vertex u and adding the following edges from every predecessor u of u:

-An edge (u , 1), such that R(u , 1) = 0 and δ(u

)(1) = 1 λ •(δ(u)(u)•R(u , u)), -An edge (u , u i) to every successor u i of u, such that R(u , u i) = R(u, u i) and δ(u)(u i) = δ(u)(u) • δ(u)(u i) • λ.
This construction is shown in Figure 4. As shown above, using this construction the value of y v remains the same in solutions of S C and S C . There are two special cases that can cause this construction to fail. However, we can avoid both of these cases using simple transformations in the graph before applying this construction. We now describe how we handle each of them:

-Parallel Edges. If two edges with the same direction are created between the same pair (u, v) of vertices, then we replace them with a single edge. If the δ values of initial edges were δ 1 , δ 2 and their R values were r 1 , r 2 , we set

δ(u)(v) = δ 1 + δ 2 and R(u, v) = δ1•r1+δ2•r2 δ1+δ2
. It is straigthforward to verify that this transformation is sound, i.e. it does not change the solution of the corresponding system.

-Self-loops. If a self-loop (u, u) appears in our graph, this is equivalent to having an equation e u := y u = R in the linear system, in which R is a linear expression that contains a non-zero multiple of y u . In this case, we simplify this equation to y u = R by moving the summand containing y u to the left hand side and multiplying both sides by a suitable factor. We then update the outgoing edges of u in our graph to model the new system. Note that this update does not add any new edges to the graph, except possibly the edge (u, 1) for handling leftover constant factors. As in the previous section, we can solve the problem on the smaller C and then use the equation e u to compute the value of y u in the solution to S C . This algorithm's runtime can be analyzed exactly as before. We have to remove n vertices and each removal takes O(n 2) for a total runtime of O(n 3). To obtain a better algorithm that exploits tree decompositions, we can use the exact same removal order as in the previous section, leading to the same runtime, i.e. O(n•t 2). Note that we have added 1 to the associated vertex set of every bag, so the tree decomposition always remains valid throughout our algorithm. Given this discussion, we have the following theorem: Theorem 2. Given an MC with n vertices and treewidth t and an optimal tree decomposition of the MC, the algorithm described in this section computes expected discounted sums from every vertex of the MC in O(n • t 2).

u u • • • u1 uk u u • • • u1 uk 1 δ0, r0 δ1, r1 δk, rk δ0 • δ1 • λ, r1 δ0 • δk • λ, rk δ0•r0 λ , 0

Solving Systems of Equations with Constant-Treewidth Primal

Graphs The ideas used in the previous section can be extended to obtain faster algorithms for solving any linear system whose primal graph has a small treewidth. However, new subtleties arise, given that general linear systems might have no solution or infinitely many solutions. In contrast, the systems S C discussed in the previous section were guaranteed to have a unique solution. We consider a system S of m linear equations over n real unknowns as input, and assume that its primal graph G(S) has treewidth t.

Our algorithm for solving S is similar to our previous algorithms, and is actually what most students are taught in junior high school. We take an arbitrary unknown x and choose an arbitrary equation e in which x appears with a non-zero coefficient. We then rewrite e as x = R x , where R x is a linear expression based on other unknowns. Finally, we replace every occurrence of x in other equations with R x and solve the resulting smaller system S. If S has no solutions or inifinitely many solutions, then so does S. Otherwise, we evaluate R x in the solution of S to get the solution value for x. Using this algorithm, we have to remove O(n) unknowns. When removing x, we might have to replace an expression of size O(n), i.e. R x , in O(m) potential other equations where x has appeared. Hence, the overall runtime is O(n 2 • m).

Given a tree decomposition (T, E T) of the primal graph G(S), we choose the unknows in the usual order, i.e. we always choose an unknown x that appears only in a leaf bag. If x does not appear in any equations, then we can simply remove it and then S is satisfiable iff S is satisfiable. Moreover, if S is satisfiable, then it has infinitely many solutions, given that x is not restricted. Otherwise, there is an equation e in which x appears with non-zero coefficient, and hence we can rewrite this equation as x = R x . Note that x has O(t) neighbors in G(S), given that it only appears in a leaf bag and all of its neighbors should also appear in the same bag, hence the length of R x is O(t), too.

The problem is that x might have appeared in any of the other O(m) equations. Hence, replacing it with R x in every equation will lead to a runtime of O(m • t). We repeat this for every unknown, so our total runtime is O(n • m • t), which is not linear.

The crucial observation is that while x might have appeared in as many as m equations, not all of them are linearly independent. Let E x be the set of equations containing x and l be the leaf bag in which x appears and assume that V l = {x, y 1 , . . . , y k-1 }. Then the only unknowns that can appear together with x in an equation are y 1 , . . . , y k-1 . In other words, all equations in E x are over V l . Hence, we can apply the Gram-Schmidt process on E x to remove the unnecessary equations and only keep at most k equations that form an orthogonal basis (or alternatively realize that the system is unsatisfiable). Given that we are operating in dimension k = O(t), this will take O(t 2 • |E x |) time. See Appendix A for a pseudocode. As in previous algorithms, our approach always keeps the tree decomposition valid. Moreover, as argued above, its runtime is O((n + m) • t 2), which is linear in the size of the system. Hence, we have the following theorem: Theorem 3. Given a system of m linear equations over n unknowns, its primal graph, and a tree decomposition of the primal graph with width t, our algorithm solves the system in time O((n + m) • t 2).

The algorithm can easily be extended to find a basis for the solution set.

Computing Expected Mean Payoffs in Constant Treewidth

Strongly Connected Components. Given an MC C = (V, E, δ), a Strongly Connected Component (SCC) is a maximal subset A ⊆ V , such that for every pair of vertices u, v ∈ A, there is a path from u to v in C. An SCC B is called a Bottom Strongly Connected Component (BSCC) if no other SCC is reachable from B. It is well-known that every vertex belongs to a unique SCC and that there is a linear-time algorithm that computes the SCCs and BSCCs of any given MC [START_REF] Leiserson | Introduction to algorithms[END_REF]. An MC is called ergodic if its vertex set consists of only a single BSCC.

Limiting Distribution [START_REF] Norris | Markov chains[END_REF]. Given an ergodic MC C = (B, E, δ) with a single BSCC B and an arbitrary vertex u ∈ B, we define the limiting distribution δ lim over B as follows:

δ lim (v) := lim n→∞ E u 1 n • |{i | 0 ≤ i < n ∧ π i = v}| ,
where π is a random walk beginning at u. Informally, δ lim (v) is the fraction of time that we are expected to spend in vertex v, when we start a random walk in C. Note that due to ergodicity, the starting vertex of the random walk does not matter. We can similarly define a limiting distribution δ E lim over the edges of C by letting

δ E lim (u, v) := δ lim (u) • δ(u)(v).
From the definition above, it is easy to see that the mean payoff value ExpMP(u) is the same for every vertex u ∈ B of the ergodic MC. More specifically, we have

ExpMP(u) = (v1,v2)∈E R(v 1 , v 2) • δ E lim (v 1 , v 2)
. Therefore, computing the ExpMP values is reduced to computing the limiting distribution. Now consider a general MC C = (V, E, δ) and a vertex u ∈ V. If u is in a BSCC B, then any path starting from u will never leave B. Therefore, ExpMP V (u) = ExpMP B (u). On the other hand, if u is in a non-bottom SCC A, then the random walk beginning from u will eventually reach a BSCC almostsurely (with probability 1). Let B 1 , B 2 , . . . be the BSCCs of C and b i ∈ B i . Hence, given that we can ignore a finite prefix when computing mean payoffs, the expected mean payoff from u is

ExpMP(u) = i HitPr(u, B i) • ExpMP(b i) = i HitPr(u, b i) • ExpMP(b i).
Every vertex in B i has the same expected mean payoff and will be reached from every other vertex in B i with probability 1, i.e. hitting probabilities between pairs of vertices in the same BSCC B i are always 1, hence the choice of b i is arbitrary.

We use the two observations above to compute expected mean payoffs in a given MC C. Algorithm 2 summarizes our approach. Hence, the problem is reduced to computing δ lim (Line 5) and hitting probabilities (Lines 11 -12). We now explain how we handle each of these two subproblems.

1 Function ComputeExpMP(C = (V, E, δ)): 2 B1, B2, . . . ← BSCCs of C 3 Choose an arbitrary bi from each Bi 4 foreach Bi do 5 Compute δ lim for (Bi, E ∩ (Bi × Bi), δ) 6 foreach (v1, v2) ∈ E ∩ (Bi × Bi) do 7 δ E lim (v1, v2) ← δ lim (v1) • δ(v1)(v2) 8 x ← (v 1 ,v 2)∈E∩(B i •B i) R(v1, v2) • δ E lim (v1, v2) 9 foreach u ∈ Bi do 10 ExpMP(u) ← x 11 foreach u ∈ V \ Bi do 12 ExpMP(u) ← i HitPr(u, bi) • ExpMP(bi)
Algorithm 2: Computing expected mean payoffs in a given MC C.

Computing Limiting Distribution of an Ergodic MC. Let C = (B, E, δ) be an ergodic MC. We define the linear system S C as follows:

-We add a variable x u for each vertex u ∈ B.

-For each vertex u ∈ B with predecessors u 1 , u 2 , . . . , u k , we add a constraint

x u = k i=1 x ui • δ(u i)(u). -We add the constraint u∈B x u = 1.
It is well-known that S C has a unique solution in which the value of each x u is equal to δ lim (u) [START_REF] Norris | Markov chains[END_REF]. Unfortunately, the last constraint includes all of the variables in the system and hence the primal graph of our system does not have constant treewidth. However, this is a minor restriction. We can consider the system S C obtained by ignoring the last constraint. This system is homogeneous and its primal graph is the isomorphic to (V, E) and has treewidth t. Hence, we can use the algorithm of Section 3.4 to find an arbitrary solution to S C . We can then scale all the values in our solution to satisfy the constraint u∈B x u = 1, hence obtaining the unique solution of S C . Therefore, Line 5 of Algorithm 2 takes O(|B i | • t 2) time according to Theorem 3. Computing Expected Mean Payoff for non-BSCC vertices. We can compute all the values of ExpMP(u) for u ∈ V \ B i (Lines 11-12) with a single call to our algorithm for hitting probabilities (Algorithm 1, Section 3.2). Note that Algorithm 1 does not rely on the premise that the function δ can only have values between 0 and 1. Hence, we can set all the b i 's as targets, but when merging them to a single target t, we set δ(b i)(t) = ExpMP(b i), which was computed in Line 10. This ensures that the value computed for ExpMP(u) is exactly the RHS of Line 11 in Algorithm 2. Using this trick, the runtime of Lines 10-11 of our algorithm is O(n • t 2) as per Theorem 1. Theorem 4. Given an MC with n vertices and treewidth t and an optimal tree decomposition, Algorithm 2 computes expected mean payoffs from every vertex in O(n • t 2).

Remark. In SI over MDPs with mean payoff objectives, one also needs to compute additional values, called potentials or biases [START_REF] Křetínský | Efficient strategy iteration for mean payoff in Markov decision processes[END_REF][START_REF] Puterman | Markov Decision Processes[END_REF]. However, this computation is classically reduced to solving a system of linear equations whose primal graph is the MDP. Hence, the algorithm of Section 3.4 can be applied, and our improvements for computing mean payoff in MCs extend to MDPs.

Experimental Results

In this section, we report on a C/C++ implementation of our algorithms and provide a performance comparison with previous approaches in the literature. Compared Approaches. We consider the hitting probability and discounted sum problems for MCs and MDPs. In the case of MCs, we directly use our algorithms from Section 3.2 and Section 3.3. For MDPs, we use strategy iteration, where we use the above algorithms for the strategy evaluation step in each iteration. We compare our approach with the following alternatives:

-Classical Approaches. In case of MCs, we compare against an implementation of Gaussian elimination (Gauss) taken from [1]. For MDPs, we consider our own implementation of value iteration (VI) and strategy iteration (SI).

-Numerical and Industrial Optimizers. We use Matlab [71] and Gurobi [START_REF] Gurobi Optimization | Gurobi optimizer[END_REF] to solve systems of linear equalities corresponding to MCs. For MDPs, we use Matlab [71], Gurobi [START_REF] Gurobi Optimization | Gurobi optimizer[END_REF] and lpsolve [START_REF] Berkelaar | lpsolve : Open source (Mixed-Integer) Linear Programming system[END_REF] to handle the corresponding LPs. -Probabilistic Model Checkers. The well-known model checkers Storm [START_REF] Dehnert | A storm is coming: A modern probabilistic model checker[END_REF] and

Prism [START_REF] Kwiatkowska | PRISM 4.0: Verification of probabilistic real-time systems[END_REF] have standard procedures for computing hitting probabilities, but not for discounted sums. We therefore compare our runtimes on hitting probability instances with their runtimes.

Despite the fact that treewidth has been extensively studied in verification and model checking [START_REF] Obdržálek | Fast mu-calculus model checking when tree-width is bounded[END_REF][START_REF] Ferrara | Treewidth in verification: Local vs[END_REF], including for the analysis of MDPs [START_REF] Chatterjee | Faster algorithms for Markov decision processes with low treewidth[END_REF], to the best of our knowledge there are no benchmark suites consisting of low-treewidth MCs/MDPs. Previous works such as [START_REF] Chatterjee | Faster algorithms for Markov decision processes with low treewidth[END_REF] do not provide any experimental results. Motivation for Benchmarks. The main motivation to study MCs/MDPs with small treewidth is that they occur naturally in static program analysis, where a key algorithmic problem is reachability on the CFGs, e.g. data-flow analyses in frameworks such as IFDS are reduced to reachability [START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF][START_REF] Bodden | Inter-procedural data-flow analysis with ifds/ide and soot[END_REF]. Moreover, probability annotations of the CFG are useful in many contexts such as (i) in probabilistic programs where the branches are probabilistic [START_REF] Gordon | Probabilistic programming[END_REF]; or (ii) when branch-profiling information is available that assigns probabilities to branch execution [START_REF] Ball | Branch prediction for free[END_REF][START_REF] Smith | A study of branch prediction strategies[END_REF]. If we consider CFGs where all branches are deterministic or probabilistic, then we have MCs; and if there are also non-deterministic branches, then we have MDPs. In both cases, the reachability analysis in CFGs with probability annotation corresponds to the computation of hitting probabilities. Therefore, hitting probabilities can be used to answer questions like "given the branch profiles, compute the probability that a given pointer is null in some instruction". Additionally, [START_REF] De Alfaro | Discounting the future in systems theory[END_REF] shows how discounted-sum objectives are relevant in the analysis of systems, e.g. with discounted-sum reachability we can model that a later bug is better than an earlier one. It is well-established that structured programs have small treewidth, both theoretically [START_REF] Thorup | All structured programs have small tree width and good register allocation[END_REF] and experimentally [START_REF] Gustedt | The treewidth of java programs[END_REF][START_REF] Krause | The tree-width of C[END_REF][START_REF] Burgstaller | On the tree width of Ada programs[END_REF][START_REF] Chatterjee | The treewidth of smart contracts[END_REF]. Thus, quantitative analysis of MCs/MDPs with small treewdith is a relevant problem in program analysis, and we consider benchmarks from this domain. Benchmarks. Given the points above, we used CFGs of the 40 Java programs from the DaCapo suite [START_REF] Blackburn | The DaCapo benchmarks: Java benchmarking development and analysis[END_REF] as our benchmarks. They come in a variety of sizes, having between 33 and 103918 vertices and transitions. To obtain MDPs, we randomly (with probability 1/2) turned each vertex into either a Player 1 vertex or a probabilistic one. Moreover, we assigned random probabilities to each outgoing edge of a probabilistic vertex. To obtain MCs, we did the same, except that we marked all vertices as probabilistic. For the hitting probabilities problem, we chose one random vertex from each connected component of the control flow graphs as a target. In case of discounted sum, we uniformly chose a discount factor between 0 and 1 for each instance, and also assigned random integral rewards between -1000 to 1000 to each edge. Finally, we used JTDec [START_REF] Chatterjee | JTDec: A tool for tree decompositions in soot[END_REF] to compute tree decompositions for our instances. In each case the width of the obtained decomposition was no more than 9. See Appendix B for a detailed overview of the 40 benchmarks used in our experimental results. Results. The runtimes are shown in Figures 5678. In each case, the benchmarks are sorted by their size. Note that the y-axes in these figures are in a logarithmic scale. For example, Figure 5 corresponds to our experimental results for computing hitting probabilities in MCs. In this case, Prism is the slowest tool by far. On the other side of the spectrum, our approach beats every other method by one or more orders of magnitude. The gap is more apparent in case of MDPs (Figures 78). Overall, we see that the new algorithms introduced in this work consistently outperform both existing practical approaches like VI and SI, and highly optimized solvers and model checkers like Gurobi, Prism and Storm, by one or more orders of magnitude. Hence, the theoretical improvements are also realized in practice. See Appendix B for detailed tables containing raw numbers.

A Pseudocodes

1 Function ComputeHitProbs(C = (V, E, δ), t): Algorithm 4: Solving a system S of linear equations, given its primal graph G = (V, E) and exploiting a tree decomposition (T, E T) of G. Note that G is undirected. Lines 16-17 ensure that G always remains a supergraph of the primal graph of S and that (T, E T) always remains a valid tree decomposition of G.

2 if V = {t} then 3 HitPr(t, t) ← 1 4 else 5 Choose an arbitrary u ∈ V \ {t} 6 if δ(u)(u) = 1 then HitPr(u, t) ← 0 ComputeHitProbs ((V \ {u}, E, δ), t) 9 else f ← 1 1-δ(u)(u) δ(u)(u) ← 0 E ← E \ {(u, u)} foreach u ∈ V : (u, u) ∈ E do δ(u)(u) ← δ(u)(u) • f foreach u ∈ V : (u , u) ∈ E do foreach u ∈ V : (u, u) ∈ E do δ(u)(u) ← δ(u)(u) + δ(u)(u) • δ(u, u) E ← E ∪ {(u , u)} ComputeHitProbs ((V \ {u}, E, δ), t) HitPr(u, t) ← 0 foreach u ∈ V : (u, u) ∈ E do HitPr(u, t) ← HitPr(u, t) + δ(u, u) • HitPr(u , t)
if V l ⊆ Vl then T ← T \ {l} ET ← ET \ {(l, l)} else Choose an arbitrary x ∈ V l \ Vl V l ← V l \ {x} break foreach y1, y2 ∈ V l : y1 = y2 do E ← E ∪ {(y1, y2)} E ← equations in S that contain x with non-zero coefficient S ← S \ E if Gramm-Schmidt(E) = Unsatisfiable then return Unsatisfiable E ← Gramm-Schmidt(E) if E = ∅ then if SolveLinearSystem(S, G \ {x}, (T, ET)) =

B Details of Experimental Results

Experimental Setting. The results were obtained on Ubuntu 18.04 with an Intel Core i5-7200U processor (2.5 GHz, 4 MB cache) using 8 GB of RAM. Details about Benchmarks. 1. Details of our benchmarks. In each case, |f | is the number of functions in the benchmark, |V | is the total number of vertices and |E| is the total number of edges. Moreover, t is the width of the tree decomposition constructed by JTDec [START_REF] Chatterjee | JTDec: A tool for tree decompositions in soot[END_REF]. Note that this is an upper-bound on the treewidth, given that JTDec is not an exact tool.

Raw Numbers and Details of Experimental Results. Tables 2-5 provide runtimes of each of the approaches mentioned in Section 4 over every benchmark. Remark. As mentioned before, our inputs contain tree decompositions of the MCs/MDPs. Note that the time used to compute the tree decompositions is negligible, given that constant-width tree decompositions of CFGs are computed by a single pass of the program parse tree [START_REF] Thorup | All structured programs have small tree width and good register allocation[END_REF][START_REF] Chatterjee | JTDec: A tool for tree decompositions in soot[END_REF].

Benchmark

Runtime in seconds Ours Gauss Matlab Gurobi Prism Storm xml-apis 0.00001 0.00001 0.20000 0.04082 0.06000 0.01000 xml-apis-1.3.04 0.00001 0.00001 0.13000 0.03398 0.06200 0.02000 dacapo-luindex 0.00008 0.00020 0.06000 0.01897 0.11800 0.01200 dacapo-digest 0.00017 0.00063 0.11000 0.08734 0.30900 0.03000 dacapo-xalan 0.00017 0.00084 0.15000 0.11467 0.37300 0.04000 dacapo-tomcat 0.00017 0.00062 0.17000 0.11905 0.51400 0.05000 dacapo-lusearch 0.00030 0.00566 0.11000 0.04260 0.57600 0.03100 dacapo-lusearch-fix 0.00034 0.00572 0.10000 0.03674 0.42700 0.03200 daytrader 0.00020 0.00130 0.11000 0.10136 0.66800 0.04700 commons-daemon 0.00033 0.00139 0.17000 0.21845 1.48100 0.08400 commons-logging-1.0.4 0.00048 0.00218 0.37000 0.42445 1.49000 0.15000 tomcat-juli 0.00058 0.00371 0.28000 0.31819 1.61300 0.19600 constantine 0.00060 0.03897 0.29000 0.25880 1.68700 0.12900 bootstrap 0.00084 0.03084 0.30000 0.22259 2.49600 0.13000 dacapo-h2 0.00104 0.01446 2.55000 0.46082 2.22300 0.20500 avalon-framework-4.2.0 0.00139 0.00359 1.08000 1.16564 4.48500 0.46400 jnr-posix 0.00142 0.25385 1.23000 1.13165 7.02200 0.78700 commons-logging 0.00189 0.04127 0.84000 0.81669 4.25500 0.38800 jline-0.9.95-SNAPSHOT 0.00188 0.00793 1.41000 1.39634 8.37200 0.91000 asm-commons-3.1 0.00217 0.03162 1.16000 1.26295 6.18000 0.50400 commons-codec 0.00257 0.03337 1.09000 0.99834 7.50300 0.51300 commons-io-1.3.1 0.00250 0.01205 1.36000 1.59909 8.51900 0.68300 asm-3.1 0.00285 0.13666 0.89000 0.78284 7.46700 0.42700 junit-3.8.1 0.00322 0.00493 1.83000 3.10246 18.74200 1.80400 lucene-demos-2.4 0.00388 0.10829 1.09000 0.88066 7.77000 0.67400 jaxen-1.

Fig. 1 .

 1 Fig. 1. A graph G (left) and a tree decomposition of G with width 2 (right).

Fig. 4 .

 4 Fig. 4. Removing u from C (left) to obtain C (right). The vertex u is a predecessor of u and u1, . . . , u k are its successors. Each edge is labelled with its δ and R values.

Fig. 5 .Fig. 6 .Fig. 7 .t t p s e r i a l i z e r j a n i n o x m l g r a p h i c s l u c e n e -c x a l a n d e r b y c p m d a v r o r a e c l i p s e x e r c e s 10 Fig. 8 .

 567108 Fig. 5. Experimental Results for Computing Hitting Probabilities in MCs.

Algorithm 3 : 7 8 l

 378 A Simple Algorithm for Computing Hitting Probabilities.1 Function SolveLinearSystem(S, G = (V, E), (T, ET)):Choose an arbitrary leaf bag l ∈ T ← parent of l 9

 e ∈ E and write it as x = Rx E ← E \ {e} foreach e ∈ E do e ← e [Rx/x] //replace every occurrence of x with Rx S ← S ∪ E if SolveLinearSystem(S, G \ {x}, (T, ET)) ∈ {Unsatisfiable, Underdetermined} then return SolveLinearSystem(S, G \ {x}, (T, ET)) else solution ← SolveLinearSystem(S, G \ {x}, (T, ET)) solution ← solution[x → [Rx] solution]return solution

 Table 1 provides an overview of the DaCapo benchmarks used in our experimental results.Table

	Benchmark |f | |V |	|E|	t	Benchmark |f | |V |	|E|	t
	asm-3.1 105 3044 3262 4	daytrader 12 339 332 3
	asm-commons-3.1 168 2404 2473 9	derbyclient 2097 37865 9
	avalon-framework-4.2.0 153 1899 1849 4	eclipse 1974 45657 8
	avrora-cvs-20091224 2539 43685 43521 9	jaffl 455 6099 6126 9
	bootstrap 29 936 967 5	janino-2.5.15 942 16861 8
	commons-codec 146 2728 2973 5	jaxen-1.1.1 425 5490 5375 5
	commons-daemon 28 453 437 4	jline-0.9.95 209 2427 2387 5
	commons-httpclient 693 9765 9772 5	jnr-posix 165 2040 1902 4
	commons-io-1.3.1 216 3216 3175 5	junit-3.8.1 453 4356 4067 5
	commons-logging 106 2231 2303 4	lucene-core-2.4 1216 24906 6
	commons-logging-1.0.4 53 689 677 3	lucene-demos-2.4 120 4063 4413 7
	constantine 34 776 758 4	pmd-4.2.5 2131 37822 7
	crimson-1.1.3 378 8572 9328 8	serializer 465 11038 6
	dacapo-digest 8	201 208 3	serializer-2.7.0 330 6174 6447 9
	dacapo-h2 57 1293 1311 9	tomcat-juli 45 738 740 5
	dacapo-luindex 3	84	87	4	xalan-2.6.0 2088 35765 8
	dacapo-lusearch 5	282 300 4	xerces_2_5_0 2129 50279 9
	dacapo-lusearch-fix 5	282 300 4	xml-apis 5	19	14	1
	dacapo-tomcat 18 250 244 3	xml-apis-1.3.04 5	19	14	1
	dacapo-xalan 10 219 216 3	xmlgraphics-1.3.1 1014 17677 9

Table 2 .

 2 1.1 0.00419 0.60061 2.73000 3.44220 17.16700 1.88600 jaffl 0.00522 0.09861 2.58000 3.19677 16.49900 2.30600 serializer-2.7.0 0.00543 0.14564 1.82000 2.36092 13.21600 1.46200 crimson-1.1.3 0.00838 0.13650 2.48000 2.84511 17.47500 1.43200 commons-httpclient 0.00782 0.05948 4.01000 5.60121 25.39700 2.15900 serializer 0.01048 0.30260 2.63000 3.32304 32.41300 2.59700 janino-2.5.15 0.01485 0.27481 5.38000 7.09017 57.19600 7.69100 xmlgraphics-commons-1.3.1 0.01621 0.18939 5.87000 7.08701 40.47300 5.93600 lucene-core-2.4 0.02834 1.02118 5.16000 9.00895 71.27600 6.56200 xalan-2.6.0 0.03358 1.77685 0.87000 15.09464 95.42400 12.41900 derbyclient 0.03198 0.59163 8.02000 16.32040 81.51000 7.72300 pmd-4.2.5 0.03257 0.55702 9.54000 15.22455 82.97800 10.46600 avrora-cvs-20091224 0.03832 0.68720 3.02000 19.21516 139.14800 8.29700 eclipse 0.03693 0.50101 10.76000 16.24855 83.30500 12.38800 xerces_2_5_0 0.05558 2.53732 12.11000 16.05042 159.37600 22.75000 Detailed Experimental Results for Hitting Probabilities in MCs. All runtimes are reported in seconds. Note that Prism and Storm round the times to the nearest millisecond, while Matlab rounds to the nearest centisecond. .00004 0.04145 0.05033 3.06000 0.00151 0.00072 0.07700 0.01000 xml-apis-1.3.04 0.00005 0.03836 0.04782 4.33000 0.00157 0.00085 0.06900 0.01200 dacapo-luindex 0.00033 0.02243 0.01947 5.28000 0.00787 0.00407 0.15300 0.00900 dacapo-digest 0.00101 0.05517 0.09404 8.66000 0.01816 0.00800 0.28000 0.02600 dacapo-xalan 0.00069 0.07645 0.11382 7.83000 0.01703 0.01001 0.33700 0.02600 dacapo-tomcat 0.00180 0.12966 0.18451 9.20000 0.01916 0.00863 0.50000 0.04600 dacapo-lusearch 0.00160 0.03950 0.04988 10.55000 0.03473 0.01553 0.34700 0.02400 dacapo-lusearch-fix 0.00516 0.04036 0.05746 8.58000 0.02918 0.01441 0.33600 0.02700 daytrader 0.00073 0.08304 0.09799 8.95000 0.03308 0.01531 0.48600 0.03900 commons-daemon 0.00271 0.22508 0.23568 9.18000 0.03780 0.01816 1.26900 0.08000 commons-logging-1.0.4 0.00175 0.38711 0.54011 19.48000 0.12354 0.04529 1.96100 0.13300 tomcat-juli 0.00325 0.27254 0.44136 12.79000 0.06386 0.03181 1.37400 0.15300 constantine 0.00349 0.24723 0.33957 17.65000 0.09099 0.03940 1.30000 0.10000 bootstrap 0.00788 0.23418 0.28990 17.02000 0.12021 0.05957 1.41200 0.10100 dacapo-h2 0.00507 0.44370 0.52646 22.39000 0.13434 0.06553 1.91600 0.16200 avalon-framework-4.2.0 0.00505 1.08039 1.35913 27.85000 0.15185 0.07622 4.86800 0.45100 jnr-posix 0.01413 1.20555 1.52360 23.05000 0.22817 0.11717 5.74900 0.45500 commons-logging 0.00904 0.80701 1.00470 29.37000 0.25868 0.11347 3.92900 0.31700 jline-0.9.95-SNAPSHOT 0.01112 1.48252 2.02085 20.62000 0.20213 0.10417 6.44600 0.55000 asm-commons-3.1 0.01002 1.20580 1.55601 21.84000 0.22011 0.10860 7.09800 0.45600 commons-codec 0.01272 1.18706 1.37049 20.03000 0.31467 0.15661 6.59400 0.49500 commons-io-1.3.1 0.01134 1.70944 2.15621 48.41000 0.29763 0.13720 6.84900 0.57600 asm-3.1 0.01298 0.75230 0.98912 17.84000 0.38381 0.20731 7.38900 0.36200 junit-3.8.1 0.01116 3.28112 4.48130 48.02000 0.28184 0.17565 12.72300 1.24400 lucene-demos-2.4 0.01978 0.92039 1.17712 40.06000 0.67695 0.26995 6.27900 0.54500 jaxen-1.1.1 0.02025 3.17878 4.08971 41.38000 0.62182 0.27318 15.28600 1.17500 jaffl 0.03770 3.05149 4.26184 59.08000 0.65796 0.31335 16.27800 1.42100 serializer-2.7.0 0.02506 2.09810 3.66582 52.06000 0.60972 0.31064 11.33300 1.05700 crimson-1.1.3 0.05404 2.58277 3.86147 92.63000 1.76648 0.64496 15.51500 1.21000 commons-httpclient 0.03319 5.54198 6.69283 117.38000 1.05233 0.46138 22.27200 1.81400 serializer 0.07065 2.91949 4.32873 56.01000 1.28958 0.64523 25.73500 2.00500 janino-2.5.15 0.07314 6.68790 9.91680 145.83000 2.01809 1.13186 34.01700 3.00600 xmlgraphics-commons-1.3.1 0.07193 8.19395 11.86806 79.65000 1.90528 0.92933 39.59300 4.93900 lucene-core-2.4 0.16863 9.23440 12.98207 322.52000 2.92001 1.61256 52.34900 4.53700 xalan-2.6.0 0.15804 13.00583 23.80962 275.80000 4.77874 2.50689 77.43000 9.28700 derbyclient 0.12489 16.30398 20.86866 256.40000 3.77297 1.76492 87.46500 6.32500 pmd-4.2.5 0.14238 13.77016 21.09903 512.47000 5.27168 2.25309 84.40400 7.07000 avrora-cvs-20091224 0.13498 18.70873 24.66722 290.39000 4.39129 2.03788 101.28400 7.92000 eclipse 0.25944 14.32922 20.26574 406.15000 6.40507 2.76358 104.00300 6.65400 xerces_2_5_0 0.34422 14.79255 22.62586 257.56000 9.89841 4.58320 126.73300 12.73800

	Benchmark	Ours lpsolve Gurobi	Runtime in seconds Matlab SI	VI	Prism	Storm
	xml-apis 0					

Table 4 .

 4 Detailed Experimental Results for Hitting Probabilities in MDPs. All runtimes are reported in seconds. Note that Prism and Storm round the times to the nearest millisecond, while Matlab rounds to the nearest centisecond.