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Abstract

Chiral discrimination is a key problem in analytical chemistry. It is generally performed using expensive instruments or
highly-specific miniaturized sensors. An electronic nose is a bio-inspired instrument capable after training of discriminating a
wide variety of analytes. However, generality is achieved at the cost of specificity which makes chiral recognition a challenging
task for this kind of device. Recently, a peptide-based optoelectronic nose which can board up to hundreds of different sensing
materials has shown promising results, especially in terms of specificity. In line with these results, we describe here its use for
chiral recognition. This challenging task requires care, especially in terms of statistical reliability and experimental confounds.
For these reasons, we set up an automatic gas sampling system and recorded data over two long sessions, taking care to exclude
possible confounds. Two couples of chiral molecules, namely (R) and (S) Limonene and (R) and (S) Carvone, were tested
and several statistical analyses indicate the almost perfect discrimination of their two enantiomers. A method to highlight
discriminative sensing materials is also proposed and shows that successful discrimination is likely achieved using just a few

peptides.
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1. Introduction

Chiral discrimination is a fascinating aptitude of natural
olfaction [4], one that is hard to replicate in machines. Con-
ventional methods such as liquid chromatography are accu-
rate and reliable but are complex, time-consuming and expen-
sive. In contrast, miniaturized highly-specific sensors such as
molecularly imprinted polymer sensors can be used as fast,
repeatable, low-cost and portable instruments [14, 26, 24].
However, this type of sensors are often designed for a chiral
pair, preventing them from being used for other analyses.

As an alternative, electronic noses (eNoses) are highly in-
teresting, especially for their versatility. The technology is
broadly inspired from mammalian olfaction [20] and mainly
based on a cross-sensitive chemical sensor array [1]. In prac-
tice, a database of signatures for targeted molecules is gener-
ated and machine learning algorithms are used to recognize
them. One of the main advantages of using this kind of de-
vices compared to others is that it can discriminate among
a broad variety of molecules. In fact, an eNose tries to be a
universal device. This weak specificity of eNoses is a strength
and a requirement, but makes the chiral recognition a really
challenging task. The enantioselectivity of eNoses has been as-
sessed for some technologies such as TGS sensors [7] or DNA
coated sensors [12, 13]. But these results can be statistically
unreliable due to datasets which are too small. In fact, criti-
cisms concerning the experimental methodology have already
been expressed to the field [5, 15]. Coupled with the typically
limited number of chemical sensors used [21], this explain why
despite the promise of the technology, electronic noses have
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not been widely adopted. In this article, we propose an exper-
imental methodology to achieve this challenging task, which
could be replicated to provide more reliable and realistic re-
sults.

Our group recently described a new optoelectronic nose able
to board up to hundreds of different sensing materials without
increasing system complexity [6]. In this work, peptides were
used as sensing materials due to their close connection to ol-
factory receptors [17, 25]. They were deposited on the golden
surface of a prism and Surface Plasmon Resonance imaging
(SPRi) was used to record chemical interaction in real-time.
This transduction mechanism is briefly described in Figure
1b. Brenet and coworkers demonstrated that the developed
eNose is a promising new analytical tool enabling the discrim-
ination of both different and similar molecules up to a single
carbon atom [6].

In this article, we investigate the enantioselectivity of this
new technology with a commercial version of the eNose de-
scribed by Brenet and coworkers [6]. Formally, we expect that
the discrimination between two mirror molecules, or enan-
tiomers, is possible, thanks to the potential enantioselectivity
of peptides used in the device [28]. Indeed, peptides are chiral
in essence and previous works with specific sensors already
reported their enantioselectivity [16]. To take into account
the criticisms addressed to the field [5, 15], we took care to
design an experimental methodology which has a threefold
goal: minimize statistical error, minimize potential experi-
mental confounds and keep a realistic gas sampling system.
To achieve the first objective, we used an automatic sampling
system which can generate substantial datasets. The second
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Figure 1: (a) The valve is programmed to start with the air line (reference acquisition). Then, at ¢, the valve switches to line ¢ (analyte injection).
At te, it goes back to the air line (recovering). The process is repeated for the line ¢+ 1 and so on. (b) Working principle of the optoelectronic nose
based on SPRi. Briefly, a light is sent, reflected by the surface and caught by a simple camera. When a binding reaction occurs with the molecule,
this changes the refraction index leading to a change in reflectivity. (c) Raw image of the prism surface with some dimensions. Light areas stand

for the functionalized surface.

objective is achieved by repeating the experiment across two
different sessions, controlling various factors. For the last ob-
jective, we used the evaporation of the chemical compounds
in liquid phase to be closer to an industrial application.

With this methodology, we confirm that the new eNose is
able to discriminate between molecules which differ strongly.
More importantly, we also show its ability to discriminate be-
tween two enantiomers by way of two examples, namely the
mirror images of Carvone and Limonene. These results are
supported by two reliable analyses. The first one, namely an
intra-session analysis, shows a nearly perfect discrimination
when we train and test from samples from the same experi-
ment. The second one, namely an inter-session analysis, shows
a stronger result where we can learn from samples from one
dataset (one session) and still almost perfectly discriminate
the samples from a new experiment which reuses the setup
(meaning another session). In this article, we also propose a
metric which can be used to highlight the most discriminative
sensing materials. Another key point of this study is that the
eNose has not been tuned for this discrimination task.

2. Material and Methods

2.1. Ezperimental setup

2.1.1. Chemical compounds

All the products were purchased from Sigma-Aldrich: Bu-
tanol, mineral oil, (R)-Carvone pure at 99.4%, (S)-Carvone
pure at 99.3%, (R)-Limonene pure at 98.4% and (S)-Limonene
pure at 97.9%. The purity of each enantiomer comes from the
certificate of analysis of Sigma-Aldrich. Due to the volatility
of Butanol and to the duration of the experiments, we con-
ducted a volumetric dilution at 25% in mineral oil to avoid
exhaustion. This dilution is only conducted on Butanol and
the other chemical compounds are left pure and used as re-
ceived without further purification.

The purity degree of the samples is in line with previous
studies (and even better) using the same compounds [7].

2.1.2. Optoelectronic nose

The eNose is provided by Aryballe and more details about
the device can be found in [6]. Sensing materials are mainly
peptides which are fixed on the gold surface of a prism (see
supplementary materials S1 for some details about the source
and the deposition of peptides). During an acquisition, the
analyte is brought above the gold surface by a flow of air us-
ing a pump (in this study, at 63 mL/min). The analyte can
then interact with the sensing material through a reversible
binding reaction. This reaction is both dependent on the an-
alyte and on the sensing material. Thus, different sensing
materials will lead to different chemical reactions, creating a
chemical “signature” of the analyte. Since different analytes
lead to different chemical reactions, and thus different signa-
tures, we are able to recognize analytes. Here, 19 different
sensing materials are deposited on the surface of the prism,
17 of them being peptides. The two remaining sensing mate-
rials are achiral molecules and are used as a control for the
study. Each sensing material is repeated 3 or 4 times on the
surface, leading to a cross-sensitive chemical sensor array of
59 elements.

The binding reactions at the surface are measured using
Surface Plasmon Resonance imaging (SPRi). Briefly, light is
sent, reflected by the surface and caught by a simple optical
camera. When a binding reaction occurs with the analyte,
this changes the refraction index (more light is reflected). The
changes in reflectivity are caught by the camera, which thus
records in real-time the binding reactions. A representation of
the working principle is presented in Figure 1b. A real image
of the prism surface is reported in Figure 1c.

2.1.8. Gas sampling system

In this study, we use an automatic gas sampling system
to create substantial data sets (>100 samples/class). The
main part of this system is an automatic valve represented
in Figure la. One of the 8 lines is booked for ambient air
which is used as our reference gas. Four lines are allocated
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Figure 2: (a) Example of time series obtained for (R)-Carvone and (S)-Limonene. A vertical line indicates the molecule injection. It corresponds
to a single measurement, and the baseline has been subtracted. (b) Raw signatures (integration of the adsorption part, over the 30 s after injection
in (a)) in polar coordinates (angle for spot number and radius for amplitude). Color gradation stands for the cycle number (the initial cycle is the
lighter, meaning the first measurements), showing for example the gradual exhaustion of Limonene during Session 2. (c¢) Normalized signatures
according to (1): repeatability is visibly increased (compared to unnormalized signatures in (b)).

for two pairs of enantiomers. We choose the two chiral forms
of Carvone and Limonene. A potential concern is that by
using the instrument near its discriminability limit, we may be
amplifying potential confounds which could lead to artificial
discriminability between vials rather than products (no two
vials are exactly equal). As a control, an achiral molecule,
Butanol, is added in two different vials and is placed in the
valve’s cycle between two mirror molecules.

All lines except the reference line are inserted in 50 mlL
vials, which are sealed with a Teflon-coated silicon septum
and filled with a liquid solution of each analyte. The vials
containing analytes are agitated using a magnetic stir bar to
homogenize the headspace and a small polyether ether ketone
(PEEK) tube is used to balance the pressure inside the vials.
The fluidic system is made of peek tubing. Each gas line
has the same tube length. The time segmentation used is as
follows: 30 sec for the reference gas (ie ambient air), 30 sec
for analyte injection and 5 min for desorption. Only the two
first phases are recorded and the third one is deliberately long,
as a precaution. Consequently, a valve’s cycle lasts 42 min,
corresponding to 7 measurements. A complete measurement
for (S)-Limonene including the desorption phase is reported
in supplementary materials S2.

The automatic setup can generate a significant number of
samples, but all samples follow the same running order. This
could induce another confound, specifically a memory effect
[9] which can lead to artificial discrimination only related to
the running order. To overcome this issue, we switch the po-
sition of the enantiomers across 2 sessions. The experimental
protocol is presented in Table 1. Between sessions, we em-
phasize that all the vials are changed for Session 2 and filled

Session 1 Session 2

Line Molecule V (mL) Molecule V (mL)
@ Air (baseline) - Air (baseline) -
@ (R)-Limonene 0.4 (S)-Carvone 0.150
® Butanol 1.6 at 25%  Butanol 1.6 at 25%
@ (S)-Limonene 0.4 (R)-Carvone 0.150
® Butanol 1.6 at 25%  Butanol 1.6 at 25%
® (R)-Carvone 0.4 (S)-Limonene 0.150
@ Empty vial - Empty vial -
(S)-Carvone 0.4 (R)-Limonene 0.150

Table 1: Experimental protocol reporting the lines allocation for each
session.

with new products taken from the same stock solutions as in
Session 1. There is a difference in liquid volume between the
two sessions, which adds another source of variability. Finally,
we stress that the whole setup is left at room conditions dur-
ing the 2 sessions which can introduce some temperature and
humidity variations. In this way, more realistic data can be
generated.

Session 1 lasted ~88 hours, providing 125 samples/molecule
and Session 2 lasted ~182 hours for 260 samples/molecule,
both run without interruption. Session 1 and Session 2 are
separated by a single day and the total duration of the exper-
iments is ~13 days.

2.2. Data analysis
2.2.1. Feature extraction

Raw data is a collection of images (such the one presented in
Figure 1c¢) which report in real-time, at a frame rate of 5 Hz,
the binding reactions occurring at the surface of the prism,



during an acquisition. From these images, a binary mask
is applied to extract only the areas where sensing materials
have been deposited (light areas in Figure 1c). In each area,
or spot, we average all the pixels and the resulting values are
converted to a percentage of reflectivity R(%) by means of an
external reference [3]. Then, for each spot individually, we
subtract the reference gas value (computed by averaging the
first 25 sec of signal) to remove, at least partially, some drift
due to a reference change [8]. The remaining AR(%) signals
are represented in Figure 2a and show the fast response of the
eNose to the molecules, or analytes, while already emphasizing
the diversity across sensing materials, with different peptides
responding differently. From these time series, whose general
shape is well-known in the literature, one or two features are
generally extracted. The most common one is the steady state
value [27]. This value is chemically justified since a single time
series corresponds to the binding reaction between the sensing
material and the analyte. This reaction is likely to reach
an equilibrium phase, stabilizing the response around a given
value. However, due to the schedule we used, some analytes
reach equilibrium while others do not. As an alternative to
steady-state values, we propose to integrate the signal over
the entire adsorption part. We retain the value of the integral
as a feature (e.g. the integration over the 30 seconds after
the molecule injection). Each spot provides a feature, and
this procedure therefore gives us a vector y,,, € R”, with P
the number of spots, for the measure of the analyte r during
a valve cycle n.

2.2.2. Normalization

All measures from Session 2 are represented in polar coor-
dinates in Figure 2b. On the same figure, we can easily see
the exhaustion occurring over time, especially for Limonene,
leading to a change in concentration, which in turn results in
a decrease in reflectivity. As this study is interested in qual-
itative results, variations in concentration cause undesirable
variations. To eliminate these variations, we normalize y,-, as
follows, where subscript p refers to the spot:

P
gp’rn = IOg(yprn) - % Z IOg(yirn) (1)
i=1

The normalization (1) implies that measurements scale lin-
early with analyte concentration. Although clearly an ap-
proximation, it has always worked well in practice and has
some theoretical backing (see supplementary materials S3 for
demonstration). The normalized data of the Session 2 is rep-
resented in Figure 2c and clearly demonstrate the increased
repeatability of the measures, even if some time-related vari-
ations remain.

2.8. Discrimination of different analytes

Before studying chiral recognition in detail, we confirm
that the eNose can successfully discriminate between differ-
ent molecules, replicating previous studies. To this end, we
temporarily erase the chiral labels in the database, for exam-
ple (R)-Carvone and (S)-Carvone are now just summarized
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Figure 3: Projection of the data from Session 2 on the 2 first Principal
directions, separately for Carvone (top) and Limonene (bottom). On the
right, the drift has been corrected, whereas on the left not. Each point
corresponds to a measurement such the one in Figure 2a. Cycle number
is represented in the color scale (the initial cycle has the lightest colour).
The data set used here is from Session 2. The maps have been centered
and scaled for easier visualization.

as “Carvone”. In this scenario, we have 250 samples/class
for the Session 1 and 520 samples/class for the Session 2 and
the data sets include the two Terpenes, namely Carvone and
Limonene, and also Butanol. To assess discriminative power,
we first reduce the dimensionality by projecting the data on
the 5 first Principal directions and then perform a classical
10-fold cross validation with a linear Support Vector Machine
(SVM) to estimate the classification rate. This process is ap-
plied session-by-session. The results give without difficulty
a perfect classification score for both sessions and are conse-
quently in agreement with previous work [6].

2.4. Intra-session chiral recognition

We now complicate the task and “zoom in” on either Car-
vone or Limonene by focusing on each chiral pair. We em-
phasize that the two sessions and the two pairs are processed
separately in this section. For visualization, data projected
on the two first Principal directions for each chiral molecule
are represented in Figure 3 (left panel), only for Session 2.
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2.4.1. Drift compensation

The lack of stability over time is clearly perceptible in Fig-
ure 3 (left panel). This is of course not unexpected, since
chemical sensors are unfortunately prone to drift, and the
new eNose is no exception to the rule. Drift can be explained
by one or more of the following factors: physical changes in
the sensing materials or modifications in the chemical back-
ground, or yet changes in the environmental conditions (for
instance, the day/night cycle is clearly visible for Carvone in
Figure 3) [2]. Drift has been studied many times and many
correction methods have been proposed to compensate for it,
so that this remains an active research topic [2, 18, 22]. These
methods are often based on calibrating compounds, meaning
that the drift of some analytes can be known and thus corre-
lated to the drift of others, which are then corrected. Here,
our case study is simpler in that we cannot find two other
molecules which are more similar than the two we are looking
at, namely two enantiomers. Consequently, it is very likely
that the 2 molecules will be affected by the same amount
and direction of drift. This is even more true due to the ex-
perimental setup and to the short time spacing between two
enantiomeric samples. Considering these arguments, we pro-
pose a simple filtering method to compensate for drift. Our
method is closely related to a kind of moving average filter.
By considering an already normalized data set, the procedure
is as follows: for a given sample taken at time %y, take all
the enantiomeric samples ((R) and (S)) of one chiral analyte
recorded in the time window [tg — At, to + At] (At = 5 hours
in this study), compute the averaged signature and subtract it
from the given sample. Mathematically, this method removes
a drift which is assumed to be additive, equal for the two chiral
forms and slowly varying in the time window considered.

2.4.2. Validation method

The success of our method for drift compensation is visi-
ble on Figure 3 (right panel). To assess quantitatively both
drift compensation and chiral recognition, we use a chronolog-
ical validation differing from standard cross-validation (simi-
lar to the scheme in [18]). Standard cross-validation divides
the dataset into random pieces (folds), disregarding temporal
order. This enables classifiers to “learn the drift”, meaning
that they find a linear discriminant that is orthogonal to the
drift direction. Instead, we split each session into continu-
ous blocks of one day each. Then, a single one-day block is
taken for training (which includes both the estimation of the

Session  Before correction (%)  After correction (%)
Carvone 1 86.3 98.9
2 73.8 99.7
Limonene 1 95.7 100
2 65.3 99.6
Table 2: Comparison with and without drift compensation applied

session-by-session. The difference of scores between Session 1 and Ses-
sion 2 before correction can be explained by the difference of duration.
Indeed, Session 2 lasts twice the time of Session 1, thus Session 2 includes
more drift.

Principal directions and the fitting of SVM classifier), and all
other blocks are used for validation (estimating discrimination
performance). This process is repeated for each day and the
classification rates are then averaged: this method thus an-
swers the question of how reliable the signatures learned on a
single day are, when used on another day (and drift may have
occurred in between). The validation scheme is reported in
Figure 4. Concerning chiral recognition, classification rates,
after correction and averaging across sessions, reach the al-
most perfect scores of 99.3% and 99.8% respectively for Car-
vone and Limonene. These scores clearly indicate that the
eNose can learn to discriminate the vial containing the left-
hand form from the one containing the right-hand form. The
comparison of results with and without drift compensation is
indicated in Table 2.

2.5. Inter-session chiral recognition

Enantio-discrimination with a non-specific device is a very
hard discrimination task, which requires a very sensitive in-
strument. As a result of the instrument’s sensitivity, a suc-
cessful discrimination could be explained by an experimen-
tal artefact instead of an actual discrimination between dif-
ferent analytes. To exclude this possibility, we have carried
out several controls which are left in supplementary materials
(S4) but we deem necessary to present here an analysis which
echoes the previous one.

The two sessions that we have presented so far varied in
some of their parameters. As a reminder, there were vari-
ations in concentrations, the vials which have been changed
and filled with new products (from the same stock solutions),
the magnetic stir bars and the running order are not identical
from one session to the other. A resulting check is whether one
could successfully generalize from one session to the other?

To answer this question, the procedure is as follows: learn
to discriminate the 2 mirror molecules using the data from
one session and try to classify them in the other session. To
clarify, we compute the new representation space (based on
PCA) and optimize the SVM from Session 1 and we compute
the classification rate obtained for Session 2. This validation
methodology is repeated by interchanging the role of each
session. The validation scheme is reported in Figure 4.

The projection of samples from Session 2 in the representa-
tion space generated by the Session 1 is represented in Figure
5. Again, numerical results follow the visual impression since
the averaged classification rate (across the sessions, each one
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taken as the train set for the other) reaches respectively 99.9%
for Carvone enantiomers and 99.8% for those of Limonene.
These results reduce the likelihood of a memory effect or an
artifact-based differentiation.

3. Discussion

From these results, a question remains which is, how can
we explain such successful discrimination?

3.1. Vial differentiation

A recent paper warned researchers about the underesti-
mated contamination brought by magnetic stir bars, which
are often assumed clean after intensive washing [19], but may
retain traces of their previous uses. In fact, the same may
hold for every material used in chemical experiments. In our
case, these contaminations may mean that the differentiation
is artefactual, due to traces left in vials or in the tubing. We
define this potential artefactual discrimination as “vial differ-
entiation”. Even if the multi-session analysis tends to indicate
that it is an unlikely source for our near-perfect classification
rates, we describe below an additional control.

In the experimental protocol in Table 1, two vials are
booked for the same analyte, namely Butanol. Thus, if there
is indeed the possibility for vial differentiation, the samples
from these two vials should show it. We propose to look at
the Euclidean distances between the samples of two different
vials measured during cycle n. Since we have 6 different vials
containing analytes, this leads to 15 distances (the number of
possible pairs) but only 6 among them are really relevant. For
instance, one of these 6 pairs is the pair of (S)-Limonene and
(R)-Limonene. Let us note §pn(R) (resp. ¥pn(S)) the nor-
malized response of the chemical sensor p to (R)-Limonene
(resp. (S)-Limonene) during cycle n. The Euclidean distance

is defined as:

P

> (G (R) = pn(S5))?

p=1

d,,((R)-Limonene, (S)-Limonene) =

This distance is computed for each cycle n and separately
for each session (since the two sessions do not have the same
number of samples), without any drift correction, such as not
to incorporate any bias. For each session, we average all the
distances and compute the standard deviation. Finally, we av-
erage all the sessions by weighting with their number of sam-
ples. It corresponds to the bar ((S)-Limonene, (R)-Limonene)
in Figure 6. The error bar corresponds to the pooled standard
deviation. This process is repeated for each relevant pair of
vials and results are reported in Figure 6.

This analysis highlights that there is indeed a vial differen-
tiation since the distance separating the clusters of the same
analyte (Butanol) in two different vials is not zero. These
checks should be considered by future studies, especially when
the differences are tiny. In our case, pure vial differentiation
is insufficient to explain the distance between chiral samples.
Other controls can be found in supplementary information

(S4).

3.2. Chemical differentiation

In this section, we proposed a metric for highlighting the
most discriminative sensing materials.

Peptides are chiral molecules and are known to be good can-
didates for the differentiation of two mirror molecules [16]. We
sought to verify that it is indeed what drives chiral discrimi-
nation in our case, since our instrument also carries 2 achiral
sensing materials. To do that, we quantify the discriminative
power of each sensing material. Recall that a given sensing
material may be used for more than one spot, so that in the
following, each sensing material is summarized by the average
of its replicas. There are 19 different sensing materials on the
device, with 17 of them chiral, and 2 achiral, the latter play-
ing the role of controls. The goal of the analysis is to assess
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Figure 6: Vial differentiation analysis. We take as our criterion the
Euclidean distance between samples from two different vials during the
same cycle. These distances are computed for all the cycles of a single
session. For each session, we compute the average and the standard
deviation. Finally, the bars correspond to the weighted average over
sessions and the error bars to the pooled standard deviation
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and a good pair of sensing materials.

which sensing materials drive the discriminative power for the
chiral compounds used here.

A simple analysis would look at the sensing materials one-
by-one, and see if they can be used on their own for chiral
discrimination. A problem arises rapidly: the normalization
given in (1), compulsory for removing variations in measure-
ments due to variations in concentration, implies the use of
several sensing materials. This means we cannot look at sens-
ing materials one-by-one. Another incorrect procedure would
be to use all the sensing materials to first normalize and then
to look at them one-by-one. This will implicitly introduce a
bias invalidating the analysis.

We can illustrate it with a short numerical example using
only two sensing materials for discriminating two analytes,
say A and B. We assume that sensing material 1 is discrimi-
native whereas sensing material 2 is not. Note c4 and cp the
concentration of A and B during an experiment for which we
have the raw responses reported in Table 3a.

Table 3: Numerical example showing the discriminative bias introduced
by the normalization.

(a) Raw responses (b) Responses after normalization

ToA ToB To A To B
Y1 ca 2cp i 0 1 log(2)
Y2 ca cB g2 0 —3 log(2)

Sensing material 2 (with raw response ys) is clearly not
discriminative since it shares the same affinity with A and B,
only a difference in concentration would lead to a difference
in response. Sensing material 1 (with raw response y;) is dis-
criminative since its affinity with B is twice greater than with
A. To get rid of the variations in concentration, we normalize
using Eq. (1), leading to the normalized responses reported
in Table 3b.

Eventually, after normalization, sensing material 2 becomes
discriminative, but only thanks to the initial discriminative
power of sensing material 1. It is not hard to understand
that this simple example generalizes to P sensing materials.
In fact, only one discriminative sensing material can create
discriminative information for all the others.

This bias is inevitable but we can reduce it by only look-
ing at the sensing materials pair-by-pair. In the following, we
assume that we have selected a pair of sensing materials, nor-
malized the responses using (1) (for signatures of dimension
2) and corrected the drift. It’s interesting to note that since in
this case (1) creates a linear dependency between the two di-
mensions, we have effectively a one-dimensional measurement
(S3).

Second, we need to quantify the discriminative power of a
given pair of sensing materials. We propose to use a kind of
Signal to Noise Ratio (SNR). We define the signal part as the
squared distance between (R) centroid pf* € R and (S) cen-
troid ;1 € R; the greater it is, the easier chiral recognition



is. Noise can arguably be measured by the standard devia-
tion o2 of the samples (for a given analyte), which quantifies
measurement uncertainty. o2 is here calculated using sam-
ples from the (R) enantiomer (the results do not change if
we take the (S) enantiomer). However, the previous section
highlighted another kind of noise, namely vial differentiation,
which is another source of experimental uncertainty. To in-
corporate this source of noise into the SNR, we focus again
on the two vials containing Butanol (¢f Table 1). Similarly to
the signal estimation, we take as the noise attributed to vial
differentiation, the squared distance between the centroid of
the first vial ©¥(1) € R and the centroid of the second vial
1?(2) € R. The greater this value is, the more likely it is
that discrimination performance is artefactual. Vial noise is
then added to measurement noise. For a chiral molecule m
and the pair formed by the sensing material ¢ with the sensing
material j, this gives:

2

(uh(m) — p3i(m))
SNRij (m) = (,U/;'Jj(l) _ ,u,:fj(Q))2 + 01‘2]‘

This estimation is computed for all 171 distinct pairs. To
make the results more clear, we average the scores for a given
sensing material over all pairs in which it appears. The re-
sulting SNR and a graphical explanation are given in Figure
7. The greater the SNR, the more discriminative the sensing
material is. Due to confidentiality concerns, the nature of the
sensing materials is not given and labels are substituted by
arbitrary numbers’.

We warn that this method does not really correspond to
the “true” discriminative power of a sensing material since
we are using pairs. However, we believe that this method is
sufficient for evaluating which sensing materials are discrimi-
native and which are not. Results show very high scores for
sensing material 16 for Carvone and the two sensing materials
6 and 18 for Limonene. These 3 sensing materials could then
be replicated multiple times to design a specific instrument
to a given chiral pair. Finally, these 3 sensing materials are
peptides whereas the two achiral molecules are always among
the worst.

(2)

4. Conclusion

This paper proposed a robust and statistically reliable
methodology based on a realistic gas sampling system and
two different sessions over several days of measurement. It
demonstrated the ability of a peptide-based optoelectronic
nose to tell Limonene and Carvone enantiomers apart, while
still retaining enough flexibility to also discriminate between
non-enantiomers. A metric has also been proposed to identify
the most discriminative sensing materials.

Biological olfaction uses a wider variety of sensing materi-
als (up to 1,000 receptor subtypes, although all may not be

1For reproducibility purposes, the instrument can be ordered from
Aryballe.

used, see [23]) and further development should produce new
sensing materials which can be immobilized on the surface to
increase the number of olfactory receptors (see [11] for the
use of odorant binding proteins and [10] for the use of hair-
pin DNA). Further studies should be conducted on a wider
range of chiral pairs, but also on enantiomeric mixtures. The
synthesis of an enantiomer often starts from its racemic mix-
ture and having an inexpensive and flexible device that can
measure relative enantiomeric concentrations would be highly
valuable for production.
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1 S1: Information about peptides

Cysteine N-term modified peptides (provided by Smartbioscience, France) are grafted on a gold-covered prism using thiol-gold
bonding. The peptides are arrayed on the gold layer using a FlexArray S12 printer (Scienion, Germany) according to a process
previously described ([1], [2]). The printed prisms are manufactured by batches of 25 pieces. Systematic quality controlled is
carried out, using SPR measurement (image standardization) and by the measurement of the response generated by a known
optical index shift. For this specific experiment, more than 2000 measurements can be performed without discrimination loss.

2 S2: Desorption phase

1.0 1

0.5 1

AR (%)

0.0 1

t (min)

Figure 1: The time segmentation of each measurement is as follows: 30 sec for the reference gas (ie ambient air), 30 sec for
analyte injection and 5 min for desorption. Here, we represent a complete measurement of (S)-Limonene.

3 S3: A linear model for concentration and normalization

In this supplementary material, we derive a theoretical model describing the instrument’s response, which combines a model
of the binding reaction and a model of Surface Plasmon Resonance imaging (SPRi). Under some assumptions, we show that
the feature extracted is linearly dependent on the concentration of the gas, justifying the normalization we use.

The standard methodology for gas analysis with an eNose is a 3-phase injection: reference gas (here, ambient air), analyte
(adsorption phase) and again reference gas (desorption phase). During the adsorption phase, a binding reaction occurs
between the sensing material p and the analyte r. This reaction is governed by two parameters a,, and d,,, respectively the
adsorption and desorption constant which are specific to the reaction:



Apr
A+ L, == AL,
dpr
where A, and £, stand respectively for the analyte r and the sensing material p.
As explained in the main text, we use the entire adsorption phase by integrating over it. By noting ¢ and ¢, respectively
the start and the end of the injection, the following feature x,, is extracted from the time series yp,(t):

b= [t (1)

7te_ts ts

Theoretically, y,,(t) can be modelled by combining a chemical model, describing the binding reaction, and a physical one,
describing the transduction method (SPRi). We add that y,,(t) is the time series after reference subtraction.

3.1 Chemical model

A simple model of the sensing material is to view it as being composed of a number of sites [£,]s at the surface. These sites
can potentially be occupied by the analyte A, at a concentration [A](¢) = ¢.(¢). We can describe the change in the number
of occupied sites [A,L,]s by the differential equation:

d[A,L,]s(1)

dt = aprer(t) (['Cp}s - [Arﬁph(t)) — dpr[ A Ly]5(1) (2)

where the equation only expresses the difference between the number of sites occupied at time ¢ and the number of occupied
sites becoming free at time ¢. This is referred to as the “Langmuir kinetics” [3]. (2) can be simplified to:

A6, (1)
2 (1) (1= 0y (1) — Oy (1) (3)
where 0,,,.(t) = [“?2’:]’;]5 (t) stands for the fraction of sites occupied by the analyte A, at time ¢. Due to the experimental setup,

¢-(t) can be approximated as a gate function:

e ift ety ]
er(t) = { 0 otherwise

This leads to the following simplified equations:

Adsorption phase (t € [ts,t.]) Desorption phase (¢ > t.)
dé,.(t) db,.(t)
gt = aprCr (1 = Opr(t)) — dprbpr(t) gt = —dpOpr (1)
These differential equations when solved, lead to the following models
Adsorption phase (¢ € [ts, te]) Desorption phase (¢ > t.)
- %rCr 4 _ _
b () = Gt apre, (-~ (e + aprer)(E = 12)) Opr (1) = O (1) exD(~dyr (t — 1.))

3.2 Physical model

The transduction method used is based on Surface Plasmon Resonance (SPR). We begin with a short introduction to SPR
before going into models, and readers can find more details in [4].

SPR is the combination of two physical phenomena, namely two electromagnetic waves which exist under certain condi-
tions. The first one is the surface plasmon (SP) which is an electromagnetic wave existing at any metal-dielectric interface.
The second one is an evanescent wave created by an incident light which is totally reflected by a surface (meaning that the
incidence angle is greater than the critical angle). This evanescent wave appears from both sides of the surface and decays
exponentially in the direction perpendicular to the surface (it is thus limited to a given depth L, a2 100 nm). The conditions
necessary to the creation of these two waves can be obtained by using a prism coated with gold and a monochromatic light.
This system is represented in Figure 2a.
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Figure 2: (a) SPRI system based on Kretschmann configuration (b) Plasmon curves. When an analyte binds to the sensing
material, a shift in the plasmon curve occurs leading to an increase in reflectivity at the working angle qp.

When the evanescent field is created by a TM-polarized (Transverse Magnetic) incident light, it can be used to excite
the surface plasmons in a resonant manner. Here, the coupling of these two waves is performed by a change of the incidence
angle. The resulting resonance of the surface plasmons generates a decrease in the amount of reflected light which is caught
by a camera. By playing with this incidence angle, we can trace the reflectivity variations, leading to the plasmon curve
represented in Figure 2b. This curve is minimal for a given angle, namely the SPR angle. The entire plasmon curve is quite
sensitive to the medium near the metal interface. Indeed, any tiny increase in the refractive index of this layer will result in
a simple shift to the right of the plasmon curve. Thus, when an analyte binds to the sensing material which is immobilized
on the golden surface, the plasmon curve is shifted.

To quantify this shift (which lets us measure the interaction between sensing material and analyte), we set the incidence
angle to O,pt, located in the linear phase of the plasmon curve. The difference between the two values coming from the two
plasmon curves (before, meaning the reference acquisition, and after the analyte injection) leads to our raw recording, namely
AR (%). AR is dependent on the binding reaction occurring between the sensing material and the analyte and is related to
the amount of adsorbed analytes.

To model AR as a function of adsorbed analytes, one can use Maxwell’s equations, which leads to a complex model.
However, this model can be well approximated in the liquid phase (and we assume that this model is still true in the gas
phase) by a linear model, when the thickness e, of the medium is much lower than the depth of the evanescent wave L, [5, 6]:

_Som

r ()
where S = 22 is the SPR sensitivity (the variation of reflectivity induced by a variation of refractive index), 22 (cm?/g) is
the change in refractive index of the analyte with change in concentration and finally I' (ng/mm?) is the surface concentration
of the analyte. To bring the fraction of occupied sites 6 out, we rewrite I' as I' = [£];m# where m is the molecular mass of
the analyte.

3.3 Physico-chemical model

In the following, we restore the previous subscripts to highlight each dimension of the problem. To highlight which parameter
is dependent on the valve run (meaning the repetition of a given analyte), we incorporate this dimension in the subscript n.
We describe the raw reflectivity ., (t) as a function of the fraction of occupied sites as:

Yprn(t) = BSp[Lplsmr X Oprn (1) (6)
1 On

where 3 = -5 is either dependent on SPR settings or approximately the same for all analytes. Since we are only interested
in the adsorption phase, we can make the temporal model explicit (by incorporating (4) in (6)):

a TCTTL
Yprn(t) = BSp[Lplsmy X m(l — exp(—(dpr + aprern)(t — ts))) (7)



3.4 Linearization

The feature defined by (1) is clearly non-linear as a function of the analyte concentration ¢,,. To propose a simpler model,
we assume that ¢, = prCrn, < 1 (which means that we are far from the saturation regime), which implies:

dpr
te
ﬂSp [‘CP]SmT' a’prcrn
Tprn =
te - ts t dpr + aprcrn

5.
_ ﬁsp[[«p}smr / k'prcrn (1 _ eXp(—dpr(l + kaCTn)(t — ts))dt
t

(1 — exp(—(dpr + aprcrn)(t — ts))dt

te - ts P 1 + kprcrn
Sy[L)]smy [t 8
~ BSplLplsmr :[ p]t m / Eprrn (1 — exp(—dp,(t — ts))dt ®)
e Us ts
exp(—dprte) — exp(—dp,ts)
~ BS,[L,lsm.kp-(1 — Crn,
/ P[ P] P ( dpr(te _ts) )
~ kpr X Crn,

3.5 Normalization

We remove c,,, contribution by log-transforming x,,, and centering across the spots which gives the normalized feature Z,,:

P P
log(2prm) — Y _log(irn) = log(ky,) — D log(k},) +logkern) — logfern) = &pr (9)
i=1 i=1

It is interesting to note that the centering removes one degree of freedom, meaning that the signatures have no more P
dimensions but in fact P — 1 dimensions. This is explained by the linear dependency between the initial P dimensions created
by the centering. This explains why we have only one feature remaining after normalization when we deal with a pair of
sensing materials.

Eventually, even if this normalization removes a part of the time variation between the signatures, the correction is
obviously not perfect and ,, is experimentally still dependent on n. This shows that all the assumptions which have led to
the described model may not be all true, creating some drift (which is then corrected by another procedure).

4 S4: Controls of the empty setup

In the paper, some controls have been presented to reduce the possibility of an experimental bias. Here, we present two
supplementary controls which were done in-between sessions.

First, the fluidic system is deliberately made in polyether ether ketone, a material which is assumed to be non-reactive
with any analyte. However, any tiny residue stuck in the system could lead to a tiny difference between two lines, resulting
a difference between two analytes. To remove this eventuality, we intensively checked the cleanliness of the whole fluidic
system between Session 1 and Session 2. We ran 20 cycles without any vials. Then, we extracted from the signals the same
feature as the one used in the study and described by (1). Since no vials were present, this value is expected to equal zero,
meaning a clean line. This feature was not normalized to avoid any problems with negative values (the signal level was very
low, and negative values could arise due to noise). We tested the discrimination between pairs of lines booked for a pair of
enantiomers (line 2 against 4 and line 6 against 8). This test was as follows: first, we reduced dimensionality by taking the
3 first Principal Components, then performed a repeated 3-fold cross validation (repeated 50 times) with a linear Support
Vector Machine from which we average the results to get an estimate of the classification rate between 2 empty lines. The
results are reported in Figure 3 and show no discrimination due to a pollution in the lines. We highlight that the closer to
50% (chance rate) the results are, the better it is.

Second, the vials were either first-use, or intensively cleaned by rinsing them with acetone then ethanol and by drying
them for several hours. However, as above, any tiny remaining pollutant in the vials could lead to a tiny discrimination
between two vials, meaning between two analytes. Again, we carried out 20 cycles by placing empty vials and magnetic stir
bars. The same discriminative analysis was repeated between pairs of vials booked for a pair of enantiomers. The results are
reported in Figure 3 and show again no discrimination due to the vials.
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Figure 3: Discrimination power of the empty setup. Left facet checks if we can find any discrimination based only on gas
lines. Right facet checks if we can find any discrimination only based on gas lines, empty vials and magnetic stir bars. The
two isolated gas lines are the gas lines which are occupied by two different enantiomers (eg (R) and (S) carvone) during the
experiments. A value close to 50% indicates that there is no discrimination.
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