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Abstract

Chiral discrimination is a key problem in analytical chemistry. It is generally
performed using expensive instruments or highly-specific miniaturized sen-
sors. An electronic nose is a bio-inspired instrument capable after training
of discriminating a wide variety of analytes. However, generality is achieved
at the cost of specificity which makes chiral recognition a challenging task
for this kind of device. Recently, a peptide-based optoelectronic nose which
can board up to hundreds of different sensing materials has shown promis-
ing results, especially in terms of specificity. In line with these results, we
describe here its use for chiral recognition. This challenging task requires
care, especially in terms of statistical and experimental bias. For these rea-
sons, we set up an automatic gas sampling system and recorded data over
two long sessions, taking care to exclude possible confounds. Two couples
of chiral molecules, namely (R) and (S) limonene and (R) and (S) carvone,
were tested and several statistical analyses indicate the almost perfect dis-
crimination of their two enantiomers. A method to highlight discriminative
sensing materials is also proposed and shows that successful discrimination
is likely achieved using just a few peptides.

Keywords: peptides, electronic noses, chirality, enantioselectivity, surface
plasmon resonance imaging

1. Introduction

Chiral discrimination is a fascinating aptitude of natural olfaction (Bent-
ley, 2006), one that is hard to replicate in machines. Conventional methods
such as liquid chromatography are accurate and reliable but are complex,
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time-consuming and expensive. In contrast, miniaturized highly-specific sen-
sors such as molecularly imprinted polymer sensors can be used as fast, re-
peatable, low-cost and portable instruments (Manoli et al., 2013; Wattanakit
et al., 2014; Tiwari and Prasad, 2015). However, this type of sensors are of-
ten designed for a chiral pair, preventing them from being used for other
analyses.

As an alternative, electronic noses (eNoses) are highly interesting, espe-
cially for their versatility. The technology is broadly inspired from mam-
malian olfaction (Persaud and Dodd, 1982) and mainly based on a cross-
sensitive chemical sensor array (Albert et al., 2000). In practice, a database
of signatures for targeted molecules is generated and machine learning algo-
rithms are used to recognize them. One of the main advantages of using this
kind of devices compared to others is that it can discriminate among a broad
variety of molecules. In fact, an eNose tries to be a universal device. This
weak specificity of eNoses is a strength and a requirement, but makes the chi-
ral recognition a really challenging task. The enantio-selectivity of eNoses has
been assessed for some technologies such as TGS sensors (Brudzewski et al.,
2007) or DNA coated sensors (Khamis et al., 2012; Kybert et al., 2013).
But these results can be statistically unreliable due to datasets which are
too small. In fact, criticisms concerning the experimental methodology have
already been expressed to the field (Boeker, 2014; Marco, 2014). Coupled
with the typically limited number of chemical sensors used (Raman et al.,
2011), this explain why despite the promise of the technology, artificial noses
have not been widely adopted. In this article, we propose an experimental
methodology to achieve this challenging task, which could be replicated to
provide more reliable and realistic results.

Our group recently described a new optoelectronic nose able to board up
to hundreds of different sensing materials without increasing system com-
plexity (Brenet et al., 2018). In this work, peptides were used as sensing
materials due to their close connection to olfactory receptors (Oh et al.,
2011; Wasilewski et al., 2017). They were deposited on the golden surface of
a prism and Surface Plasmon Resonance imaging (SPRi) was used to record
chemical interaction in real-time. This transduction mechanism is briefly de-
scribed in Figure 1a. Brenet and coworkers demonstrated that the developed
eNose is a promising new analytical tool enabling the discrimination of both
different and similar molecules up to a single carbon atom (Brenet et al.,
2018).

In this article, we investigate the enantio-selectivity of this new technology
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Figure 1: (a) Working principle of the optoelectronic nose based on SPRi. Briefly, a
light is sent, reflected by the surface and caught by a simple camera. When a binding
reaction occurs with the molecule, this changes the refraction index leading to a change
in reflectivity. (b) Raw image of the prism surface with some dimensions. Light areas
stand for the functionalized surface. (c) The valve is programmed to start with the air
line (reference acquisition). Then, at ts, the valve switches to line i (analyte injection).
At te, it goes back to the air line (recovering). The process is repeated for the line i + 1
and so on.

with a commercial version of the eNose described by Brenet and coworkers
(Brenet et al., 2018). Formally, we expect that the discrimination between
two mirror molecules, or enantiomers, is possible, thanks to the potential
enantioselectivity of peptides used in the device (Zor et al., 2017). Indeed,
peptides are chiral in essence and previous works with specific sensors already
reported their enantioselectivity (Navarro-Sànchez et al., 2017). To take into
account the criticisms addressed to the field (Boeker, 2014; Marco, 2014),
we took care to design an experimental methodology which has a threefold
goal: minimize statistical error, minimize potential experimental biases and
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keep a realistic gas sampling system. To achieve the first objective, we used
an automatic sampling system which can generate substantial datasets. The
second objective is achieved by repeating the experiment across two differ-
ent sessions, controlling various factors. For the last objective, we used the
evaporation of the chemical compounds in liquid phase to be closer to an
industrial application.

With this methodology, we confirm that the new eNose is able to dis-
criminate between molecules which differ strongly. More importantly, we
also show its ability to discriminate between two enantiomers by way of two
examples, namely the mirror images of carvone and limonene. These results
are supported by two reliable analyses. The first one, namely an intra-session
analysis, shows a nearly perfect discrimination when we train and test from
samples from the same experiment. The second one, namely an inter-session
analysis, shows a stronger result where we can learn from samples from one
dataset (one session) and still almost perfectly discriminate the samples from
a new experiment which reuses the setup (meaning another session). In this
article, we also propose a metric which can be used to highlight the most
discriminative sensing materials. Another key point of this study is that the
eNose has not been tuned for this discrimination task.

2. Material and Methods

2.1. Experimental setup

2.1.1. Chemical compounds

All the products were purchased from Sigma-Aldrich: butanol, mineral
oil, (R)-carvone pure at 99.4%, (S)-carvone pure at 99.3%, (R)-limonene pure
at 98.4% and (S)-limonene pure at 97.9%. The purity of each enantiomer
comes from the certificate of analysis of Sigma-Aldrich. Due to the volatility
of butanol and to the duration of the experiments, we conducted a volumetric
dilution at 25% in mineral oil to avoid exhaustion. This dilution is only
conducted on butanol and the other chemical compounds are left pure and
used as received without further purification.

The purity degree of the samples is in line with previous studies (and
even better) using the same compounds (Brudzewski et al., 2007).

2.1.2. Optoelectronic nose

The eNose is provided by Aryballe and more details about the device
can be found in Brenet et al. (2018). Sensing materials are mainly peptides
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which are fixed on the gold surface of a prism (see supplementary materials
S1 for some details about the source and the deposition of peptides). During
an acquisition, the analyte is brought above the gold surface by a flow of air
using a pump (in this study, at 63 mL/min). The analyte can then interact
with the sensing material through a reversible binding reaction. This reaction
is both dependent on the analyte and on the sensing material. Thus, different
sensing materials will lead to different chemical reactions, creating a chemical
“signature” of the analyte. Since different analytes lead to different chemical
reactions, and thus different signatures, we are able to recognize analytes.
Here, 19 different sensing materials are deposited on the surface of the prism,
17 of them being peptides. The two remaining sensing materials are achiral
molecules and are used as a control for the study. Each sensing material is
repeated 3 or 4 times on the surface, leading to a cross-sensitive chemical
sensor array of 59 elements.

The binding reactions at the surface are measured using Surface Plasmon
Resonance imaging (SPRi). Briefly, light is sent, reflected by the surface
and caught by a simple optical camera. When a binding reaction occurs
with the analyte, this changes the refraction index (more light is reflected).
The changes in reflectivity are caught by the camera, which thus records in
real-time the binding reactions. A representation of the working principle
is presented in Figure 1a. A real image of the prism surface is reported in
Figure 1b.

2.1.3. Gas sampling system

In this study, we use an automatic gas sampling system to create sub-
stantial data sets (≥100 samples/class). The main part of this system is an
automatic valve represented in Figure 1c. One of the 8 lines is booked for
ambient air which is used as our reference gas. Four lines are allocated for
two pairs of enantiomers. We choose the two chiral forms of carvone and
limonene. A potential concern is that by using the instrument near its dis-
criminability limit, we may be amplifying potential confounds which could
lead to artificial discriminability between vials rather than products (no two
vials are exactly equal). As a control, an achiral molecule, butanol, is added
in two different vials and is placed in the valve’s cycle between two mirror
molecules.

All lines except the reference line are inserted in 50 mL vials, which are
sealed with a Teflon-coated silicon septum and filled with a liquid solution
of each analyte. The vials containing analytes are agitated using a magnetic
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stir bar to homogenize the headspace and a small polyether ether ketone
(PEEK) tube is used to balance the pressure inside the vials. The fluidic
system is made of peek tubing. Each gas line has the same tube length. The
time segmentation used is as follows: 30 sec for the reference gas (ie ambient
air), 30 sec for analyte injection and 5 min for desorption. Only the two first
phases are recorded and the third one is deliberately long, as a precaution.
Consequently, a valve’s cycle lasts 42 min, corresponding to 7 measurements.
A complete measurement for (S)-Limonene including the desorption phase is
reported in supplementary materials S2.

The automatic setup can generate a significant number of samples, but all
samples follow the same running order. This could induce another confound,
specifically a memory effect (Distante et al., 2003) which can lead to artificial
discrimination only related to the running order. To overcome this issue, we
switch the position of the enantiomers across 2 sessions. The experimental
protocol is presented in Table 1. Between sessions, we emphasize that all the
vials are changed for Session 2 and filled with new products taken from the
same stock solutions as in Session 1. There is a difference in liquid volume
between the two sessions, which adds another source of variability. Finally,
we stress that the whole setup is left at room conditions during the 2 sessions
which can introduce some temperature and humidity variations. In this way,
more realistic data can be generated.

Session 1 lasted ∼88 hours, providing 125 samples/molecule and Session 2
lasted ∼182 hours for 260 samples/molecule, both run without interruption.
Session 1 and Session 2 are separated by a single day and the total duration
of the experiments is ∼13 days.

2.2. Data analysis

2.2.1. Feature extraction

Raw data is a collection of images (such the one presented in Figure 1b)
which report in real-time, at a frame rate of 5 Hz, the binding reactions
occurring at the surface of the prism, during an acquisition. From these
images, a binary mask is applied to extract only the areas where sensing
materials have been deposited (light areas in Figure 1b). In each area, or
spot, we average all the pixels and the resulting values are converted to a
percentage of reflectivity R(%) by means of an external reference (Bassil
et al., 2003). Then, for each spot individually, we subtract the reference
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Session 1 Session 2
Line Molecule V (mL) Molecule V (mL)

¬ Air (baseline) - Air (baseline) -
 (R)-Limonene 0.4 (S)-Carvone 0.150
® Butanol 1.6 (at 25%) Butanol 1.6 (at 25%)
¯ (S)-Limonene 0.4 (R)-Carvone 0.150
° Butanol 1.6 (at 25%) Butanol 1.6 (at 25%)
± (R)-Carvone 0.4 (S)-Limonene 0.150
² Empty vial - Empty vial -
³ (S)-Carvone 0.4 (R)-Limonene 0.150

Table 1: Experimental protocol reporting the lines allocation for each session.

gas value (computed by averaging the first 25 sec of signal) to remove, at
least partially, some drift due to a reference change (Di Carlo and Falasconi,
2012). The remaining ∆R(%) signals are represented in Figure 2a and show
the fast response of the eNose to the molecules, or analytes, while already
emphasizing the diversity across sensing materials, with different peptides
responding differently. From these time series, whose general shape is well-
known in the literature, one or two features are generally extracted. The
most common one is the steady state value (Yan et al., 2015). This value
is chemically justified since a single time series corresponds to the binding
reaction between the sensing material and the analyte. This reaction is
likely to reach an equilibrium phase, stabilizing the response around a given
value. However, due to the schedule we used, some analytes reach equilibrium
while others do not. As an alternative to steady-state values, we propose to
integrate the signal over the entire adsorption part. We retain the value
of the integral as a feature (e.g. the integration over the 30 seconds after
the molecule injection). Each spot provides a feature, and this procedure
therefore gives us a vector yrn ∈ RP , with P the number of spots, for the
measure of the analyte r during a valve cycle n.

2.2.2. Normalization

All measures from Session 2 are represented in polar coordinates in Figure
2b. On the same figure, we can easily see the exhaustion occurring over time,
especially for limonene, leading to a change in concentration, which in turn
results in a decrease in reflectivity. As this study is interested in qualitative
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Figure 2: (a) Example of time series obtained for (R)-Carvone and (S)-Limonene. A
dashed line indicates the molecule injection. It corresponds to a single measurement, and
the baseline has been subtracted. (b) Raw signatures (integration of the adsorption part,
over the 30 seconds after injection in (a)) in polar coordinates (angle for spot number and
radius for amplitude). Color gradation stands for the cycle number (the initial cycle is
the lighter, meaning the first measurements), showing for example the gradual exhaustion
of limonene during Session 2. (c) Normalized signatures according to (1): repeatability is
visibly increased (compared to unnormalized signatures in (b)).
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results, variations in concentration cause undesirable variations. To eliminate
these variations, we normalize yrn as follows, where subscript p refers to the
spot:

ỹprn = log(yprn)− 1

P

P∑
i=1

log(yirn) (1)

The normalization (1) implies that measurements scale linearly with ana-
lyte concentration. Although clearly an approximation, it has always worked
well in practice and has some theoretical backing (see supplementary mate-
rials S3 for demonstration). The normalized data of the Session 2 is repre-
sented in Figure 2c and clearly demonstrate the increased repeatability of
the measures, even if some time-related variations remain.

2.3. Discrimination of different analytes

Before studying chiral recognition in detail, we confirm that the eNose
can successfully discriminate between different molecules, replicating pre-
vious studies. To this end, we temporarily erase the chiral labels in the
database, for example (R)-carvone and (S)-carvone are now just summarized
as “carvone”. In this scenario, we have 250 samples/class for the Session 1
and 520 samples/class for the Session 2 and the data sets include the two
Terpenes, namely carvone and limonene, and also butanol. To assess discrim-
inative power, we first reduce the dimensionality by projecting the data on
the 5 first Principal Components (PCs) and then perform a classical 10-fold
cross validation with a linear Support Vector Machine (SVM) to estimate
the classification rate. This process is applied session-by-session. The results
give without difficulty a perfect classification score for both sessions and are
consequently in agreement with previous work (Brenet et al., 2018).

2.4. Intra-session chiral recognition

We now complicate the task and “zoom in” on either carvone or limonene
by focusing on each chiral pair. We emphasize that the two sessions and the
two pairs are processed separately in this section. For visualization, data
projected on the two first PCs for each chiral molecule are represented in
Figure 3 (left panel), only for Session 2.
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Figure 3: Projection of the data from Session 2 on the 2 first principal components,
separately for carvone (top) and limonene (bottom). On the right, the drift has been
corrected, whereas on the left not. Each point corresponds to a measurement such the
one in Figure 2a. Cycle number is represented in the color scale (the initial cycle has the
lightest colour). The data set used here is from Session 2. The maps have been centered
and scaled for easier visualisation.

2.4.1. Drift compensation

The lack of stability over time is clearly perceptible in Figure 3 (left
panel). This is of course not unexpected, since chemical sensors are unfortu-
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nately prone to drift, and the new eNose is no exception to the rule. Drift
can be explained by one or more of the following factors: physical changes
in the sensing materials or modifications in the chemical background, or yet
changes in the environmental conditions (for instance, the day/night cycle
is clearly visible for carvone in Figure 3) (Artursson et al., 2000). Drift has
been studied many times and many correction methods have been proposed
to compensate for it, so that this remains an active research topic (Arturs-
son et al., 2000; Padilla et al., 2010; Rudnitskaya, 2018). These methods are
often based on calibrating compounds, meaning that the drift of some ana-
lytes can be known and thus correlated to the drift of others, which are then
corrected. Here, our case study is simpler in that we cannot find two other
molecules which are more similar than the two we are looking at, namely
two enantiomers. Consequently, it is very likely that the 2 molecules will be
affected by the same amount and direction of drift. This is even more true
due to the experimental setup and to the short time spacing between two
enantiomeric samples. Considering these arguments, we propose a simple
filtering method to compensate for drift. Our method is closely related to
a kind of moving average filter. By considering an already normalized data
set, the procedure is as follows: for a given sample taken at time t0, take all
the enantiomeric samples ((R) and (S)) of one chiral analyte recorded in the
time window [t0 − ∆t, t0 + ∆t] (∆t = 5 hours in this study), compute the
averaged signature and subtract it from the given sample. Mathematically,
this method removes a drift which is assumed to be additive, equal for the
two chiral forms and slowly varying in the time window considered.

2.4.2. Validation method

The success of our method for drift compensation is visible on Figure
3 (right panel). To assess quantitatively both drift compensation and chi-
ral recognition, we use a chronological validation differing from standard
cross-validation (similar to the scheme in Padilla et al. (2010)). Standard
cross-validation divides the dataset into random pieces (folds), disregarding
temporal order. This enables classifiers to “learn the drift”, meaning that
they find a linear discriminant that is orthogonal to the drift direction. In-
stead, we split each session into continuous blocks of one day each. Then, a
single one-day block is taken for training (which includes both the estimation
of the principal components and the fitting of SVM classifier), and all other
blocks are used for validation (estimating discrimination performance). This
process is repeated for each day and the classification rates are then aver-
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Figure 4: Validation scheme used for assessing drift correction.

Session Before correction (%) After correction (%)

Carvone 1 86.3 98.9
2 73.8 99.7

Limonene 1 95.7 100
2 65.3 99.6

Table 2: Comparison with and without drift compensation applied session-by-session. The
difference of scores between Session 1 and Session 2 before correction can be explained by
the difference of duration. Indeed, Session 2 lasts twice the time of Session 1, thus Session
2 includes more drift.

aged: this method thus answers the question of how reliable the signatures
learned on a single day are, when used on another day (and drift may have
occurred in between). The validation scheme is reported in Figure 4. Con-
cerning chiral recognition, classification rates, after correction and averaging
across sessions, reach the almost perfect scores of 99.3% and 99.8% respec-
tively for carvone and limonene. These scores clearly indicate that the eNose
can learn to discriminate the vial containing the left-hand form from the one
containing the right-hand form. The comparison of results with and without
drift compensation is indicated in Table 2.

2.5. Inter-session chiral recognition

Enantio-discrimination with a non-specific device is a very hard discrim-
ination task, which requires a very sensitive instrument. As a result of the
instrument’s sensitivity, a successful discrimination could be explained by an
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experimental artefact instead of an actual discrimination between different
analytes. To exclude this possibility, we have carried out several controls
which are left in supplementary materials (S4) but we deem necessary to
present here an analysis which echoes the previous one.

The two sessions that we have presented so far varied in some of their
parameters. As a reminder, there were variations in concentrations, the vials
which have been changed and filled with new products (from the same stock
solutions), the magnetic stir bars and the running order are not identical from
one session to the other. A resulting check is whether one could successfully
generalize from one session to the other?

To answer this question, the procedure is as follows: learn to discriminate
the 2 mirror molecules using the data from one session and try to classify
them in the other session. To clarify, we compute the new representation
space (PCs) and optimize the SVM from Session 1 and we compute the
classification rate obtained for Session 2. This validation methodology is
repeated by interchanging the role of each session. The validation scheme is
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(a) Carvone
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Figure 5: Multi-session representation. The two data sets have been drift compensated
beforehand. The principal components are learnt from the Session 1 and the data from
Session 2 are projected in this subspace. Colors indicate the enantiomer. Solid shape is
for Session 1 and hollow shape for Session 2. The maps have been centered and scaled for
visual consideration.
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reported in Figure 4.
The projection of samples from Session 2 in the representation space gen-

erated by the Session 1 is represented in Figure 5. Again, numerical results
follow the visual impression since the averaged classification rate (across the
sessions, each one taken as the train set for the other) reaches respectively
99.9% for carvone enantiomers and 99.8% for those of limonene. These results
reduce the likelihood of a memory effect or an artifact-based differentiation.

3. Discussion

From these results, a question remains which is, how can we explain such
successful discrimination?

3.1. Vial differentiation

A recent paper warned researchers about the underestimated contami-
nation brought by magnetic stir bars, which are often assumed clean after
intensive washing (Pentsak et al., 2019), but may retain traces of their pre-
vious uses. In fact, the same may hold for every material used in chemical
experiments. In our case, these contaminations may mean that the differen-
tiation is artefactual, due to traces left in vials or in the tubing. We define
this potential artefactual discrimination as “vial differentiation”. Even if the
multi-session analysis tends to indicate that it is an unlikely source for our
near-perfect classification rates, we describe below an additional control.

In the experimental protocol in Table 1, two vials are booked for the
same analyte, namely butanol. Thus, if there is indeed the possibility for vial
differentiation, the samples from these two vials should show it. We propose
to look at the Euclidean distances between the samples of two different vials
measured during cycle n. Since we have 6 different vials containing analytes,
this leads to 15 distances (the number of possible pairs) but only 6 among
them are really relevant. For instance, one of these 6 pairs is the pair of
(S)-Limonene and (R)-Limonene. Let us note ỹpn(R) (resp. ỹpn(S)) the
normalized response of the chemical sensor p to (R)-Limonene (resp. (S)-
Limonene) during cycle n. The Euclidean distance is defined as:

dn((R)-Limonene, (S)-Limonene) =

√√√√ P∑
p=1

(ỹpn(R)− ỹpn(S))2
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Figure 6: Vial differentiation analysis. We take as our criterion the Euclidean distance
between samples from two different vials during the same cycle. These distances are
computed for all the cycles of a single session. For each session, we compute the average
and the standard deviation. Finally, the bars correspond to the weighted average over
sessions and the error bars to the pooled standard deviation.

This distance is computed for each cycle n and separately for each session
(since the two sessions do not have the same number of samples), without
any drift correction, such as not to incorporate any bias. For each session,
we average all the distances and compute the standard deviation. Finally,
we average all the sessions by weighting with their number of samples. It
corresponds to the bar ((S)-Limonene, (R)-Limonene) in Figure 6. The error
bar corresponds to the pooled standard deviation. This process is repeated
for each relevant pair of vials and results are reported in Figure 6.

This analysis highlights that there is indeed a vial differentiation since
the distance separating the clusters of the same analyte (butanol) in two dif-
ferent vials is not zero. These checks should be considered by future studies,
especially when the differences are tiny. In our case, pure vial differentiation
is insufficient to explain the distance between chiral samples. Other controls
can be found in supplementary information (S4).
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3.2. Chemical differentiation

In this section, we proposed a metric for highlighting the most discrimi-
native sensing materials.

Peptides are chiral molecules and are known to be good candidates for
the differentiation of two mirror molecules (Navarro-Sànchez et al., 2017).
We sought to verify that it is indeed what drives chiral discrimination in our
case, since our instrument also carries 2 achiral sensing materials. To do
that, we quantify the discriminative power of each sensing material. Recall
that a given sensing material may be used for more than one spot, so that
in the following, each sensing material is summarized by the average of its
replicas. There are 19 different sensing materials on the device, with 17 of
them chiral, and 2 achiral, the latter playing the role of controls. The goal
of the analysis is to assess which sensing materials drive the discriminative
power for the chiral compounds used here.

A simple analysis would look at the sensing materials one-by-one, and see
if they can be used on their own for chiral discrimination. A problem arises
rapidly: the normalization given in (1), compulsory for removing variations
in measurements due to variations in concentration, implies the use of several
sensing materials. This means we cannot look at sensing materials one-by-
one. Another incorrect procedure would be to use all the sensing materials
to first normalize and then to look at them one-by-one. This will implicitly
introduce a bias invalidating the analysis.

We can illustrate it with a short numerical example using only two sensing
materials for discriminating two analytes, say A and B. We assume that
sensing material 1 is discriminative whereas sensing material 2 is not. Note
cA and cB the concentration of A and B during an experiment for which we
have the raw responses reported in Table 3a.

Sensing material 2 (with raw response y2) is clearly not discriminative
since it shares the same affinity with A and B, only a difference in concen-

Table 3: Numerical example showing the discriminative bias introduced by the normal-
ization.

(a) Raw responses

To A To B

y1 cA 2cB
y2 cA cB

(b) Responses after normalization

To A To B

ỹ1 0 1
2 log(2)

ỹ2 0 − 1
2 log(2)
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tration would lead to a difference in response. Sensing material 1 (with raw
response y1) is discriminative since its affinity with B is twice greater than
with A. To get rid of the variations in concentration, we normalize using Eq.
(1), leading to the normalized responses reported in Table 3b.

Eventually, after normalization, sensing material 2 becomes discrimina-
tive, but only thanks to the initial discriminative power of sensing material
1. It is not hard to understand that this simple example generalizes to P
sensing materials. In fact, only one discriminative sensing material can create
discriminative information for all the others.

This bias is inevitable but we can reduce it by only looking at the sensing
materials pair-by-pair. In the following, we assume that we have selected a
pair of sensing materials, normalized the responses using (1) (for signatures
of dimension 2) and corrected the drift. It’s interesting to note that since
in this case (1) creates a linear dependency between the two dimensions, we
have effectively a one-dimensional measurement (S3).

Second, we need to quantify the discriminative power of a given pair of
sensing materials. We propose to use a kind of Signal to Noise Ratio (SNR).
We define the signal part as the absolute difference between (R) centroid µR ∈
R and (S) centroid µS ∈ R; the greater it is, the easier chiral recognition is.
Noise can arguably be measured by the standard deviation σ of the samples
(for a given analyte), which quantifies measurement uncertainty. σ is here
calculated using samples from the (R) enantiomer (the results do not change
if we take the (S) enantiomer). However, the previous section highlighted
another kind of noise, namely vial differentiation, which is another source of
experimental uncertainty. To incorporate this source of noise into the SNR,
we focus again on the two vials containing butanol (cf Table 1). Similarly to
the signal estimation, we take as the noise attributed to vial differentiation,
the absolute difference between the centroid of the first vial µv(1) ∈ R and
the centroid of the second vial µv(2) ∈ R. The greater this value is, the more
likely it is that discrimination performance is artefactual. Vial noise is then
added to measurement noise. For a chiral molecule m and the pair formed
by the sensing material i with the sensing material j, this gives:

SNRij(m) =
(µR

ij(m)− µS
ij(m))2

(µv
ij(1)− µv

ij(2))2 + σ2
ij

(2)

This estimation is computed for all 171 distinct pairs. To make the results
more clear, we average the scores for a given sensing material over all pairs in
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Figure 7: Signal to Noise Ratio used to identify discriminative sensing materials. To the
left, we explain how the SNR is computed according a enantiomer m and a pair (i, j) of
sensing materials. To the right, each bar corresponds to the averaged SNR of one sensing
material across all its possible pairs. The colors indicate either the sensing material is
chiral (yellow) or achiral (blue). J stands for the number of unique sensing materials.

which it appears. The resulting SNR and a graphical explanation are given in
Figure 7. The greater the SNR, the more discriminative the sensing material
is. Due to confidentiality concerns, the nature of the sensing materials is not
given and labels are substituted by arbitrary numbers1.

We warn that this method does not really correspond to the “true” dis-
criminative power of a sensing material since we are using pairs. However,
we believe that this method is sufficient for evaluating which sensing mate-
rials are discriminative and which are not. Results show very high scores for
sensing material 16 for Carvone and the two sensing materials 6 and 18 for
Limonene. These 3 sensing materials could then be replicated multiple times
to design a specific instrument to a given chiral pair. Finally, these 3 sensing
materials are peptides whereas the two achiral molecules are always among
the worst.

1For reproducibility purposes, the instrument can be ordered from Aryballe.
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4. Conclusion

This paper proposed a robust and statistically reliable methodology based
on a realistic gas sampling system and two different sessions over several days
of measurement. It demonstrated the ability of a peptide-based artificial nose
to tell limonene and carvone enantiomers apart, while still retaining enough
flexibility to also discriminate between non-enantiomers. A metric has also
been proposed to identify the most discriminative sensing materials.

Biological olfaction uses a wider variety of sensing materials (up to 1,000
receptor subtypes, although all may not be used, see Secundo et al. (2014))
and further development should produce new sensing materials which can
be immobilized on the surface to increase the number of olfactory receptors.
Further studies should be conducted on a wider range of chiral pairs, but
also on enantiomeric mixtures. The synthesis of an enantiomer often starts
from its racemic mixture and having an inexpensive and flexible device that
can measure relative enantiomeric concentrations would be highly valuable
for production.
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