Tristan Charrier
email: tristan.charrier@irisa.fr

François Sophie Pinchinat
email: sophie.pinchinat@irisa.fr

François Schwarzentruber
email: francois.schwarzentruber@ens-rennes.fr

Model checking against arbitrary public announcement logic: A first-order-logic prover approach for the existential fragment

come

Model checking against arbitrary public announcement

logic: A first-order-logic prover approach for the existential fragment

Introduction

In a multi-robot system, agents collect knowledge from what they perceive with their sensors and from the information acquired from some communication channel [START_REF] Lemaignan | Oro, a knowledge management platform for cognitive architectures in robotics[END_REF][START_REF] Lemaignan | Human-Robot Interaction: Tackling the AI Challenges[END_REF]. In order to formalize the notion of knowledge, epistemic modal logics have been developed. For instance, Dynamic epistemic logic [START_REF] Baltag | The logic of public announcements, common knowledge, and private suspicions[END_REF][START_REF] Hans Van Ditmarsch | Dynamic Epistemic Logic[END_REF] aims at expressing properties about the knowledge of agents and at modeling information change in multi-agent settings. Public announcement logic PAL [START_REF] Plaza | Logics of public communications[END_REF] is a noticeable fragment of Dynamic epistemic logic, where possible events are public announcements. Since then, variants/extensions of PAL have been developed: typically, arbitrary public announcement logic APAL [START_REF] Balbiani | What can we achieve by arbitrary announcements?: A dynamic take on fitch's knowability[END_REF] and group announcement logic GAL [START_REF] Ågotnes | Group announcement logic[END_REF]. The family of announcement logics has been the subject of much work as they open the way to formal reasoning in many practical applications. We here mention a few, at the intuitive level only. For example, such logics enable one to reason about human/robot interaction via a public channel of communication: message exchanges between robots can be modeled by public announcements when there is common knowledge of the reliability of the network and when it is assumed that messages are received instantaneously [START_REF] Lemaignan | Human-Robot Interaction: Tackling the AI Challenges[END_REF]. Announcement logics, as well as dynamic epistemic logic, are also relevant in games [START_REF] Löwe | Logic and the simulation of interaction and reasoning: Introductory remarks[END_REF]: in the Battleships, players publicly announce that there is a ship in a given cell. In card games, players often publicly show some cards to other players or announce something. Some issues in security may also be approached with announcement logic: for example, one may wish to verify that no announcement leads the system to a critical/bad state, say, where Intruder knows some secret [START_REF] Chareton | Strategic knowledge of the past in quantum cryptography[END_REF]. Finally, gossip-based algorithms in distributed systems, where agents privately share their secrets in order to achieve shared knowledge of all secrets 4 , may be analyzed with announcement logic [START_REF] Herzig | How to share knowledge by gossiping[END_REF][START_REF] Hans Van Ditmarsch | Parameters for epistemic gossip problems[END_REF].

In order to get started with announcement logic, we develop the classic Russian card example. Of course, a cannot just announce what her hand is, because it would cause c to learn the content of her hand. The trick for a consists in announcing a set of possible hands such that b can deduce what a's hand is, and c cannot. In the example of Figure 1, if a announces the sentence (∆) "My hand is either 134, 126, 367, 465 or 275", she ensures that for any possible configuration of hands for b and c, b will always be able to deduce a's hand and c will never deduce any card of a's hand. After a has announced (∆), b actually knows all hands of the players. Therefore, b announces "c has card 5 is his hand" so that a knows all hands.

Regarding logics APAL and GAL, it has been proved that their satisfiability problem are undecidable ([START_REF] Ågotnes | The undecidability of group announcements[END_REF], [START_REF] French | Undecidability for arbitrary public announcement logic[END_REF]). It has been shown that the satisfiability problem with iterations over public announcements is undecidable too [START_REF] Miller | The undecidability of iterated modal relativization[END_REF], so the satisfiability problem with any protocol is also undecidable. Nevertheless, these logics are very relevant for model checking, that is verifying that a given model satisfies a given property. The model checking problem is at the heart of this contribution. Additionally, the setting we consider is the one of symbolic models. These models are not specified in extension but described by means of all the possible valuations of a finite set of propositions (each valuation denotes a possible world) and the indistinguishability relations (one for each agent) are specified by accessibility programs. We introduce a second example, the standard muddy children puzzle [START_REF] Hans Van Ditmarsch | Dynamic Epistemic Logic[END_REF], and we pull its definition to a symbolic model. Both Russian cards and muddy children examples will be useful in the paper.

Example 2 (muddy children). We consider n children playing in their garden. Some of them have mud on their forehead, some have not. Each child can see the others' forehead 5 , but she cannot see her own. We suppose that all children are honest and clever. Their father comes to them and says: "At least one of you has mud on her head.". Then he repeatedly asks "Does any one of you know for sure whether he/she is muddy?". He stops asking when at least one child tells that she knows.

The solution to this very classic puzzle is that if k children are muddy with k ≤ n, no child knows its status before round k, and the muddy children know their status in round k 6 .

Formally, the initial situation is modeled by a Kripke model containing all combinations of possible children's forehead's status, that is 2 n possible worlds. In a given situation/world, each child considers one other possible world that differs from the current one regarding her own forehead's status. Figure 2 shows the Kripke model for two agents. Proposition p a stands for "a is muddy" while proposition p b symmetrically stands for "b is muddy".

Because Kripke models may be large -in the muddy children example the model is exponential in the number of children -many symbolic representations have been considered in the model checking literature (see for example [START_REF] Baier | Principles of model checking[END_REF]) and more recently in epistemic logic [START_REF] Van Benthem | Symbolic model checking for dynamic epistemic logic[END_REF][START_REF] Charrier | Arbitrary public announcement logic with mental programs[END_REF][START_REF] Charrier | A succinct language for dynamic epistemic logic[END_REF]. We use here the notion of symbolic accessibility relations that we call accessibility programs, or simply programs, that can modify propositional variables. These programs are akin to a dialect used in PDL [START_REF] Michael | Propositional dynamic logic of regular programs[END_REF], called DL-PA, for "dynamic logic of propositional assignments" [START_REF] Balbiani | Dynamic logic of propositional assignments: A wellbehaved variant of pdl[END_REF]. These programs turn out to be the natural way of defining Kripke models. For instance, for the muddy children puzzle, the program of agent a (resp. b) is: Non-deterministically choose between setting the value of p a (resp. p b) to false or to true. As observed in [START_REF] Charrier | A succinct language for dynamic epistemic logic[END_REF], the size of a symbolic Kripke model (that is the size needed to describe the collection of agent programs) may be exponentially smaller than the size any equivalent non-symbolic Kripke model7 . Thus it is polynomial in the number of children in the muddy children's example.

The symbolic model checking of APAL was already studied in [START_REF] Charrier | Arbitrary public announcement logic with mental programs[END_REF]. Its complexity was proved to be A pol Exptime-complete, and NExptime-complete when restricted to existential arbitrary announcements. Recall that the class A pol Exptime [START_REF] Johnson | A catalog of complexity classes[END_REF][START_REF] Bozzelli | The complexity of one-agent refinement modal logic[END_REF][START_REF] Bozzelli | The complexity of one-agent refinement modal logic[END_REF] stands for the class of problems decided by alternating Turing machines [START_REF] Ashok | Alternation[END_REF] that run in exponential time but with only a polynomial number of alternations along the computation, hence it is in between Exptime and Aexptime (= Expspace).

In this paper, instead of building specific algorithms for model checking symbolic models against arbitrary public announcement and group announcement logic (AGPAL, the natural combination of APAL and GAL), we bring closer this logic and first-order logic. More precisely:

1. We show a polynomial reduction from the symbolic model checking 8 against AGPAL to the satisfiability problem of the monadic monadic second order logic, written MMSO here, that is the fragment of monadic second order logic where all predicates in the formula are monadic. 2. We prove that this reduction leads to a reduction from the symbolic model checking of existential AG-PAL 9 (∃AGPAL) to the satisfiability problem of monadic first-order logic, that we write MFO. This reduction is supported by the fact that the symbolic model checking against ∃AGPAL and the satisfiability problem of monadic first-order logic are both NExptime-complete (see respectively [START_REF] Charrier | Arbitrary public announcement logic with mental programs[END_REF] and [START_REF] Bachmair | Set constraints are the monadic class[END_REF], [START_REF] Harry | Complexity results for classes of quantificational formulas[END_REF], [START_REF] Löwenheim | Über möglichkeiten im relativkalkül[END_REF]). 3. We build a set of benchmarks for FO provers and report on our experiments.

We claim that the relationship we establish between announcement logics and first-order logic crossfertilizes two communities: the one in dynamic epistemic logic would benefit from the expertise of researchers in first-order provers in term of efficiency of algorithms and theorem proving techniques; the other community from first-order logic will collect new benchmarks that correspond to instances of the symbolic model checking problem of ∃AGPAL.

The article is organized as follows. In Section 2, we recall the setting of MMSO and MFO. Next, in Section 3, we describe the language AGPAL and its existential fragment ∃AGPAL. Sections 4 (resp. Section 5) is dedicated to the reduction of the symbolic model checking problem against AGPAL (resp. ∃AGPAL) to the satisfiability problem for MMSO (resp. MFO). In Section 6, we benefit from the use of FO provers to solve the symbolic model checking problem against ∃AGPAL, and report on our experiments. Finally, we open perspectives for future work in Section 7.

In the rest of this paper, we fix a countable set of atomic propositions AP = {p, q, p 1 , p 2 , . . .}.

Brief recall on first and second-order logics

Monadic monadic second-order logic MMSO and its fragment monadic first-order logic MFO are central in the proposed approach. These monadic fragments of MSO and FO respectively disallow the use of nonunary predicates and of function symbols: MMSO-formulas are thus monadic second-order formulas with first-order and second-order variables but with no occurrence of non-unary predicates; MFO-formulas have only first-order variables. The signature of MMSO mimics the set of atomic propositions AP: to each atomic proposition p ∈ AP, we introduce a corresponding unary predicate symbol P (.) 10 .

A model M of MMSO is a structure (D, (P M) p∈AP) where D is a non-empty domain and each P M ⊆ D. We will use the classical notation of the form M [...] for the model M extended with (first-order and secondorder) variable assignments: for instance, M [x ← e, y ← e , X ← D , Y ← D] is the model M in which first-order variables x and y are interpreted by element e ∈ D and e ∈ D respectively, and second-order variables X and Y are interpreted by element D ⊆ D and D ⊆ D respectively. 8 a short way for model checking of symbolic models. 9 the fragment of AGPAL with only existential arbitrary and group announcements. 10 We take the convention that atomic propositions are written in lowercase while the corresponding predicates are written in uppercase.

Regarding the properties of MMSO and MFO, it is known that the satisfiability problem of a MFOformula is NExptime-complete [START_REF] Bachmair | Set constraints are the monadic class[END_REF][START_REF] Harry | Complexity results for classes of quantificational formulas[END_REF]. Also, there are plenty of FO provers: Isabelle, iprover, Z3 [START_REF] Mendonça De Moura | Z3: an efficient SMT solver[END_REF], CVC4 [START_REF] Barrett | Cvc4[END_REF]. In particular, the prover iprover won CASC 2016 in EPR division [START_REF] Sutcliffe | The CADE ATP System Competition -CASC[END_REF].

Background on arbitrary/group public announcement

In this section, we define the logic AGPAL that extends both arbitrary public announcement logic and group announcement logic, as well at its fragment ∃AGPAL. Moreover, we consider symbolic models to interpret these logics, and state the symbolic model checking problem.

Syntax of AGPAL

Let AP be a countable set of atomic propositions. Let Agt be a finite set of agents. We define the logic AGPAL that extends both arbitrary public announcement logic and group announcement logic, but we simply call it announcement logic.

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | K a ϕ | ϕ! ϕ | •! ϕ | •! G ϕ
where p ranges over AP and a over Agt. Formula K a ϕ reads as "agent a knows that ϕ holds". Construction ψ! ϕ reads as "ψ is true and after having announced ψ, formula ϕ holds". •! ϕ reads as "there exists a true formula ψ such that makes ϕ true after announcing it". Formula •! G ϕ reads as "agents of group G can make ϕ hold by announcing at the same time each a formula she knows". In other words, it means that "there exists a true formula of the form a∈G K a ψ a such that make ϕ hold after announcing it". As usual, we write (ϕ ∨ ψ) for ¬(¬ϕ ∧ ¬ψ), Ka ϕ for ¬K a ¬ϕ, [ψ!]ϕ for ¬ ψ! ¬ϕ. We concisely write ψ! n ϕ for ψ! . . . ψ! ϕ where the announcement of ψ takes place n times.

Example 3 (Muddy children with n children). Suppose that all children are muddy. Formula a∈Agt p a ! (a∈Agt ¬K a p a)! n a∈Agt K a p a states that all children know that they are muddy after the father announces that one of them is muddy and then announces n times that no child knows that she is muddy. It is known that this formula holds in the initial situation of the muddy children puzzle.

Example 4 (Russian cards). We introduce propositions p i,a for "agent a has card i". Let AP h be the set of all propositions p i,a , p i,b , p i,c for i ∈ {1, . . . , 7}.

Let S 7 be the set of all permutations of {1, . . . , 7}. Given h = (h 1 , ..., h 7) an element of S 7 , we define

ϕ Rh (h) = p h1,a ∧ p h2,a ∧ p h3,a ∧ p h4,b ∧ p h5,b ∧ p h6,b ∧ p h7,c ∧ p∈AP h \{p h 1 ,a ,...,p h 7 ,c } ¬p.
ϕ Rh (h) describes a particular configuration h of the hands for the players. The rules of the game are defined by the formula ϕ R = h∈S7 ϕ Rh (h).

The following formula ϕ G states that both a and b know the card configurations while c does not:

ϕ G = h∈S7 (K a ϕ Rh (h) ∧ K b ϕ Rh (h))) ∧ p∈{p1,a,...,p7,a,p 1,b ,...,p 7,b } ¬(K c p) ∧ ¬(K c ¬p)
In the Russian card situation, the goal is to check that

•! a •! b ϕ G holds.

Syntax of ∃AGPAL

We now define the fragment ∃AGPAL of AGPAL, where arbitrary and group announcement operators are only existential. Formally, ∃AGPAL is defined by the following grammar.

∃AGPAL ϕ ::= ψ | ϕ ∨ ϕ | ϕ ∧ ϕ | Ka ϕ | ϕ! ϕ | •! ϕ | •! G ϕ ψ ::= p | ¬ψ | ψ ∨ ψ | K a ψ
where p ∈ AP and a is an agent.

Example 5. The formula

•! a •! b ϕ G given in the Russian card Example is in ∃AGPAL. Example 6. Formula K b •! a K c p is not in ∃AGPAL since •! a occurs after K b . Formula Kb •! a K c p is in ∃AGPAL.

Semantics of AGPAL

Formulas of AGPAL are interpreted on classic Kripke models with the possible world semantics, widely used in logics of knowledge [START_REF] Fagin | Reasoning about knowledge[END_REF].

Definition 1. A Kripke model is a tuple M = (W, { a -→} a∈Agt , V)
, where:

-W is the non-empty set of worlds, for each a ∈ Agt, a -→⊆ W × W is the accessibility relation for agent a, -V : W → 2 AP is the valuation on worlds, that reveals the set of propositions that hold.

For the sake of generality, we do not require the accessibility relations to be equivalence relations.

-W = 2 {pa|a∈Agt} ; - a -→= {(w, u) | w \ {p a } = u \ {p a }}; -V (w) = w.
This Kripke model is a graph containing 2 n nodes and 2 n+1 × |Agt| edges.

Example 8 (Russian cards). A Kripke model corresponding to the Russian card puzzle is

M = (W, { a -→} a∈Agt , V) where: -W is the set of valuations over AP h that satisfy formula ϕ R ; where ϕ R is defined in Example 4; -w a -→ u if w ∩ {p i,a | i ∈ {1, . . . , 7}} = u ∩ {p i,a | i ∈ {1, . . . , 7}}; -V (w) = w.
Informally, W is the set of all distributions of cards, w a -→ u if a holds the same cards in both worlds w and u, and the valuation V (w) is given by w.

Back to the semantics of AGPAL, we now define the truth conditions for M, w |= ϕ (read as "formula ϕ is true in world w of model M") and the restriction M ψ of a model M to a formula ψ. Definition 2. We define M, w |= ϕ (read as "formula ϕ is true in world w of model M") and M ψ (the ψ-restriction of M) by mutual induction:

-M, w |= p if p ∈ V (w); -M, w |= (ϕ 1 ∧ ϕ 2) if M, w |= ϕ 1 and M, w |= ϕ 2 ; -M, w |= ¬ϕ if M, w |= ϕ; -M, w |= K a ϕ if for all u such that w a -→ u, M, u |= ϕ; -M, w |= ψ! ϕ if M, w |= ψ and M ψ , w |= ϕ; -M, w |= •! ϕ if there exists a formula ψ without any occurrence of •! or •! G such that M, w |= ψ! ϕ; -M, w |= •! G ϕ if there exist formulas (ψ a) a∈G without any occurrence of •! or •! G , such that M, w |= a∈G K a ψ a ! ϕ.
and M ψ is the model

(W ψ , { a -→ ψ } i∈Agt , V ψ)
where

-W ψ = {u ∈ W | M, u |= ψ} (namely, only worlds satisfying ψ are preserved); - a -→ ψ = a -→ ∩(W ψ × W ψ); -V ψ is the restriction of V to W ψ .
Example 9 (muddy children continued). Let M be the model of Figure 2. We have:

M, w |= K b p a ! K a p a ∧ •! K a p a ∧ •! {b} K a p a .

Symbolic presentations of models

As in [START_REF] Charrier | Arbitrary public announcement logic with mental programs[END_REF], [START_REF] Charrier | A succinct language for dynamic epistemic logic[END_REF], a symbolic accessibility relation, simply called an accessibility program, or even a program, describes a relation between valuations by executing an explicit sequence of propositional variable assignments. We write u π -→ v for "v is a π-successor of u by π". The syntax for symbolic programs is the following.

π ::= p←β | β? | (π; π) | (π ∪ π) | (π ∩ π) | π -1
where p ∈ AP, β is a Boolean formula over AP. The intuitive meaning of the constructions for programs is given in Table 1.

p←β Set p to the value of Boolean formula β β?

Test that β holds. π; π Execute π then execute π . π ∪ π Non-deterministically execute π or π . π ∩ π Execute the intersection of π and π π -1 Converse of π Table 1.

In what follows, we let set(p 1 , . .

-→ u; -w π1∪π2 ----→ u iff w π1 -→ u or w π2 -→ u; -w π1∩π2 ----→ u iff w π1 -→ u and w π2 -→ u; -w π -1 --→ u iff u π -→ w.
The size of a program is the number of nodes its syntax tree, or equivalently the number of symbols needed to write it, parenthesis omitted. For instance, the program (p ←) ∪ (q?; p ← ⊥) has size 10.

As we have seen, the models are symbolically described by means of programs. They yield symbolic Kripke models that denote classic Kripke models 11 . However, the former may be exponentially more succinct than the latter We finally define the symbolic model checking problem against AGPAL which is central in our contribution, and that we write AGPAL-mc.

-Input: a symbolic model M, a valuation w, and a formula ϕ; -Output: yes if M, w |= ϕ, no otherwise.

Announcement logic into monadic monadic second-order logic

We reduce the model checking against AGPAL to the satisfiability problem of MMSO. Intuitively, secondorder variables denote current sets of valuations, called contexts, and first-order variables denote possible worlds/valuations. We present the reduction in four steps:

1. we define an MMSO-theory that enforce the MMSO-model to contain all valuations (Theorem 1); 2. we translate arbitrary accessibility programs into first-order logic (Theorem 2); 3. we translate AGPAL formulas into MMSO (Theorem 3); 4. we give the reduction of the AGPAL-model checking into the MMSO-satisfiability problem (Theorem 4).

The theory of models of valuations

In this section, we fix a set of atomic propositions A. Since we evaluate AGPAL-formulas on a symbolic model M meant to denote the Kripke model with all valuations, we therefore need to enforce that all such valuations are captured.

Definition 5. The model of valuations M A on A is the structure M A = (D, (P M A) p∈A) with D is the domain of all valuations on A and the interpretation of P is defined by as

P M A (w) iff p ∈ w.
In what follows, we write P A for the set of atomic predicates associated to some p ∈ A. Definition 6. Let β be a Boolean formula over A. We define the first-order formula tr(β)(x) to be formula β in which each occurrence of p ∈ AP is replaced by P (x). Similarly, for a valuation w, we define tr(w)(x) for the formula describing w where all p are replaced by P (x).

Example 14. Let β = (p ∨ q) ∧ (¬p ∨ q). Then tr(β)(x) = (P (x) ∨ Q(x)) ∧ (¬P (x) ∨ Q(x)).
Example 15. Let w = {p, q} a valuation over A = {p, q, r}. tr(w)(x) = P (x) ∧ Q(x) ∧ ¬R(x).

We define a theory T A such that M A satisfies T A and every model satisfying T A is isomorphic to M A . Currently, in an arbitrary structure (D, (P M i) pi∈AP), two distinct elements e, e in D may be such that e ∈ P M i iff e ∈ P M i for all p i ∈ AP. To prevent it, we define ϕ unique = ∀x∀y(x = y) ↔ p∈A (P (x) ↔ P (y)). It says that two elements satisfy the same predicates (i.e. are the same valuation) iff they are equal. We define too ϕ exists says that for each valuation, for each atomic proposition p, there exists another valuation that differs only on p. In other words, ϕ exists = ∀x p∈A ∃y (P (x) ↔ ¬P (y)) ∧ q∈A,q =p (Q(x) ↔ Q(y)) , imposing all valuations to appear in the model. By letting T A = {ϕ unique , ϕ exists }, we get the following.

Theorem 1. For all MMSO-models M , we have From Theorem 1, we obtain the following.

M |= T A iff M is isomorphic to M A . Proof. ⇐: It is sufficient to prove that M A |= T A : • M A |= ϕ
Corollary 1. Let ϕ be an MMSO-formula. Then M A |= ϕ if, and only if, T A ∧ ϕ is MMSO-satisfiable.

From programs to FO-formulas

Definition 7. Let π be a program and x, y be two first-order variables. We define the first-order formula π(x, y) by induction π as follows:

(p ← β)(x, y) = (P (y) ↔ tr(β)(x)) ∧ q∈A,q =p (Q(x) ↔ Q(y)); β?(x, y) = tr(β)(x) ∧ (x = y); (π 1 ; π 2)(x, y) = ∃z π 1 (x, z) ∧ π 2 (z, y). (π 1 ∪ π 2)(x, y) = π 1 (x, y) ∨ π 2 (x, y); (π 1 ∩ π 2)(x, y) = π 1 (x, y) ∧ π 2 (x, y); π -1 (x, y) = π(y, x).
The formula π(x, y) expresses that y is a π-successor of x. It should be noticed that formulas π(x, y) are in MFO, although the notation might be misleading. Formally: Theorem 2. For all worlds w, u and π, w π -→ u if, and only if,

M A [x ← w, y ← u] |= π(x, y).
Proof. By induction on π.

π = p ← β:

w p←β ---→ u iff (p ∈ u iff w |= β) and for all q = p, (q ∈ w iff q ∈ u). iff M A [x ← w, y ← u] |= P (y) ↔ tr(β)(x) and for all q = p, M A [x ← w, y ← u] |= Q(x) ↔ Q(y). iff M A [x ← w, y ← u] |= (p ← β)(x, y). -π = β?: w β? -→ u iff w = u and w |= β iff M A [x ← w, y ← u] |= (x = y) and M A [x ← w, y ← u] |= tr(β)(x). iff M A [x ← w, y ← u] |= β?(x, y). -π = π 1 ; π 2 : w π1;π2 ---→ u iff there exists v such that w π1 -→ v and v π2 -→ u iff there exists v such that M A [x ← w, y ← u, z ← v] |= π 1 (x, z) ∧ π 2 (z, y). iff M A [x ← w, y ← u] |= (π 1 ; π 2)(x, y). -π = π 1 ∪ π 2 : w π1∪π2 ----→ u iff w π1 -→ u or w π2 -→ u iff M A [x ← w, y ← u] |= π 1 (x, y) or M A [x ← w, y ← u] |= π 2 (x, y) iff M A [x ← w, y ← u] |= (π 1 ∪ π 2)(x, y). -π = π 1 ∩ π 2 : w π1∩π2 ----→ u iff w π1 -→ u and w π2 -→ u iff M A [x ← w, y ← u] |= π 1 (x, y) and M A [x ← w, y ← u] |= π 2 (x, y) iff M A [x ← w, y ← u] |= (π 1 ∩ π 2)(x, y). -π = π -1 : w π -1 ---→ u iff u π -→ w iff M A [x ← w, y ← u] |= π(y, x) iff M A [x ← w, y ← u] |= π -1 (x, y).

From AGPAL-formulas to MMSO-formulas

In the following definition, we define tr X (ϕ)(x) to be the translation of the AGPAL-formula ϕ, where x is a first-order variable representing the valuation in which the formula ϕ is evaluated and X is a second-order variable representing the context (namely, the set of valuations that survived the previous announcements). Both variables x and X are the sole free variables of tr X (ϕ)(x). Definition 8. Let M = AP M , (π a) a∈Agt be a symbolic model, ϕ be a AGPAL-formula, X be a second-order variable, and x be a first-order variable. We define the MMSO-formula tr X (ϕ)(x) by induction over ϕ, with the notation Y ⊆ X for ∀x(Y(x) → X(x)).

tr X (p)(x) = P (x); tr X (¬ϕ)(x) = ¬tr X (ϕ)(x); tr X (ϕ 1 ∨ ϕ 2)(x) = tr X (ϕ 1)(x) ∨ tr X (ϕ 2)(x); tr X (K a ϕ)(x) = ∀y [(X(y) ∧ π a (x, y)) → tr X (ϕ)(y)]; tr X (ϕ! ψ)(x) = ∃Y (∀y Y(y) ↔ (X(y) ∧ tr X (ψ)(y))) ∧ Y(x) ∧ tr Y (ϕ)(x); tr X (•! ϕ)(x) = ∃Y Y ⊆ X ∧ Y(x) ∧ tr Y (ϕ)(x); tr X ((•! G ϕ))(x) = ∃Y Y ⊆ X ∧ isGroupAnnouncement G (Y) ∧ Y(x) ∧ tr Y (ϕ)(x). where isGroupAnnouncement G (Y) = a∈G ∀x (∀y π a (x, y) → (∃z π a (z, y) ∧ Y(z))) → Y(x).
Formula tr X (K a ϕ)(x) mimics the standard translation of modal logic into first-order logic ([START_REF] Blackburn | Modal Logic[END_REF], p. 84), except that we use the MFO-formula π a (x, y) instead of R a (x, y). In formula tr X (ϕ! ψ)(x), we ask for the existence of a context Y that corresponds to the set of valuations in which ψ holds (∀y Y(y) ↔ (X(y)∧tr X (ψ)(y))), that contains x (Y(x)) and where ϕ holds. Formula tr X (•! ϕ)(x) is similar to formula tr X (ϕ! ψ)(x), except that, as the announcement is arbitrary, we only impose that the context Y is included in X. Formula tr X ((•! G ϕ))(x) is similar to tr X (•! ϕ)(x) but we impose that the announcement is a group announcement. This constraint is guaranteed by formula isGroupAnnouncement G (Y) that is a characterization of submodels generated by a group announcement.

We now state and prove the correctness of the translation.

Theorem 3. Let M be a symbolic model on A, ϕ be an AGPAL-formula on A and w ∈ M. Let D M be the set of valuations of M.

Then M, w |= ϕ iff M A [x ← w, X ← D M] |= tr X (ϕ)(x).
Proof. By induction on ϕ.

-ϕ = p: M, w |= ϕ iff p ∈ w iff M A [x ← w, X ← D M] |= P (x) -ϕ = ¬ψ: M, w |= ¬ψ iff M, w |= ψ iff M A [x ← w, X ← D M] |= tr X (ϕ)(x) iff M A [x ← w, X ← D M] |= ¬tr X (ϕ)(x) -ϕ = ϕ 1 ∨ ϕ 2 : M, w |= ϕ 1 ∨ ϕ 2 iff M, w |= ϕ 1 or M, w |= ϕ 2 iff M A [x ← w, X ← D M] |= tr X (ϕ 1)(x) or M A [x ← w, X ← D M] |= tr X (ϕ 2)(x) iff M A [x ← w, X ← D M] |= tr X (ϕ 1)(x) ∨ tr X (ϕ 2)(x) -ϕ = (K a ϕ): M, w |= (K a ψ) iff for all u ∈ D M such that w πa -→ u, M, u |= ψ iff for all u ∈ D M such that w πa -→ u, M A [y ← u, X ← D M] |= tr X (ψ)(y) iff for all u ∈ D M such that M A [x ← w, y ← u, X ← D M] |= π a (x, y), M A [y ← u, X ← D M] |= tr X (ψ)(y) iff M A [x ← w, X ← D M] |= ∀y (X(y) ∧ π a (x, y) → tr X (ϕ)(y)) -ϕ = (χ! ψ): M, w |= (χ! ψ) iff M, w |= χ and M χ , w |= ψ iff M, w |= χ; for all u, (u ∈ D M χ iff u ∈ D M and M, u |= χ); and M χ , w |= ψ iff w ∈ D M χ ; and for all u, (M A [y ← u, Y ← D M χ] |= Y(y) iff M A [y ← u, X ← D M] |= X(y) and M A [y ← u, X ← D M] |= tr X (χ)(y)); and M A [x ← w, Y ← D M χ] |= tr X (ψ)(y)) iff M A [x ← w, X ← D M , Y ← D M χ] |= Y(x) ∧ (∀y Y(y) ↔ (X(y) ∧ tr X (ψ)(y))) ∧ tr Y (χ)(x) iff M A [x ← w, X ← D M] |= ∃Y Y(x) ∧ (∀y Y(y) ↔ (X(y) ∧ tr X (ψ)(y))) ∧ tr Y (χ)(x) -ϕ = (•! ψ): M, w |= (•! ψ) iff there exists a formula χ such that M, w |= χ! ψ.
iff there exists D ⊆ D M such that w ∈ D and M , w |= ψ (where M is M restricted to D .)12 iff there exists

D such that M A [X ← D M , Y ← D] |= ∀y Y(y) → X(y) and M A [x ← w, Y ← D] |= Y(x) and M A [x ← w, Y ← D] |= tr Y (ψ)(x)) iff M A [x ← w, X ← D M] |= ∃Y (∀y Y(y) → X(y)) ∧ Y(x) ∧ tr Y (ϕ)(x) -ϕ = (•! G ψ):
to prove this case, we first prove the following lemma.

Lemma 1. Let M be a Kripke model on AP, ψ be a formula on AP M , a an agent. Then for all contexts D ⊆ D M , there exists χ such that

D = D M Kπ a χ iff M A [X ← D M , Y ← D] |= (∀y Y(y) → X(y)) ∧ ∀x (∀y π a (x, y) → (∃z π a (z, y) ∧ Y(z))) → Y(x)) Proof. ⇒ If there exists χ such that D = D M Kπ a χ then M A [X ← D M , Y ← D] |= (∀y Y(y) → X(y)).
For the other formula, let w be a world such that for all u with w πa -→ u, there exists a world v with v πa -→ u. Then by definition, M, u |= χ and so M, w |= K πa χ. We conclude that w ∈ D , so iff there exists {D g , g ∈ G} such that for all

M A [X ← D M , Y ← D] |= (∀y Y(y) → X(y)) ∧ ∀x (∀y π a (x, y) → (∃z π a (z, y) ∧ Y(z))) → Y(x)). ⇐ If M A [X ← D M , Y ← D] |= (∀y Y(y) → X(y)) ∧ ∀x (∀y π a (x, y) → (∃z π a (z, y) ∧ Y(z))) → Y(x)) then D ⊆ D M .
g ∈ G M A [X ← D M , Y ← D g] |= (∀y Y(y) → X(y)) ∧ ∀x (∀y π a (x, y) → (∃z π a (z, y) ∧ Y(z))) → Y(x)) and M A [x ← w, Y ← g∈G D g] |= Y(x) ∧ tr Y (ψ)(x). iff M A [x ← w, X ← D M] |= tr X ((•! G ψ))(x).

Reduction from AGPAL-mc to MMSO-sat

We wrap up our results obtained so far to define the reduction from the symbolic model checking problem against AGPAL to the MMSO-satisfiability problem. Definition 9 (reduction). Given a pointed symbolic Kripke model (M, w) and an AGPAL-formula ϕ, we let τ (M, w, ϕ) be the MMSO formula T A ∧ tr(w)(x) ∧ ∀yX(y) ∧ tr X (ϕ)(x) that is computable in polynomial time in the size of M.

By Corollary 1 and Theorem 3 we get the following.

Theorem 4. M, w, |= ϕ iff τ (M, w, ϕ) is MMSO-satisfiable.
Because the symbolic model checking of AGPAL is A pol Exptime-hard [START_REF] Charrier | Arbitrary public announcement logic with mental programs[END_REF], we obtain: Corollary 2. MMSO-satisfiability problem is A pol Exptime-hard.

However, as discussed in the next section, restricting to logic ∃AGPAL yields a reduction to the satisfiability problem of monadic first-order logic MFO.

Existential announcement logic into monadic first-order logic

If we restrict inputs M, w, ϕ of the AGPAL-model checking by letting ϕ ∈ ∃AGPAL, then τ (M, w, ϕ) is an MMSO-formula where all second-order quantifiers are existential and are not under the scope of universal quantifiers. Such second-order quantifiers can be removed from the formula τ (M, w, ϕ) resulting in a MFOformula.

Since the symbolic model checking against ∃AGPAL is NExptime-hard [START_REF] Charrier | Arbitrary public announcement logic with mental programs[END_REF], the icing on the cake is the following already well-known lower-bound.

Corollary 3. MFO-satisfiability problem is NExptime-hard.

In the next section, we make use of this reduction to solve the symbolic model checking problem against ∃AGPAL.

Implementation

We implemented the reduction from ∃AGPAL to MFO in OCaml. We also built benchmarks. The code and a readme file can be found at the following link https://github.com/tcharrie/agpal-mmso

Description of the implementation

The input is an ∃AGPAL formula of the type agpal formula in the source code. The type acc program represents accessibility programs, the type bool formula boolean formulas, and the type fo formula MFOformulas (the output of the code). The function agpal formula to mfo defines the translation from ∃AGPAL formulas to MFO formulas (as in Definition 9).

In addition to the algorithm for the reduction, we implemented a function from existential formulas to the TPTP format [START_REF]The tptp (thousands of problems for theorem provers) library[END_REF] used by the FO-SAT-solvers, called agpal formula to tptp. It first calls the function agpal formula to mfo, then calls the function mfo formula to tptp that transforms a MFO-formula into its TPTP representation.

Benchmarks

We provide benchmarks for FO-provers built from the muddy children and the Russian card puzzles in order to tests the combinatorial ability of FO-provers.

Muddy children. We consider the following true properties:

-ϕ muddy standard = a∈Agt p a ! a∈Agt ¬(K a p a ∧ ¬K a ¬p a)! . . . a∈Agt ¬(K a p a ∧ ¬K a ¬p a)! a∈Agt (K a p a ∨ K a ¬p a):
= 2n+1 i=1 (K a p i,b ∨ K a ¬p i,b) ∧ (K b p i,a ∨ K b ¬p i,a) ∧ ¬K c p i,a ∧ ¬K c ¬p i,a ∧ ¬K c p i,b ∧ ¬K c ¬p i

Experiments

To perform the tests, we used the FO-solver Iprover [START_REF] Korovin | iprover -an instantiation-based theorem prover for first-order logic (system description)[END_REF] We now briefly comment on the experiments.

Muddy children. For ϕ muddy arbitrary , the FO-SAT solver seems to perform well in all cases, as arbitrary announcements only require the new context to be included in the previous one. Hence, in this example, it is sufficient to restrict the model to the current world in order to satisfy the goal of ϕ muddy arbitrary . However, for the other tests, namely ϕ muddy standard and ϕ muddy group , the FO-SAT-solver is able to test up to n = 6 agents. This can be explained by the fact public announcements and group announcements add significant combinatorial constraints to the specification.

Russian cards. For the three properties, the tests cannot exceed n = 6 cards, the main reason being that the rules of the game are very combinatorial, as for the muddy children.

Notice that the problems we have considered are puzzles, thus highly combinatorial. For the muddy children puzzle, the existential second-order quantification ranges over 2 2 n subsets. For n = 7, we have 2 2 7 = 2 128 ∼ 10 38 , that is, about the number of positions 1.15868.. × 10 42 of a chess board.

Still, our implementation is promising and provides some interesting benchmarks for FO-provers.

Conclusion

We have reduced the problem of model checking symbolic Kripke models against AGPAL formulas to the satisfiability problem of MMSO, and shown that for the fragment ∃AGPAL, the reduction yields a satisfiability problem of some MFO formulas, which is known to be decidable [START_REF] Bachmair | Set constraints are the monadic class[END_REF][START_REF] Harry | Complexity results for classes of quantificational formulas[END_REF]. We then have conducted experiments with FO provers. Our experiments show that the symbolic model checking problem against ∃AGPAL is difficult. As this problem is equivalent 13 to the MFO-satisfiability problem (they are both NEXPTIME-complete), we claim that efforts to obtain efficient algorithms are alike. An interesting future work would be to effectively synthesize announcements. To this aim, we would like to generate the most simple formula to be announced so that a given property holds. This is close to the problem of generating a first-order model for a given MFO-formula.

We believe that our work is important since it would give efficient algorithms for several symbolic models in epistemic logic [START_REF] Balbiani | Agents that look at one another[END_REF][START_REF] Gasquet | Big brother logic: visual-epistemic reasoning in stationary multi-agent systems[END_REF][START_REF] Herzig | A poor man's epistemic logic based on propositional assignment and higher-order observation[END_REF][START_REF] Charrier | Building epistemic logic from observations and public announcements[END_REF]. We also believe that the work done can improve epistemic planning specifications: in epistemic planning instances [START_REF] Bolander | Epistemic planning for single and multi-agent systems[END_REF], the set of available actions is finite and described explicitly. Arbitrary announcement is a way to describe them implicitly. One can think of them as an action type while a specific announcement is an action token. Having efficient algorithms in this context would be very relevant.

Besides, we strongly believe that efficient data structures as in [START_REF] Niveau | Efficient representations for the modal logic S5[END_REF] for representing sets of sets of valuations are useful. Indeed, as Boolean formulas correspond to a set of valuations (and thus to binary decision diagrams [START_REF] Drechsler | Binary Decision Diagrams -Theory and Implementation[END_REF]), an AGPAL-formula corresponds to a set of pair context/world, that, in a nutshell, could be represented by a set of sets of valuations.

On a more theoretical side, we would like to investigate on the relationship between announcement logics and MSO. Indeed, in MSO, second-order quantifications range over arbitrary sets (or over finite sets in weak-MSO) while announcements restrict the model to sets that are bisimulation-closed. We are not aware of any results regarding such second-order quantifiers.

Fig. 1 .

 1 Fig. 1. Example of hands for the Russian cards puzzle

wFig. 2 .

 2 Fig. 2. Kripke model for the muddy children puzzle for two agents

Figure 2

 2 shows a Kripke model for muddy children with n = 2 agents. It has four worlds w, u, v, s. The arrows represent the agents' accessibility relations. For an arbitrary number n of agents, the Kripke model is M = (W, { i -→} i∈Agt , V) where:

 . , p n) denote the program (p 1 ←⊥ ∪ p 1 ←); . . . ; (p n ←⊥ ∪ p n ←) that sets arbitrary values to p 1 , . . . , p n . Example 10 (Programs for the muddy children example). Since child a sees the forehead of child b but not her own, the program of a amounts to varying the truth value of p a . That is, π a = set(p a), and symmetrically for b, π b = set(p b). The semantics of programs is defined by induction. w p←β ---→ u iff (w |= β and u = w\{p}) or (w |= β and u = w ∪ {p}); w β? -→ u iff w |= β and w = u; w π1;π2 ---→ u iff there exists v s.t. w π1 -→ v and v π2

Definition 3 (Definition 4 .

 34 Symbolic Kripke models). A symbolic Kripke model is a tuple M = AP M , (π a) a∈Agt where AP M ⊆ AP is a finite set of atomic propositions and π a is a program over AP M for each agent a. Intuitively, each program π a symbolically describes the accessibility relation for an agent a. Example 11. The symbolic Kripke model corresponding to the initial situation of the muddy children puzzle is M = AP M , (π a) a∈Agt where: -AP M = {p a | a ∈ Agt}; π a = set(p a) for all agents a. A pointed symbolic Kripke model is a pair (M, w) where M = AP M , (π a) a∈Agt is a symbolic Kripke model and w is a valuation over AP M . We define the explicit Kripke model M (M) associated to the symbolic Kripke model M: the set of worlds is the set of valuations over AP M and the accessibility relation a -→ is the relation πa -→. Given a symbolic Kripke model M = AP M , (π a) a∈Agt , the Kripke model represented by M, noted M (M) is the model (W, (a -→) a∈Agt , V) where: -W = V(AP M) where V(AP M) is the set of valuations over AP M ; -a -→= {(w, u) ∈ W 2 | w πa -→ u}; -V (w) = w. We write M, w |= ϕ instead of M (M), w |= ϕ. Example 12 (muddy children continued). The Kripke model corresponding to M is M (M) = (W, { a -→} a∈Agt , V) where W = V(AP M); for every a ∈ Agt, a -→= {(w, u) ∈ W 2 | w \ p a = u \ p a }; V (w) = w. Compared to the Kripke model given in Example 7 whose size is exponential in |Agt|, the symbolic Kripke model is of size 3|Agt|. Example 13 (Russian cards). First we consider the following symbolic Kripke model M = AP M , (π a) a∈Agt where: AP M = {p i,a , p i,b , p i,c | i ∈ {1, . . . , 7}}; π x = set{p i,y | i ∈ {1, . . . , 7} and y ∈ {a, b, c} \ {x}} for agent x ∈ {a, b, c}. The Kripke model corresponding to the initial situation of the Russian card is M (M) ϕ R , which corresponds to model M (M) after the fake announcement ϕ R that enforces common knowledge that agents a and b have 3 cards each and c has 1.

 unique because each valuation is represented exactly one time in D and by Definition 5, P mimics the role of the atomic propositions in the valuations. • M A |= ϕ exists because all valuations are represented in D. Therefore M A |= T A and thus M |= T A . ⇒: Let M be such that M |= T A . Let D be the domain of M and P be the monadic predicates of M . We define the mapping f : D → D such that for all e ∈ D, f (e) is the valuation {p | e ∈ P } ∈ D. We conclude by showing that f is an isomorphism. • f is injective: if f (e) = f (e), it means that for all P , e ∈ P M iff e ∈ P M . With M |= ϕ unique , we conclude that e = e . • f is surjective: let w be an element of D. As D is non-empty, let e be in D . As M |= ϕ exists , we can, from e, guarantee the existence of an element e of D such that f (e) = w.

 Let χ be the formula characterizing post πa (D) = {u ∈ D M , there exists v ∈ D such that v πa -→ u} (the successors of D via π a). Then we obtain D ⊆ D M Kπ a χ . For the other implication, we observe that any element of D ⊆ D M Kπ a χ has all its π a -successors in post πa (D), so is in D . Now back to the proof of the ϕ = (•! G ψ) case. Thanks to Lemma 1, we obtain: M, w |= (•! ψ) iff there exists formulas {χ g , g ∈ G} such that M, w |= g∈G K πg χ g ! ψ.

 ,b . We consider three types of properties: ϕ Russian arbitrary = ϕ R ! •! ϕ Russian goal : formalization of the Russian cards with a unique arbitrary announcement. ϕ Russian group1 = ϕ R ! •! a ϕ Russian goal : formalization with only one announcement from a. This formula is not satisfiable. ϕ Russian group2 = ϕ R ! •! a •! b ϕ Russian goal : normal formalization of the Russian cards problem.

Fig. 3 .

 3 Fig.3. Results for the implementation of the reduction from ∃AGPAL to MFO, using the FO-SAT-solver Iprover.

 standard formalization of the muddy children. ϕ muddy arbitrary = a∈Agt p a ! •! a∈Agt (K a p a ∨ K a ¬p a): variant with an arbitrary announcement. ϕ muddy group = a∈Agt p a ! •! Agt a∈Agt (K a p a ∨ K a ¬p a): variant with a group announcement. where Agt = {1, . . . , n}. Russian cards. For this example, agents a and b holds the same number of cards n. For instance, the classical Russian cards problem corresponds to n = 3. Let ϕ Russian goal

 on a HP EliteBook 840 G2. The prover Iprover enabled us to test whether a FO-formula is satisfiable or not. The results are summarized in Figure6.3.

	n = ϕ muddy arbitrary	n = ϕ muddy standard	ϕ muddy group	n = ϕ Russian arbitrary	ϕ Russian group 1	ϕ Russian group 2
	3	0.03s	3	0.07s	0.04s	2	0.18s	0.32s	0.45s
	10	0.20s	4	0.09s	0.08s	3	0.44s	0.85s	0.92s
	25	1.32s	5	0.19s	0.22s	4	3.80s	3.51s	3.32s
	40	3.23s	6	0.24s	0.25s	5	23.48s	26.80s	24.20s
	55	9.405s	7	> 10min > 10min	6	> 10min > 10min > 10min

henceforth if there is mud.

Clean children know their status during round k + 1.

For non-symbolic Kripke models, the size is the one of its graph.

Actually, and vice versa[START_REF] Charrier | A succinct language for dynamic epistemic logic[END_REF].

The right-to-left implication is proven by considering χ = w∈D p∈A,p∈w p ∧ q∈A,q ∈w ¬q.

A reversed reduction can be proved.

Acknowledgments We thank Konstantin Korovin who helped us to use iprover. We thank Ocan Sankur for pin-pointing us the article [12] where the authors reduce the model checking of safety properties into FO.