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Drawing Interactive Euler Diagrams from Region Connection Calculus Specifications

This paper describes methods for generating interactive Euler diagrams. User interaction is needed to improve the aesthetic quality of the drawing without writing tedious formal specifications. More precisely, the user can modify the diagram's layout on the fly by mouse control. We prove that the satisfiability problem is in PSPACE and we provide two syntactic fragments such that the corresponding restricted satisfiability problem is already NP-hard. We describe (1) an improved local search based approach, (2) a method inspired from the gradient method and a hybrid method mixing both (1) and (2). A software tool was implemented and its implementation is described. We also experimentally compare the different methods. We first see that the improved local search and the hybrid method outperforms the local search from the literature and the gradient method for generating a diagram. Concerning interaction, the local search approach is not suitable but hybrid method and gradient method give both good results in terms of quality of drawings and stability. Specifications are written using region connection calculus (RCC-8), radius constraints and disjunctions. Euler diagrams are described as set of circles.

Introduction

Euler diagrams are pictures to understand relations between sets representing some concepts. In such pictures, sets (= concepts) are represented as regions in the plane and inclusions or intersections of those regions respectively depict inclusions or intersections of the corresponding sets. Euler diagrams are used in a wide range of application areas: medical data, biosciences, classification [START_REF] Rodgers | A survey of Euler diagrams[END_REF].

For instance, Figure 1 shows an Euler diagram representing the relations between the complexity classes P, NP, coNP, PSPACE, EXPTIME, NEXPTIME, coNEXPTIME and decidable [START_REF] Papadimitriou | Computational complexity[END_REF] as many computer scientists may believe they are. For instance, P ⊆ NP is represented by the fact that the disk corresponding to P is included in the disk corresponding to NP.

Euler diagrams can be drawn in a generic image editing software or a dedicated software as SketchSet [START_REF] Wang | Sketchset: Creating Euler diagrams using pen or mouse[END_REF]. Nevertheless, for some applications, it is Automated generation is valuable. First, there is no effort spent to generate diagrams by hand and the generations can be applied to a huge quantity of diagrams. For instance, one may want to automatically generate Euler diagrams for several knowledge bases, e.g., knowledge bases are expressed in description logic ( [START_REF] Burton | Visualizing concepts with Euler diagrams[END_REF], [START_REF] Van Harmelen | Handbook of knowledge representation[END_REF]). Secondly the generation software itself certifies that generated Euler diagrams respect their specifications (or pinpoints which constraints are not satisfied in case the generated diagram does not fully satisfy to the specification).

Nevertheless, we claim that abstract specifications are not enough for specifying nice diagrams. For instance the following three Euler diagrams (i), (ii) and (iii) respect the same specification (*) given above. 

(i) (ii) (iii)
Indeed, there are subjective requirements that are tedious to express as part of an abstract specification: for instance, one would prefer the Euler diagram (iii) to (i) and (ii) for aesthetic reasons. Therefore, we want generated Euler diagrams to be interactive, that is, we want to be able to move and resize circles of the diagram with a pointing device (mouse, etc.). More precisely, when interacting with a given Euler diagram, we want the initial Euler diagram to be updated so that it respects the user interaction while continuing to satisfy the abstract specification: Initial Euler diagram that respects the specification Specification User interaction Update New Euler diagram that takes the user interaction in account and that still respects the specification Furthermore, the drawing should be updated as smooth as possible with respect to the user interaction. We here refer to this feature as stability (we here borrow the vocabulary used for differential equations [START_REF] Jp Lasalle | Stability theory for ordinary differential equations[END_REF]). Technically, stability is measured by the distance between the initial drawing and the new drawing.

This paper presents a new version of the proof-of-concept software tool for drawing Euler diagrams by constraint solving with local search presented at JELIA 2014 [START_REF] Schwarzentruber | Drawing Euler diagrams from region connection calculus specifications with local search[END_REF].

Beyond the JELIA 2014 version, we give a new lower bound result for a fragment of the specification language (Proposition 3). We also significantly improved the algorithms for generation and user interaction.

• First, we improved the definition of the objective functions (see Subsection 4.1): now the value of an objective function represents the number of pixels in default for respecting a constraint.

• Secondly, we propose an improved version of local search (see Subsection 4.3): the more a circle is involved in unsatisfied constraints, the more it is inclined to be modified.

Local search

Gradient method Speed Few deadlocks Stability Table 2: Intuitive meanings of RCC-8-relations

• We developed a new method based on the gradient method (see Section 5).

• We developed a hybrid method consisting in applying both gradient method and the improved version of local search alternatively (see Section 6).

• We also provide an experimental comparison of the methods (see Section 8). We claim here that the hybrid version combines the advantages of both the gradient method and the local search. The hybrid version is suitable for drawing Euler diagrams where interaction plays an important role.

On the one hand, gradient method is more efficient to find (local) minima than local search since the search is guided. On the other hand, if the new solution is not better, the drawing is no longer improved. We here refer to these bad behaviors as deadlocks. On the contrary, as local search neighborhoods are bigger, we have fewer deadlocks as with the gradient method. Table 1 sums the advantages of the two methods.

Region connection calculus [START_REF] Randell | A spatial logic based on regions and connection[END_REF] is a logic for reasoning about regions and topological constraints. It provides eight binary relations over regions (see Table 2 and Figure 2).

Our proof-of-concept uses region connection calculus (RCC-8) as a specification language and sets of circles as models 1 . The reason is that semantics of RCC-8-predicates on circles are easily translated as objective functions used in the search algorithms (local search, etc.). Interestingly, RCC-8 provides topological features as 'sets a and b are externally connected'. It may be used to design Euler diagrams for math courses involving sets in a topological space2 Note that RCC-8 is less expressive than abstract description ( [START_REF] Rodgers | General Euler diagram generation[END_REF], [START_REF] Stapleton | Drawing Euler diagrams with circles[END_REF]) used by some other tools for generating Euler diagrams (see subsection 9.1). The paper is organized as follows. In Section 2 we describe the specification language. Section 3 addresses the complexity of the satisfiability problem. Section 4 is dedicated to the improvement of the local search procedure. In Section 5, we present the variant of the gradient method. Section 7 presents the implementation of the hybrid method. Experimental results are presented in Section 8. Section 9 reviews related work. Perspectives are provided in the concluding Section 10.

Specification language

In this section, we present the language used to express constraints on circles in order to generate an Euler diagram and maintain an Euler diagram that satisfies the required abstract specification when the user interacts with it. It is the same language as in the first version of the tool [START_REF] Schwarzentruber | Drawing Euler diagrams from region connection calculus specifications with local search[END_REF]. The language proposes the eight predicates of Region connection calculus (RCC-8) [START_REF] Randell | A spatial logic based on regions and connection[END_REF].

Syntax

The syntax of the language L of constraints is defined by the following rule:

ϕ ::= R(a, b) | radius(a) = r | (ϕ ∨ ϕ)
where a and b range over a set of constant symbols, r is a rational number and R ranges over the set of relation symbols of RCC-8 {DC, EC, P O, T P P, T P P -1 , N T P P, N T P P -1 , EQ}. Constant symbols denote circles. Intuitive meanings of RCC-8-relations are given in Table 2 and Figure 2. The construction radius(a) = r is read as 'the radius of the circle a is r' and the construction (ϕ 1 ∨ ϕ 2 ) is read as 'ϕ 1 or ϕ 2 '. 

Semantics

In this subsection, we explain how drawings are considered as first order models. Models are pairs M = C, σ where:

• C is a non-empty set of circles of non-zero radius in the plane (for all c ∈ C, we respectively denote by c.x, c.y and c.r > 0 the abscissa, the ordinate and the radius of the circle c ; we denote by c.c the center of c);

• σ is an interpretation function that assigns to each constant symbol an element in C. σ(a) is the circle named a in the model. M |= radius(a) = r iff σ(a).r = r; 

10. M |= (ϕ 1 ∨ ϕ 2 ) iff M |= ϕ 1 or M |= ϕ 2 .

Generation and satisfiability problem

In this section, we formally define the generation problem of an Euler diagram from a specification and the satisfiability problem which is the corresponding decision problem. We then recall some previous results [START_REF] Schwarzentruber | Drawing Euler diagrams from region connection calculus specifications with local search[END_REF] and new results concerning the lower bound complexity of the satisfiability problem.

Definitions

The problem we tackle here, called the generation problem is defined as follows:

• input: a finite set I = ϕ 1 , . . . , ϕ n of constraints in L;

• output: a model M such that for all i ∈ {1, . . . , n}, M |= ϕ i . The set I is also called a specification. The corresponding decision problem, called the satisfiability problem and noted L-SAT takes the same input and outputs yes, if and only if there exists a model M such that for all i ∈ {1, . . . , n}, M |= ϕ i : 

Specification

Satisfiability problem yes/no

Upper bound

We recall the upper bound already given in [START_REF] Schwarzentruber | Drawing Euler diagrams from region connection calculus specifications with local search[END_REF] and we provide its proof.

Proposition 1 L-SAT is in PSPACE.

Proof.

We polynomially reduce L-SAT to the satisfiability problem of a formula in the existential fragment of the first order theory over real numbers F O∃(R) which is in PSPACE [START_REF] Canny | Some algebraic and geometric computations in pspace[END_REF].

Reduction

L-SAT

F O∃(R)-SAT

The reduction goes as follows. Let us consider an instance I = ϕ 1 , . . . , ϕ n . Let c 1 , . . . , c m be an enumeration of the constant symbols appearing in I. We define χ I to be the following F O∃(R)-formula:

∃c 1 .x, ∃c 1 .y, ∃c 1 .r, . . . , ∃c m .x, ∃c m .y, ∃c m .r, tr(ϕ 1 ) ∧ • • • ∧ tr(ϕ n ) ∧ m i=1 (c i .r > 0)
where tr is the translation of the constraints in the first order theory over real numbers given in Definition 1. For any ϕ, tr(ϕ) can be computed in polynomial time in the length of ϕ (see definition of tr above). Thus, computing χ I from I can be done in polynomial time. Therefore, we have a procedure in polynomial space for solving L-SAT.

Lower bound

In [START_REF] Schwarzentruber | Drawing Euler diagrams from region connection calculus specifications with local search[END_REF], it was already proven that L-SAT is NP-hard. Proposition 2 restates more precisely that result by exhibiting explicitly the syntactic fragment of L used in the proof. Then Proposition 3 gives a new syntactic fragment of L for which the satisfiability problem is also NP-hard. 

Proof.

Let us polynomially reduce 3SAT (the satisfiability problem of a propositional formula in conjunction normal form where each clause has three literals) to our restricted satisfiability problem.

Reduction

3SAT

Our restricted satisfiability problem Let us consider an instance of 3SAT:

χ = k i=1 i 1 ∨ i 2 ∨ i
3 where i j are literals, i.e., propositions or negations of a proposition. We construct an instance I χ of our restricted satisfiability problem as follows. For all propositions p appearing in χ, we introduce a new constant symbol c p . We also introduce an extra new constant symbol denoted by ref.

Intuitively: • p is true is encoded by EC(ref, c p );
• p is false is encoded by

T P P (ref, c p ).
The instance I χ is the set that contains the following constraints: Furthermore, I χ can be computed in polynomial time in the length of χ. Hence, as 3SAT is NP-hard, our restricted satisfiability problem is NP-hard.

• EC(ref,
Proposition 3 We also have NP-hardness by only using the EC predicate and the radius predicate and only one occurrence of the DC predicate.

Proof.

Similarly to the proof of Proposition 2, let us still polynomially reduce 3SAT to L-SAT. Let us consider an instance of 3SAT:

χ = k i=1 i 1 ∨ i 2 ∨ i 3 where i j
are literals, i.e., propositions or negations of a proposition. We construct an instance I χ of our restricted satisfiability problem as follows. For all propositions p appearing in χ, we introduce a new constant symbol c p . We also introduce the following new extra constant symbols: F , T , a, b and c. Intuitively:

• p is true is encoded by EC(T, c p ); • p is false is encoded by EC(F, c p ).
The instance I χ is the set that contains the following constraints:

• radius(T ) = 100, radius(F ) = 100, radius(a) = 100, radius(b) = 100;

• EC(T, c), EC(a, c), EC(b, c) , EC(F, c);

• EC(T, a), EC(a, b), EC(b, F );

• DC(T, b);

• for all propositions p, radius(c p ) = 50;

• for all propositions p, EC(T, c p ) ∨ EC(F, c p );

• tr( i 1 ) ∨ tr( i 2 ) ∨ tr( i 3 ) for all i ∈ {1, . . . , k} where tr(p) = EC(T, c p ) and tr(¬p) = EC(F, c p ) for all propositions p.

We claim that the formula χ is satisfiable if and only if I χ is a positive instance of our restricted satisfiability problem.

⇒ Let ν be a valuation such that ν |= χ. Let M = C, i where C contains: We have M |= I χ .

• a circle c c such that c c .x = 0, c c .y = 0, c c .r = 100; • a circle c T such that c true .x =
⇐ Let M be a model such that M |= I χ . We define a valuation ν as follows. For all propositions p,

• ν makes true p if M |= EC(T, c p );

• ν makes false p if M |= EC(F, c p ).
The definition of ν is correct by definition of I χ . The important argument is that M can not make both EC(T, c p ) and EC(F, c p ) true at the same time. Indeed, suppose by contradiction that EC(T, c Furthermore, I χ can be computed in polynomial time in the length of χ. Hence, as 3SAT is NP-hard, our restricted satisfiability problem is NP-hard.

For example, the instance 3SAT p ∨ q ∨ q is translated by the following constraints (expressed here as an input of our tool):

circle("T"); circle("F"); circle("c"); circle("a"); circle("b"); addConstraint(EC("T", "c")); addConstraint(EC("a", "c")); addConstraint(EC("b", "c")); addConstraint(EC("F", "c")); addConstraint(EC("T", "a")); addConstraint(EC("a", "b")); addConstraint(EC("b", "F")); addConstraint(DC("T", "b")); addConstraint(radius("c", 100)); addConstraint(radius("T", 100)); addConstraint(radius("a", 100)); addConstraint(radius("b", 100)); addConstraint(radius("F", 100)); circle("cp"); circle("cq"); addConstraint(radius("cp", 50)); addConstraint(radius("cq", 50)); addConstraint(or(EC("T", "cp"), EC("F", "cp"))); addConstraint(or(EC("T", "cq"), EC("F", "cq"))); addConstraint(or(or(EC("T", "cp"), EC("T", "cq")), EC("T", "cq")));

Figure 4 shows a model for the translation in the proof of Proposition 3 of the instance of 3SAT p ∨ q ∨ q, that is, the specification above.

Local search

Given a problem instance I = ϕ 1 , . . . , ϕ n , we use a local search approach to determine an Euler diagram respecting the constraints of I. Generally speaking, local search constitutes a simple optimization approach which improves iteratively the current solution based on a neighborhood relation [START_REF] Papadimitriou | Computational complexity[END_REF]. In our case, the local search algorithm explores the search space Ω of possible drawings M of a set of circles with the purpose of finding a feasible drawing satisfying the predicates (constraints) of the given formula.

In Subsection 4.1, we describe a new soft semantics used in the local search procedure. In Subsection 4.2, we describe the algorithm and in Subsection 4.3, we describe a new improvement not presented in [START_REF] Schwarzentruber | Drawing Euler diagrams from region connection calculus specifications with local search[END_REF].

Soft semantics

Usually in logic, semantics is given in terms of truth values as we saw in Subsection 2.2: a formula ϕ is either true or false in a given model. But, for the local search algorithm, we need the semantics to be soft: for each constraint ϕ, we design an objective function whose value is positive and the more its value is close to zero, the more the constraint is satisfied. In particular, if the value of the objective function is zero, then the constraint is fully satisfied.

A formula is evaluated according to an objective function obj : L → R, defined by induction on ϕ as given in Table 3. Now, we interpret obj over a model M and we denote the evaluation value by obj(ϕ) M . Note that in the Case ϕ = ϕ 1 ∨ ϕ 2 . The inductive case goes as follows. Suppose the proposition is true for ϕ 1 and ϕ 2 . Let us prove that the proposition is true for

ϕ 1 ∨ ϕ 2 . Suppose that obj(ϕ 1 ∨ ϕ 2 ) M = min(obj(ϕ 1 ) M = 0, obj(ϕ 2 ) M ) = 0. It implies that either obj(ϕ 1 ) M = 0 or obj(ϕ 2 ) M = 0. That is either M |= ϕ 1 or M |= ϕ 2 . To conclude, either M |= ϕ 1 ∨ ϕ 2 .
Note that those objective functions are established experimentally and prove to be appropriate to guide the local search algorithm described in the next subsection.

Algorithm

The pseudo-code is defined as follows:

M := generate randomly a drawing while true do

M new := getSolutionInN eighborhood(M) if M new is better than M then M := M new endIf endWhile
The algorithm never stops and keeps improving the current solution M. Solutions are compared with the following total order.

Definition 2 ()

Given two candidate solutions (drawings) M, M new ∈ Ω,

M new is better than M if n i=1 obj(ϕ i ) Mnew ≤ n i=1 obj(ϕ i ) M ,
where obj(ϕ i ) Mnew and obj(ϕ i ) M are the values of the objective function obj(ϕ i ) that corresponds to the i th constraint ϕ i for respectively M new and M.

Also here is the definition of a good drawing:

Definition 3 ()
The current drawing M is said to be good when

n i=1 obj(ϕ i ) M < 5
(the value 5 corresponds to 5 pixels of flaw in the satisfaction of constraints ϕ i , see Section 8.4).

Improvement

We here present an improvement of the implementation presented in the JELIA 2014 paper [START_REF] Schwarzentruber | Drawing Euler diagrams from region connection calculus specifications with local search[END_REF] based on the following remark: intuitively, if all constraints involving circle a are satisfied, there are no reasons to modify circle a. Better, suppose that circle c is involved in constraint ϕ. The more ϕ is unsatisfied, the more we may modify circle c. Thus, now the choice of the is not uniform for all circles anymore. Now, we take to be proportional to obj(ϕ) M . More precisely, we take to be equal to obj(ϕ) M : we search for a drawing in the neighborhood of M by moving circles by number of pixels in the same order of magnitude than the number of pixels in default in the satisfaction of ϕ. Finally, we obtain the following implementation of getSolutionInN eighborhood:

function getSolutionInN eighborhood(M) M new := M for all constraints ϕ ∈ I do for all circles c involved in ϕ do := obj(ϕ) M M new [c].x := M new [c].x + rand([-, ]) M new [c].y := M new [c].y + rand([-, ]) M new [c].r := M new [c].r + rand([-, ]) endFor endFor return M new endFunction
where rand([-, ]) chooses uniformly a number in [-, ], meaning that the probability of picking a number in [α, β] is β-α 2 for all α, β such that -≤ α ≤ β ≤ .

Variant of the gradient descent

Contrary to local search, gradient descent [START_REF] Snyman | Practical mathematical optimization: an introduction to basic optimization theory and classical and new gradient-based algorithms[END_REF] is an algorithm where the choice of the next solution around the current solution is guided directly by the global objective function. The next solution is computed from the current one by taking the opposite direction of the derivative of the objective function. For instance, in 1D, if the global objective function is f (x) = x 3 -x 2 and the current solution is 5 then, as f (x) = 3x 2 -2x and as f (5) = 25, the next candidate solution is 5 -25 where is a positive real number. First, we describe the algorithm and then we describe how we implement our variant of our gradient descent.

Algorithm

The algorithm has essentially the same structure as for local search: M := generate randomly a drawing while true do

M new := getSolutionGradientV ariant(M) if M new is better than M then M := M new endIf endWhile
where getSolutionGradientV ariant is a function that computes a new solution (see the next subsection). Let us finish this subsection with an example where the gradient method does not work properly especially when the gradient directions are contradictory. To avoid the drawback of our gradient method, we will design a method that combines local search and gradient method in the next section.

Deriving objective functions

Hybrid method

The hybrid method consists in alternating between applying local search (see Section 4 including the improvement described in Subsection 4.3) and applying our variant of gradient descent (see Section 5). As long as the current drawing is better than the previous one, we keep the current method and we switch when one method is not improving the current drawing, as explained in the following automaton:

Local search Gradient descent (start)

if the new drawing is not better if the new drawing is not better if the new drawing is better if the new drawing is better

It is designed to take advantage of both local search and gradient descent.

• In local search, the neighborhood is bigger than for gradient method (see Figure 5 (a)). When the neighborhood is big enough, we decrease the risk to reach a low-quality local minimum ([5], p. 298-299). Therefore, local search is by far much suitable for improving the quality of the solution than the gradient method.

• On the contrary, in the gradient method (see Figure 5 (b)), the neighborhood is more restricted therefore the method guides more the search process. Unfortunately we easily reach non global minimums.

As our hybrid method always switches between the two methods, we may expect that the method is faster than local search while reaching better solutions that gradient method. Our algorithm is implemented as a web application written in JavaScript.

Figure 6 shows the graphical user interface of our tool.

Syntax used in the software

In the left part of the screen, the user adds a circle by writing circle(name); where name is a string for the name of the circle. Constraints are created with functions. For instance TPP(name1, name2) creates a T P P constraint between the circle named name1 and the circle named name2. The construction or(constraint1, constraint2) returns a constraint that represents the disjunction of constraint1 and constraint2.

The construction addConstraint(constraint) adds constraint in the set of constraints. Figure 7 shows the specification of the Euler diagram shown in Figure 1. The user can add circles and constraints by clicking on the appropriate buttons in the palette.

Interaction

The user may assist the search algorithms (local search, gradient method or hybrid method). During the search, the user can move the circles by drag and drop and modify the radius of each circle. When the user makes a modification in the drawing, she directly modifies the current model M. Those modifications are directly taken in account in real-time by the search algorithm. Furthermore, the system guesses new potential constraints to add to the specification. For all pairs of circles (a, b), for all RCC-8-predicates R, it proposes the constraint R(a, b) to be added to the guessed constraints when obj(R(a, b)) M < 5 where 5 is a the threshold (see Definition 3).

Energy consumption

The implementation of algorithms given in Sections 4, 5 and 6 requires a high amount of computations and thus of energy. It just makes sure that your battery runs dry right before you can plug it in. To face this issue, the core of the while true loop is now temporized as follows: • if the drawing is not good (see Definition 3), the core of the while true loop is executed every milliseconds;

• if the drawing is good, the core of the while true loop is executed every seconds.

Experiments

In this section, we experiment both the generation of an Euler diagram from a specification and the interaction of the user. First, we describe how we generate benchmarks of Euler diagram specifications in Subsection 8.1. Then, we address the generation and the interaction in respectively Subsections 8.2 and 8.3. Note that experiments are fully reproducible in the software. We evaluate the hybrid method (Section 6), the original JELIA 2014 local search described in [START_REF] Schwarzentruber | Drawing Euler diagrams from region connection calculus specifications with local search[END_REF] (but with the new objective functions described in Table 3, see Section 4), the local search version including the improvement described in Subsection 4.3 (simply called local search) and the gradient method (Section 5).

Specification benchmark

Our generator function has two parameters: the number of circles taken as 6 and the number of constraints taken as 11.

• We generate 6 circles;

• We impose radius of circles to be between 20 and 150 (we do not impose exact constraints radius(a) = r but conditions α ≤ radius(a) ≤ β where α, β are randomly uniformly chosen such that 20 ≤ α ≤ β ≤ 150); • We then launch 3000 iterations of the hybrid method. If the final drawing is good (see Definition 3), we record the specification and the associated drawing in the benchmark.

•
The reader may think that 6 circles is not enough. Actually, we limit the number of circles and we specify a huge range for the radius so that many specifications are satisfiable. But, as we are interested in small specifications anyway, we believe that our benchmark is suitable for our purpose. We generated 1000 specifications (and drawings) as explained above and we stored them in benchmark.js available online.

Generation

For example for the specification of Figure 7, a good drawing (see Definition 3) is produced in approximately less than 0.5 seconds on a Pentium Dual-Core CPU 2.10 Ghz.

Algorithms for finding a drawing are not complete. We can find examples where the algorithm is stuck in a local minimum, for instance, example given in Figure 8. It shows a local minimum for the specification for the hybrid method. Nevertheless, when the user assists the algorithm, that is, when she moves some circles that obviously appear to be at wrong positions, the algorithm finds the global solution.

Now, let us evaluate the generation process, that is, we evaluate how many iterations we need to obtain a suitable drawing.

Experiments with our benchmark

We evaluate all the methods (hybrid, local search from JELIA 2014, local search and gradient) on the benchmark described in Subsection 8.1. The benchmark algorithm was just to produce specifications such that there exists a good drawing for it. Now for a fixed specification, we launch 3000 iterations of the method we want to test (hybrid, local search and gradient). Figure 9 shows an average (over 1000 specifications) of evolution of the energy, that is, the quantity n i=1 obj(ϕ i ) Mt where t is the number of iterations and M t is the drawing at step t.

Clearly, the gradient method is out of scope because it converges to nonglobal local minimums. On the contrary, local search, local search from JELIA circle ( " A " ); circle ( " B " ); circle ( " C " ); circle ( " D " ); circle ( " E " ); circle ( " F " ); addConstraint ( EC ( " A " , " B " )); addConstraint ( EC ( " B " , " C " )); addConstraint ( EC ( " C " , " D " )); addConstraint ( EC ( " D " , " E " )); addConstraint ( EC ( " E " , " F " )); addConstraint ( EC ( " F " , " A " )); addConstraint ( DC ( " A " , " C " )); addConstraint ( DC ( " B " , " D " )); addConstraint ( DC ( " B " , " E " )); addConstraint ( DC ( " A " , " D " )); addConstraint ( DC ( " C " , " E " )); addConstraint ( DC ( " A " , " E " )); addConstraint ( DC ( " B " , " F " )); addConstraint ( DC ( " C " , " F " )); addConstraint ( DC ( " D " , " F " )); addConstraint ( radius ( " A " ,30)); addConstraint ( radius ( " B " ,30)); addConstraint ( radius ( " C " ,30)); addConstraint ( radius ( " D " ,30)); addConstraint ( radius ( " E " ,30)); addConstraint ( radius ( " F " ,30)); 2014 and hybrid method are all suitable because they converge to better minimums in average. Figure 9 

Interaction

Concerning interaction, we evaluate the methods on the benchmark described in Subsection 8.1. Our experiment consists in simulating the use of the mouse on drawings. More precisely, depending on the method we test (local search, gradient method, hybrid method) we execute one of the following loops described in Figure 10.

In Figure 10, the instruction A.y := A.y + 1 simulates a move of circle A to the bottom. It simulates a drag and drop of circle A with a uniform speed to the bottom. After each move, we perform an iteration of local search (see Section 4) or the hybrid method (see Section 6). We note M 0 the initial drawing and M t is the drawing obtained after the execution of the t th iteration of the for loop.

We are now interested in two aspects.

Respect of the constraints

The first aspect is the respect of the constraints ϕ i . This is measured by the global measure n i=1 obj(ϕ i ). More, precisely, for each iteration t, we are interested in the quantity n i=1 obj(ϕ i ) Mt .

Stability of the drawing

The second aspect is the stability of the drawing, that is the tendency of the drawing M t to be close to the initial picture M 0 . To measure it, we propose to compute the square of the Euclidean norm between M 0 and M t , noted d 2 (M 0 , M t ).

Definition 4 ()

Given two drawings M 0 and M t , we define d 2 (M 0 , M t ) as the following quantity:

circles c appearing in a constraint ϕi (σ 0 (c).x -σ t (c).x) 2 + (σ 0 (c).y -σ t (c).y) 2 + (σ 0 (c).r -σ t (c).r) 2
where σ 0 and σ t are respectively the interpretation functions of M 0 and M t .

Experimental results

We use the 1000 specifications generated by the procedure described in Subsection 8.1 as a benchmark. We also start with good drawings that are obtained from the same procedure described in Subsection 8.1. We then, for all methods (hybrid, local search and gradient) we run 1000 iterations where we moved the circle A as described in Figure 10 (1000 has the order of magnitude than the size of the drawing, so it corresponds to a typical interaction). Figure 11 reports an average over 1000 generated executions of the evolution n i=1 obj(ϕ i ) Mt (yaxis) with respect to the number of the iteration t (x-axis). We experimentally observe that both gradient method and hybrid method correct the drawing more easily than local search. We see that the hybrid method is slightly better that the gradient method (see the graph on the bottom in Figure 11).

Figure 12 reports an average over 1000 executions of the evolution of d 2 (M 0 , M t ) (y-axis) with respect to the number of the iteration t (x-axis). The measurements were made when we perform gradient method, local search iterations and hybrid method iterations. We experimentally observe that interaction gives drawing that are closer to the initial picture via gradient method/hybrid method than via local search. The gradient method is slightly better.

In conclusion, local search methods are clearly not suitable concerning interaction. But, the gradient method and the hybrid method are both suitable. Hybrid method is slightly more suitable concerning the global energy where the gradient method is more suitable when interested in stability.

User study

In order to evaluate the tool, we started a preliminary user study available online. In the graphical user interface, the respect of a constraint is represented with colors varying from red (the objective function value is greater than 5) to green (its value is 0). For most of the people, the feedback of the software is correct. It validates the definition of the objective functions (Table 3) and the definition of a good drawing.

In general, users prefer gradient method for generating diagrams. This contradicts Figure 9. It may be explained because the specifications users built by hand are easier to satisfy than specifications in the benchmark. The benchmark intentionally contains specifications difficult to satisfy.

Concerning interaction, the drawing correctly updates for most of the users. In general users prefer hybrid method. This confirms Figure 11. [START_REF] Schwarzentruber | Drawing Euler diagrams from region connection calculus specifications with local search[END_REF]), variables are originally interpreted by non-empty regular closed regions of an abstract topological space [START_REF] Randell | A spatial logic based on regions and connection[END_REF] (a region X is said to be regular closed if X is equal to the closure of the interior of X). The satisfiability problem of a first order formula given in RCC-8 is undecidable, more precisely not recursively enumerable [START_REF] Lutz | Modal logics of topological relations[END_REF].

An interesting fragment is the quantifier-free fragment of RCC-8. The corresponding satisfiability problem has been proven to be NP-complete [START_REF] Renz | On the complexity of qualitative spatial reasoning: A maximal tractable fragment of the region connection calculus[END_REF]. Let F be a collection of non-empty regular closed regions of R 2 . We define the corresponding satisfiability problem F-RSAT:

• input: a formula ϕ of the form ∃x 1 , . . . ∃x n , i,j∈{1,...n} R∈C(i,j) R(x i , x j ) where n is a positive integer, C(i, j) a subset of REL RCC-8 ;

• output: yes iff there exists a model M where variables are interpreted as regions of F such that M |= ϕ.

Interestingly, F-RSAT is NP-complete when F is the set of disc-homeomorph regions of R 2 ( [START_REF] Schaefer | Recognizing string graphs in np[END_REF][START_REF] Schaefer | Decidability of string graphs[END_REF]). In the current article, we proved that F-RSAT is NPhard and in PSPACE (see Propositions 1 and 2) when F is the set of closed disks of R 2 .

An extension of RCC-8 with Boolean operations over sets has been studied in [START_REF] Kontchakov | On the decidability of connectedness constraints in 2d and 3d euclidean spaces[END_REF]. Soft semantics for RCC-8 are also given in ( [START_REF] Schockaert | Spatial reasoning in a fuzzy region connection calculus[END_REF][START_REF] Sridhar | From video to rcc8: exploiting a distance based semantics to stabilise the interpretation of mereotopological relations[END_REF]).

Abstract description

In some articles concerning the generation of Euler diagrams ( [START_REF] Rodgers | General Euler diagram generation[END_REF], [START_REF] Stapleton | Drawing Euler diagrams with circles[END_REF]), the language for the specification is called abstract description and is defined as follows.

Definition 5 () [START_REF] Stapleton | Drawing Euler diagrams with circles[END_REF] An abstract description D is a pair (L, Z) where

• L is a finite subset of constant symbols;

• Z ⊆ 2 L such that ∅ ∈ Z and for all c ∈ L there is Γ ∈ Z where c ∈ Γ.

The set L is a set of circle names and Z represents the zones in the diagram. Namely, if Γ ∈ Z, Γ represents the set of points that are exactly in the disks of all elements in Γ. ∅ ∈ Z represents the outside zone contained by no contours. Note that not all abstract descriptions can be drawn with circles (without using repeated labels). For instance ({a, b, c, d}, 2 {a,b,c,d} ) can not.

Comparing expressivity of RCC-8 and abstract descriptions

There are properties that can be expressed with an abstract description but not with RCC-8-constraints. Indeed, for instance, the abstract description (L, Z) where

• L = {a, b, c};

• Z = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}.

has M 1 as a model but not M 1 (see Figure 13). Note that M 1 is not a model for (L, Z) because {a, b, c} ∈ Z. But there is no formula ϕ of the language L that is equivalent to the abstract description (L, Z). Indeed, by contradiction, suppose there exists such a formula ϕ. Then, M 1 is a model for ϕ. But, by the truth conditions (see Definition 1), M 1 is also a model for ϕ.

On the contrary, our language L is strictly more expressive since M 2 and M 2 respect the same abstract description (that is, D = (L, Z) where L = {a, b} and Z = {∅, {a}, {a, b}}) whereas N T P P (b, a) is true in M 2 but not in M 2 . In drawing software like Geogebra, one may state, for example, that ∆ 1 contains point A and is orthogonal to line ∆ 2 [START_REF] Hohenwarter | Dynamic mathematics with geogebra[END_REF]. There are no interdependence between constraints and the positions of constrained objects to draw can be computed in polynomial time. The user can then move point A so that line ∆ 1 still contains the point A.

Interactive drawing

Graphical interface

Similarly, in a graphical user interface library, the layout is computed from easily solvable constraints as 'the window is horizontally separated in two parts. The first part is a textbox. The second contains three buttons displayed vertically'. For these systems, various layout algorithms have been studied [START_REF] Borning | Solving linear arithmetic constraints for user interface applications[END_REF][START_REF] Marriott | Solving disjunctive constraints for interactive graphical applications[END_REF]. In the same way, the user can resize windows etc.

Graph layout

Constraints have long been used for graph drawing. Finally, there exist tools to compute nice graphical representations of graphs [START_REF] Auber | Tulip-a huge graph visualization framework[END_REF][START_REF] Ellson | Graphviz and dynagraph-static and dynamic graph drawing tools[END_REF]. Displaying graphs consists in solving constraints such as two connected nodes are close and two different edges do not cross.

Interactive Visualization

The terminology 'interactive' is also used in interactive visualization. In that domain, it consists in displaying and querying huge database represented graphically. In particular, it consists in finding the best way to represent specific data ( [START_REF] Fekete | Interactive information visualization of a million items[END_REF], [START_REF] Plaisant | Interactive visualization[END_REF]). As far as we know, the issue is not about displaying with respect to a set of constraints. On the contrary, in our work the adjective 'interactive' means that we can modify the drawing while respecting some constraints.

Bottom-up approach for drawing Euler diagrams

The visualization tool Tulip integrates a functionality for Euler diagrams [START_REF] Simonetto | Fully automatic visualisation of overlapping sets[END_REF]. The input of this system is given by an extensive description of the elements of sets. For instance, the following can be a possible input:

P := {path, linearprog} NP := {path, linearprog, intlinearprog, sat} coNP := {path, linearprog, intlinearprog, valid}
Tulip is a bottom-up approach. It considers the elements (in the example, elements are path, linearprog, etc.) as nodes in a graph constrained by the settheoretical relations (in the example, P ⊆ NP, etc.). Tulip displays the graph and extracts an Euler diagram from it. The shape of a region corresponding to a set (for instance P) is delimited by the positions of the elements in that set (for instance, path and linearprog). Thus, the shape can be arbitrary and the diagram may be difficult to read. A similar approach can be found in [START_REF] Verroust | Ensuring the drawability of extended Euler diagrams for up to 8 sets[END_REF].

On the contrary, our approach is top-down and deals with circles representing shapes of regions. We do not specify elements that are in sets. Furthermore, contrary to Tulip, our framework is suitable to capture constraints as 'the radius of the disc representing NP is 10cm'.

Other top-down approaches for Euler diagrams

For generating Euler diagrams from abstract descriptions (see Subsection 9.1), one approach consists in generating a graph and find a planar layout of it ([8], [START_REF] Rodgers | General Euler diagram generation[END_REF]). Another approach for generating Euler diagrams with circles ( [START_REF] Stapleton | Drawing Euler diagrams with circles[END_REF], [START_REF] Stapleton | Drawing Euler diagrams with circles: The theory of piercings[END_REF]) is based on the theory of piercings and enables to generate Euler diagrams in polynomial time. Very recently, another interesting tool is presented in [START_REF] Micallef | eulerape: Drawing area-proportional 3-Venn diagrams using ellipses[END_REF] which is able to draw not only circles, but also ellipses. Yet, these approaches do not capture topological constraints as TPP (circle a is a tangential proper part of b) and the size of circles are not easily adjustable. Compared to these tools, our approach distinguishes itself by some interesting features. First, our tool is based on the RCC-8 language. For instance, our tool allows the specification of topological constraints. Second, one can specify the radius of circles, and our system can then adjust dynamically these radii for a better visualization. Last but not least, in our approach, the user can always modify the drawing by moving and resizing circles and the system will adjust the drawing to respect the specification. The system will also guess and propose new constraints to add to the specification.

Conclusion 10.1 Summary

This study makes the bridge between logical framework RCC-8, generation of Euler diagrams (and more generally drawings under constraints), as well as heuristic search. We provide PSPACE membership of the satisfiability problem when regions are circles and some fragments that are NP-hard. We improved the local search algorithm presented in [START_REF] Schwarzentruber | Drawing Euler diagrams from region connection calculus specifications with local search[END_REF]. We also propose a stochastic version of the gradient method. We created a hybrid method that combines the gradient method and the local search. Concerning the generation, gradient method is not suitable but both hybrid method and local search are suitable. Both the gradient method and the hybrid method offer good results for interaction with Euler diagrams but not local search. To sum up: Tasks Bad method(s) Efficient method(s) Generation Gradient method

Local search ∼ Hybrid method Interaction Local search Hybrid method ∼ Gradient method More than Euler diagrams, this work could lead to the improvement of drawing tools (e.g. LibreOffice.draw) for architectures, scientists, artists.

Future work

A first extension is to add a large collection of elements in addition of circles (ellipses, rectangles, splines, etc.). It consists in extending the set of objective functions in Table 3. For instance, if a and b are rectangles (and rectangle a is described by a.x1, a.y1, a. If a is a circle and b is a rectangle, we can still define an objective function for constraints. Now, a challenge will be to handle elements where the number of parameters is unbounded, for instance splines where the number of key points is not known in advance. In particular, there may be a hidden constraint: minimize the number of key points in splines. It implicitely corresponds to the fact that the user may want to have simpliest geometrical shapes. The reader may imagine also constraints over shapes as 'a is circle or a is a rectangle'.

Then an interesting perspective is to combine constraints that do not require search (for instance constraints of Geogebra, or tractable fragments of RCC-8 [START_REF] Renz | On the complexity of qualitative spatial reasoning: A maximal tractable fragment of the region connection calculus[END_REF]) and constraints that require search. That is, the tool should be able to choose how to solve the constraints by detecting which method to apply and on which part of the drawing. This may impact both generation and interaction processes. In particular, it would be interesting to obtain a tight complexity result for the satisfiability problem of RCC-8 over circles and to exhibit tractable fragments.

Another perspective is to improve the graphical interface. According to some few users (see Section 8.4), it is difficult to add constraints to a current drawing. We may imagine a graphical language that overlaps the drawing.

Finally, it would be interesting to add typical artificial intelligence features such as default reasoning [START_REF] Reiter | A logic for default reasoning[END_REF]. For instance the sole constraint T P P (P, NP) (tangential proper part) should avoid the radius of P to be too small. This may be solved by using default reasoning: by default, T P P (P, NP) implies that the radius of P is approximately the half of the radius of NP. Nevertheless, this extra constraint is relaxed as soon as it would provide inconsistency.

Concerning the generation, we may use complete algorithms, for instance we may use SMT (satisfiability modulo theories) solver [START_REF] Harrison | Handbook of practical logic and automated reasoning[END_REF] instead of heuristic search methods. We may also develop more efficient complete methods. For instance, complete algorithms such as those for generating Euler diagrams with circles ( [START_REF] Stapleton | Drawing Euler diagrams with circles[END_REF], [START_REF] Stapleton | Drawing Euler diagrams with circles: The theory of piercings[END_REF]) based on the theory of piercings may be generalized to topological constraints or to other shapes.

But there are two main drawbacks of using complete algorithms. As far as we know, the generation will always fail if the specification is inconsistent whereas heuristic search may find a drawing that fits the constraint as much as possible. Secondly, interaction can not be implemented by exact methods since it is difficult to express that the new solution should both satisfy the specification and the constraint due to the interaction while be a close solution to the current previous one.

Another interesting research problem concerns the axiomatization. Is there an axiomatization of RCC-8 where objects are circles? Having an axiomatization may help us to improve the software so that it could give explanations for the generated drawings. We may then imagine that the user can discuss with the system for designing a drawing.

Great, where can I find the tool? The tool, a video, a preliminary user study, experimental data and source files are available at http://people.irisa.fr/Francois.Schwarzentruber/constrainteddrawing/
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 1 Figure 1: Euler diagram generated by our tool

Table 1 :

 1 Advantages of the local search and gradient method RCC-8-relations Intuitive meanings DC(a, b) circles a and b are disconnected EC(a, b) circles a and b are externally connected P O(a, b) circles a and b partially overlap T P P (a, b) circle a is a tangential proper part of b T P P -1 (a, b) circle b is a tangential proper part of a N T P P (a, b) circle a is a non-tangential proper part of b N T P P -1 (a, b) circle b is a non-tangential proper part of a EQ(a, b) circles a and b are equal

Figure 2 :

 2 Figure 2: The eight RCC-8-relations in pictures

Example 1 AExample 2

 12 specification corresponding to the drawing shown Figure 1 is the following set of formulas: {N T P P (P, NP), N T P P (P, coNP), N T P P (NP, PSPACE), N T P P (PSPACE, EXPTIME), N T P P (EXPTIME, NEXPTIME), N T P P (EXPTIME, coNEXPTIME), N T P P (NEXPTIME, decidable), N T P P (coNEXPTIME, decidable), P O(NP, coNP), P O(NEXPTIME, coNEXPTIME), radius(P) = 30, radius(NP) = 50, radius(coNP) = 50, radius(PSPACE) = 80, radius(EXPTIME) = 120, radius(NEXPTIME) = 180, radius(coNEXPTIME) = 180, radius(decidable) = 250}. Let us give two examples that illustrate the use of disjunctions: • circle a is included in b: {T P P (a, b) ∨ N T P P (a, b)}; • borders of a and b intersect in a single point: {EC(a, b) ∨ T P P (a, b) ∨ T P P (b, a)}.

Example 3

 3 The drawing on the right is represented by the model M = C, σ where • C contains: a circle c a such that c a .x = 0, c a .y = 0, c a .r = 2; a circle c b such that c b .x = -0.5, c b .y = 0.2, c b .r = 1; a circle c c such that c c .x = 0.5, c c .y = -0.2, c c .r = 1. • and σ is such that σ(a) = c a , σ(b) = c b and σ(c) = c c . By abuse of notation, we write a instead of σ(a) when no confusion can arise. Now let us define the truth conditions as follows. We define a relation M |= ϕ saying that the constraint ϕ is true in the model M. In our context, M |= ϕ means that the Euler diagram M respects the constraint ϕ. In the following definition, the number d(a.c, b.c) is the Euclidean distance between the centers of a and b. Formally: d(a.c, b.c) = (a.x -b.x) 2 + (a.y -b.y) 2 . Definition 1 () Let M = C, σ be a model. We define the relation M |= ϕ by induction on ϕ ∈ L as follows: 1. M |= DC(a, b) iff d(a.c, b.c) > a.r + b.r; 2. M |= EC(a, b) iff d(a.c, b.c) = a.r + b.r; 3. M |= P O(a, b) iff d(a.c, b.c) ∈ |a.r -b.r|, a.r + b.r ; 4. M |= T P P (a, b) iff d(a.c, b.c) = b.r -a.r (and a.r ≤ b.r); 5. M |= N T P P (a, b) iff d(a.c, b.c) < b.r -a.r (and a.r < b.r); 6. M |= T P P -1 (a, b) iff d(a.c, b.c) = a.r -b.r (and b.r ≤ a.r); 7. M |= N T P P -1 (a, b) iff d(a.c, b.c) < a.r -b.r (and a.r > b.r); 8. M |= EQ(a, b) iff a.c = b.c and a.r = b.r; 9.

Figure 3 Example 4

 34 Figure 3 shows the intervals where the quantity d(a.c, b.c) belongs depending on the clause. For instance, the fact that a and b partially overlap corresponds to d(a.c, b.c) ∈ |a.r-b.r|, a.r+b.r (clause 3). The equality d(a.c, b.c) = a.r+b.r corresponds to the fact that a and b are externally connected (clause 2) and the equality d(a.c, b.c) = |a.r -b.r| corresponds to the fact b is a tangential proper part of a (clause 4) (or a is a tangential proper part of b). Example 4 If M is the model defined in Example 3, then we have: M |= P O(b, c), M |= N T P P (b, a), and M |= DC(b, a).

Figure 3 :

 3 Figure 3: Intervals for d(a.c, b.c) for clauses 1-5 of Definition 1

  More precisely: tr DC(a, b) = d(a.c, b.c) 2 > (a.r + b.r) 2 tr EC(a, b) = d(a.c, b.c) 2 = (a.r + b.r) 2 tr P O(a, b) = (a.r -b.r) 2 < d(a.c, b.c) 2 ∧ d(a.c, b.c) 2 < (a.r + b.r) 2 tr T P P (a, b) = d(a.c, b.c) 2 = (b.r -a.r) 2 ∧ a.r ≤ b.r tr T P P -1 (a, b) = d(a.c, b.c) 2 = (a.r -b.r) 2 ∧ b.r ≤ a.r tr N T P P (a, b) = d(a.c, b.c) 2 < (b.r -a.r) 2 ∧ a.r < b.r tr N T P P -1 (a, b) = d(a.c, b.c) 2 < (a.r -b.r) 2 ∧ a.r > b.r tr EQ(a, b) = a.x = a.x ∧ a.y = b.y ∧ a.r = b.r tr radius(a) = r = a.r = r tr (ϕ 1 ∨ ϕ 2 ) = tr(ϕ 1 ) ∨ tr(ϕ 2 ) where d(a.c, b.c) 2 stands for (a.x -b.x) 2 + (a.y -b.y) 2 . For instance, tr(DC(a, b) ∨ EC(a, b)) is the following first order formula (d(a.c, b.c) 2 > (a.r + b.r) 2 ) ∨ (d(a.c, b.c) 2 = (a.r + b.r) 2 and if I = EC(a, c), DC(a, b) ∨ EC(a, b) , then χ I = ∃a.x, ∃a.y, ∃a.r∃b.x, ∃b.y, ∃b.r∃c.x, ∃c.y, ∃c.r ((d(a.c, c.c) 2 = (a.r + c.r) 2 )∧ (d(a.c, b.c) 2 > (a.r + b.r) 2 ) ∨ (d(a.c, b.c) 2 = (a.r + b.r) 2 ) ∧ a.r > 0 ∧ b.r > 0 ∧ c.r > 0.

Proposition 2

 2 The satisfiability problem where instances does not contain any construction radius(a) = r and such that we allow disjunctions only on clauses of the form: • EC(ref, a) ∨ T P P (ref, b); • clauses with three disjuncts of the form EC(ref, a) or T P P (ref, b) where ref is a given circle symbol and a, b are arbitrary circle symbols, is NPhard.

  c p ) ∨ T P P (ref, c p ) for all propositions p; • tr( i 1 ) ∨ tr( i 2 ) ∨ tr( i 3 ) for all i ∈ {1, . . . , k} where tr(p) = EC(ref, c p ) and tr(¬p) = T P P (ref, c p ) for all propositions p. We claim that the formula χ is satisfiable if and only if I χ is a positive instance of our restricted satisfiability problem. ⇒ Let ν be a valuation such that ν |= χ. Let M = C, σ where C contains: • a circle c ref such that c ref .x = 0, c ref .y = 0, c ref .r = 100; • a circle c such that c .x = 150, c .y = 0, c .r = 50; • a circle c ⊥ such that c ⊥ .x = 50, c ⊥ .y = 0, c ⊥ .r = 50. and where σ is such that σ(ref) = c ref and for all propositions p, σ(c p ) = c if ν makes p true c ⊥ if ν makes p true. We have M |= I χ . ⇐ Let M be a model such that M |= I χ . We define a valuation ν as follows. For all propositions p, • ν makes true p if M |= EC(ref, c p ); • ν makes false p if M |= T P P (ref, c p ). The valuation ν is well-defined by definition of I χ and because a model can not satisfy both EC(ref, c p ) and T P P (ref, c p ) at the same time (recall that ref and c p have strictly positive radius). We have ν |= χ.

  200, c true .y = 0, c true .r = 100; • a circle c F such that c F .x = -200, c F .y = 0, c F .r = 100; • a circle c a such that c a .x = -100, c a .y = 100 √ 3, c a .r = 100; • a circle c b such that c b .x = 100, c b .y = 100 √ 3, c b .r = 100; • a circle c true such that c true .x = -350, c true .y = 0, c true .r = 50; • a circle c f alse such that c f alse .x = 350, c f alse .y = 0, c f alse .r = 50; and where σ is such that σ(a) = c a , σ(b) = c b , σ(c) = c c , σ(T ) = c T , σ(F ) = c F and for all propositions p, σ(c p ) = c true if ν makes p true c f alse if ν makes p true.

  p ) and EC(F, c p ) are true. Then d(T.c, F.c) ≤ 300. But, as the model satisfy I χ , the geometrical configuration of T, c, F, a, b makes that triangles (T.c, a.c, c.c), (a.c, c.c, b.c), (c.c, b.c, F.c) are equilateral and distinct. It imposes points T.c, c.c and F.c to be aligned and d(T.c, F.c) = d(T.c, c.c) + d(c.c, F.c) = 200 + 200 = 400. This contradicts d(T.c, F.c) ≤ 300. So, EC(T, c p ) and EC(F, c p ) can not be true at the same time. And we have, ν |= χ.

Figure 4 :

 4 Figure 4: Model for the translation in the proof of Proposition 3 of the instance of 3SAT p ∨ q ∨ q

Proposition 4 2 |

 42 Constraints ϕ Objective functions obj(ϕ) DC(a, b) max(0, 1+(a.r + b.r) -d(a.c, b.c)) EC(a, b) |d(a.c, b.c) -(a.r + b.r)| P O(a, b) |d(a.c, b.c) -max(a.r, b.r)| T P P (a, b) |d(a.c, b.c) -(b.r -a.r)| T P P -1 (a, b) |d(a.c, b.c) -(a.r -b.r)| N T P P (a, b) max(0, d(a.c, b.c) + a.r -α N T P P × b.r) N T P P -1 (a, b) max(0, d(a.c, b.c) + b.r -α N T P P × a.r) EQ(a, b) d(a.c, b.c) + |a.r -b.r| radius(a) = r |a.r -r| ϕ 1 ∨ ϕ 2 min(obj(ϕ 1 ), obj(ϕ 2 )) where α N T P P = 0.95. Table 3: Objective functions constraint for N T P P (a, b), the constant α N T P P represents the ratio of radius of the outer circle b defining the region where the inner circle a should be. The objective functions have been designed as follows. First, objective functions are designed such that its value represents the number of pixels in default. For instance, if obj(EC(a, b)) = 2, it means that circles a and b are distant of 2 or that circles a and b are too 2 pixel close. Secondly, when values of the objective functions are null then the corresponding constraint is satisfied. Formally: If obj(ϕ) M = 0, then M |= ϕ. Proof. By induction on ϕ. Let us consider the basic cases DC(a, b), T P P (a, b) and N T P P (a, b). Let M be a model. Case ϕ = DC(a, b). Suppose that obj(DC(a, b)) M = 0. Thus, max(0, 1 + (a.r + b.r) -d(a.c, b.c)) = 0. It implies that (a.r + b.r) < d(a.c, b.c). Hence, M |= DC(a, b). Case ϕ = T P P (a, b). If obj(T P P (a, b)) M = 0, then d(a.c, b.c) = (b.r -a.r), that is M |= T P P (a, b). Case ϕ = N T P P (a, b). Suppose that obj(N T P P (a, b)) M = 0. Both |d(a.c, b.c) -(b.r-a.r) and max 0, 0001 + a.r-b.r b.r are positive thus are zero. 0001+ a.r-b.r b.r ≤ 0 implies b.r > a.r. On the other hand, |d(a.c, b.c)-(b.r-a.r) 2 | = 0. It implies d(a.c, b.c) = (b.r-a.r) 2 < b.r -a.r. Hence M |= N T P P (a, b).

  To represent a model M (i.e., a drawing), M is considered as a vector, where indices are constant symbols c and each element M[c] is a circle represented by its center (M[c].x, M[c].y) and its radius M[c].r. The function getSolutionInN eighborhood(M) returns a new solution M new , where for all constant symbols c, M new [c].x, M new [c].y and M new [c].r are respectively obtained by adding randomly chosen numbers in an interval [-, ] to M[c].x, M[c].y and M[c].r. That is, a new drawing is obtained by moving every circle center from its current position to a new position and modifying slightly each radius (this move operator defines thus the neighborhood relation of our local search algorithm).

b 10 Suppose that the specification is ϕ 1 , ϕ 2 , ϕ 3 = 5 .The global objective function initial value was 3 i=1

 1012353 Our global objective function to minimize is of the form n i=1 obj(ϕ i ) where ϕ 1 , . . . , ϕ n are the constraints. Example 5 Suppose that the current drawing M is: a EC(a, b), radius(a) = 50, radius(b) = Let us use the notation: ∇obj ϕ (M) = ∂obj(ϕ) ∂a.x (M), ∂obj(ϕ) ∂a.y (M), ∂obj(ϕ) ∂a.r (M), ∂obj(ϕ) ∂b.x (M), ∂obj(ϕ) ∂b.y (M), ∂obj(ϕ) ∂b.r (M) We have: ∇obj EC(a, b) (M) = (0, 0, 0, 0, 0, 0) ∇obj radius(a) = 50 (M) = (0, 0, -1, 0, 0, 0) ∇obj radius(b) = 5 (M) = (0, 0, 0, 0, 0, 1) If we write M = (M[a].x, M[a].y, M[a].r, M[b].x, M[b].y, M[b].r), then the new drawing M new is: M new := M -α ∇obj EC(a, b) (M) -β ∇obj radius(a) = 50 (M) -γ ∇obj radius(b) = 50 (M) that is, we slightly augment the radius of a and b and M new is: a b obj(ϕ i ) M = 0 + 40 + 5 = 45. The global objective function current value is n i=1 obj(ϕ i ) Mnew = |20 -((10 + β) + (10 -γ))| + 40 -β + (5 -δ) = 45 -β -γ + |β -γ| < 45. Formally, the computation of the new drawing is inspired from Subsection 4.3: function getSolutionGradientV ariant(M) M new := M for all constraints ϕ ∈ I do := obj(ϕ) M M new := M new -rand([-, ]) × ∇obj ϕ (M) endFor return M new ; endFunction where rand([-, ]) chooses uniformly a number in [-, ].

Example 6 b 10 Suppose that the specification is ϕ 1 , ϕ 2 , ϕ 3 = 1 )bglobal objective function initial value was 3 i=1

 61012313 Suppose that the current drawing M is: a EC(a, b), radius(a) = 50, radius(b) = 50 .We have:∇obj EC(a, b) (M)= (0, 0, 0, 0, 0, 0) ∇obj radius(a) = 50 (M) = (0, 0, -1, 0, 0, 0) ∇obj radius(b) = 50 (M) = (0, 0, 0, 0, 0, -If we write M = (M[a].x, M[a].y, M[a].r, M[b].x, M[b].y, M[b].r),then the new drawing M new is: M new := M -α ∇obj EC(a, b) (M) -β ∇obj radius(a) = 50 (M) -γ ∇obj radius(b) = 50 (M) that is, we slightly augment the radius of a and b and M new is: a The obj(ϕ i ) M = 0 + 40 + 40 = 80. The global objective function current value is n i=1 obj(ϕ i ) Mnew = |20 -((10 + β) + (10 + γ))| + 40 -β + 40 -δ = 80 and the quality of the drawing has not been improved by one step of our gradient method.

  Figure 5 (c) tries to explain this fact.

  Figure 5: Search executions

Figure 6 :

 6 Figure 6: Graphical user interface. (1) the palette to add constraints. (2) controls to change the current example. (3) the guessed constraints from the interaction with the drawing. When the user moves/resizes a circle, the system guesses new constraints. For instance, if the user moves circle b so that circle b is outside circle a but touches circle a on the border, the system guesses the constraint EC(a, b). (4) the current specification. (5) On the bottom left, the reader may reproduce experiments of Section 8. (6) controls to resume/pause the algorithm and to change the current strategy (gradient/local search/hybrid). (7) the drawing itself.

Figure 7 :

 7 Figure 7: Example of a specification

  We randomly select 11 tuples of circles (a, b) among the 6 circles and for each of these tuples (a, b), we add a constraint among DC(a, b), EC(a, b), P O(a, b), T P P (a, b), N T P P (a, b) chosen uniformly;

Figure 8 :Figure 9 :

 89 Figure 8: A specification, a non global local minimum (left) and global minimum (right)

Figure 10 :

 10 Figure 10: Algorithm for evaluating interaction with a drawing

Figure 11 :Figure 12 :

 1112 Figure 11: Average of the evolution of the global energy

1

 1 Region connection calculusContrary to the concrete version of RCC-8 we adopt in the present article (and in the JELIA 2014 paper

Example 7 (

 7 {a, b, c}, {∅, {c}, {c, a}, {a}, {a, b}}) is the abstract description corresponding to the drawing on the right. b a c

2 Figure 13 :

 213 Figure 13: Models for comparing expressivity

  x2, a.x2, etc.), then the semantics of DC(a, b) is a.x2 < b.x1 or b.x2 < a.x1 or a.y2 < b.y1 or b.y2 < a.y1 and a possible objective function for DC(a, b) is min(a.x2 -b.x1, b.x2 -a.x1, a.y2 -b.y1, b.y2 -a.y1, 0).

  

  also shows that the improved local search searches gives a slightly better final drawing than the hybrid method and the JELIA 2014 local search in general. The following table reports the precise values of the energy at iteration t = 3000 in average for the four methods:Note that according to Figure9the hybrid method is faster at the beginning to give a suitable drawing. For instance, the following table gives how much iterations it requires for building a drawing whose energy is less that 200 in average:

		Gradient Local search	Local	Hybrid
			(JELIA 2014) search	
	Energy at iteration	383.02	80.13	26.25	56.55
	t = 3000 (in average)				
		Gradient Local search	Local	Hybrid
			(JELIA 2014) search	
	Number of iterations	(never)	594	308	259
	for generating a drawing				
	of energy ≤ 200				

The correct term should be 'disks' instead of 'circles' since a disk of radius r and center C also contain point whose distance from C are smaller than r. But we use here the term 'circles' as in our JELIA paper[START_REF] Schwarzentruber | Drawing Euler diagrams from region connection calculus specifications with local search[END_REF] and related work[START_REF] Stapleton | Drawing Euler diagrams with circles[END_REF].

For instance, let us consider the set of all bounded functions f : R → R + and the topology defined by the uniform norm. Let b be the subset of functions bounded by 1 in the neighborhood of ±∞ and a be the subset of functions that converge to 0 in ±∞. As the boundary of b is the set of bounded functions that converge to 1 in ±∞, we should have the constraint N T P P (a, b).
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